mirror of
https://github.com/sqlite/sqlite.git
synced 2025-11-12 13:01:09 +03:00
end of the amalgamation. (CVS 4533) FossilOrigin-Name: c1fe27de7b6f0080466cc3f827979db9997e22a4
1709 lines
54 KiB
C
1709 lines
54 KiB
C
/*
|
|
** 2005 December 14
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
**
|
|
** This file contains an example implementation of an asynchronous IO
|
|
** backend for SQLite.
|
|
**
|
|
** WHAT IS ASYNCHRONOUS I/O?
|
|
**
|
|
** With asynchronous I/O, write requests are handled by a separate thread
|
|
** running in the background. This means that the thread that initiates
|
|
** a database write does not have to wait for (sometimes slow) disk I/O
|
|
** to occur. The write seems to happen very quickly, though in reality
|
|
** it is happening at its usual slow pace in the background.
|
|
**
|
|
** Asynchronous I/O appears to give better responsiveness, but at a price.
|
|
** You lose the Durable property. With the default I/O backend of SQLite,
|
|
** once a write completes, you know that the information you wrote is
|
|
** safely on disk. With the asynchronous I/O, this is not the case. If
|
|
** your program crashes or if a power lose occurs after the database
|
|
** write but before the asynchronous write thread has completed, then the
|
|
** database change might never make it to disk and the next user of the
|
|
** database might not see your change.
|
|
**
|
|
** You lose Durability with asynchronous I/O, but you still retain the
|
|
** other parts of ACID: Atomic, Consistent, and Isolated. Many
|
|
** appliations get along fine without the Durablity.
|
|
**
|
|
** HOW IT WORKS
|
|
**
|
|
** Asynchronous I/O works by creating a special SQLite "vfs" structure
|
|
** and registering it with sqlite3_vfs_register(). When files opened via
|
|
** this vfs are written to (using sqlite3OsWrite()), the data is not
|
|
** written directly to disk, but is placed in the "write-queue" to be
|
|
** handled by the background thread.
|
|
**
|
|
** When files opened with the asynchronous vfs are read from
|
|
** (using sqlite3OsRead()), the data is read from the file on
|
|
** disk and the write-queue, so that from the point of view of
|
|
** the vfs reader the OsWrite() appears to have already completed.
|
|
**
|
|
** The special vfs is registered (and unregistered) by calls to
|
|
** function asyncEnable() (see below).
|
|
**
|
|
** LIMITATIONS
|
|
**
|
|
** This demonstration code is deliberately kept simple in order to keep
|
|
** the main ideas clear and easy to understand. Real applications that
|
|
** want to do asynchronous I/O might want to add additional capabilities.
|
|
** For example, in this demonstration if writes are happening at a steady
|
|
** stream that exceeds the I/O capability of the background writer thread,
|
|
** the queue of pending write operations will grow without bound until we
|
|
** run out of memory. Users of this technique may want to keep track of
|
|
** the quantity of pending writes and stop accepting new write requests
|
|
** when the buffer gets to be too big.
|
|
**
|
|
** LOCKING + CONCURRENCY
|
|
**
|
|
** Multiple connections from within a single process that use this
|
|
** implementation of asynchronous IO may access a single database
|
|
** file concurrently. From the point of view of the user, if all
|
|
** connections are from within a single process, there is no difference
|
|
** between the concurrency offered by "normal" SQLite and SQLite
|
|
** using the asynchronous backend.
|
|
**
|
|
** If connections from within multiple database files may access the
|
|
** database file, the ENABLE_FILE_LOCKING symbol (see below) must be
|
|
** defined. If it is not defined, then no locks are established on
|
|
** the database file. In this case, if multiple processes access
|
|
** the database file, corruption will quickly result.
|
|
**
|
|
** If ENABLE_FILE_LOCKING is defined (the default), then connections
|
|
** from within multiple processes may access a single database file
|
|
** without risking corruption. However concurrency is reduced as
|
|
** follows:
|
|
**
|
|
** * When a connection using asynchronous IO begins a database
|
|
** transaction, the database is locked immediately. However the
|
|
** lock is not released until after all relevant operations
|
|
** in the write-queue have been flushed to disk. This means
|
|
** (for example) that the database may remain locked for some
|
|
** time after a "COMMIT" or "ROLLBACK" is issued.
|
|
**
|
|
** * If an application using asynchronous IO executes transactions
|
|
** in quick succession, other database users may be effectively
|
|
** locked out of the database. This is because when a BEGIN
|
|
** is executed, a database lock is established immediately. But
|
|
** when the corresponding COMMIT or ROLLBACK occurs, the lock
|
|
** is not released until the relevant part of the write-queue
|
|
** has been flushed through. As a result, if a COMMIT is followed
|
|
** by a BEGIN before the write-queue is flushed through, the database
|
|
** is never unlocked,preventing other processes from accessing
|
|
** the database.
|
|
**
|
|
** Defining ENABLE_FILE_LOCKING when using an NFS or other remote
|
|
** file-system may slow things down, as synchronous round-trips to the
|
|
** server may be required to establish database file locks.
|
|
*/
|
|
#define ENABLE_FILE_LOCKING
|
|
|
|
#ifndef SQLITE_AMALGAMATION
|
|
# include "sqliteInt.h"
|
|
#endif
|
|
#include <tcl.h>
|
|
|
|
/*
|
|
** This test uses pthreads and hence only works on unix and with
|
|
** a threadsafe build of SQLite.
|
|
*/
|
|
#if OS_UNIX && SQLITE_THREADSAFE
|
|
|
|
/*
|
|
** This demo uses pthreads. If you do not have a pthreads implementation
|
|
** for your operating system, you will need to recode the threading
|
|
** logic.
|
|
*/
|
|
#include <pthread.h>
|
|
#include <sched.h>
|
|
|
|
/* Useful macros used in several places */
|
|
#define MIN(x,y) ((x)<(y)?(x):(y))
|
|
#define MAX(x,y) ((x)>(y)?(x):(y))
|
|
|
|
/* Forward references */
|
|
typedef struct AsyncWrite AsyncWrite;
|
|
typedef struct AsyncFile AsyncFile;
|
|
typedef struct AsyncFileData AsyncFileData;
|
|
typedef struct AsyncFileLock AsyncFileLock;
|
|
typedef struct AsyncLock AsyncLock;
|
|
|
|
/* Enable for debugging */
|
|
static int sqlite3async_trace = 0;
|
|
# define ASYNC_TRACE(X) if( sqlite3async_trace ) asyncTrace X
|
|
static void asyncTrace(const char *zFormat, ...){
|
|
char *z;
|
|
va_list ap;
|
|
va_start(ap, zFormat);
|
|
z = sqlite3_vmprintf(zFormat, ap);
|
|
va_end(ap);
|
|
fprintf(stderr, "[%d] %s", (int)pthread_self(), z);
|
|
sqlite3_free(z);
|
|
}
|
|
|
|
/*
|
|
** THREAD SAFETY NOTES
|
|
**
|
|
** Basic rules:
|
|
**
|
|
** * Both read and write access to the global write-op queue must be
|
|
** protected by the async.queueMutex. As are the async.ioError and
|
|
** async.nFile variables.
|
|
**
|
|
** * The async.aLock hash-table and all AsyncLock and AsyncFileLock
|
|
** structures must be protected by the async.lockMutex mutex.
|
|
**
|
|
** * The file handles from the underlying system are assumed not to
|
|
** be thread safe.
|
|
**
|
|
** * See the last two paragraphs under "The Writer Thread" for
|
|
** an assumption to do with file-handle synchronization by the Os.
|
|
**
|
|
** Deadlock prevention:
|
|
**
|
|
** There are three mutex used by the system: the "writer" mutex,
|
|
** the "queue" mutex and the "lock" mutex. Rules are:
|
|
**
|
|
** * It is illegal to block on the writer mutex when any other mutex
|
|
** are held, and
|
|
**
|
|
** * It is illegal to block on the queue mutex when the lock mutex
|
|
** is held.
|
|
**
|
|
** i.e. mutex's must be grabbed in the order "writer", "queue", "lock".
|
|
**
|
|
** File system operations (invoked by SQLite thread):
|
|
**
|
|
** xOpen
|
|
** xDelete
|
|
** xFileExists
|
|
**
|
|
** File handle operations (invoked by SQLite thread):
|
|
**
|
|
** asyncWrite, asyncClose, asyncTruncate, asyncSync
|
|
**
|
|
** The operations above add an entry to the global write-op list. They
|
|
** prepare the entry, acquire the async.queueMutex momentarily while
|
|
** list pointers are manipulated to insert the new entry, then release
|
|
** the mutex and signal the writer thread to wake up in case it happens
|
|
** to be asleep.
|
|
**
|
|
**
|
|
** asyncRead, asyncFileSize.
|
|
**
|
|
** Read operations. Both of these read from both the underlying file
|
|
** first then adjust their result based on pending writes in the
|
|
** write-op queue. So async.queueMutex is held for the duration
|
|
** of these operations to prevent other threads from changing the
|
|
** queue in mid operation.
|
|
**
|
|
**
|
|
** asyncLock, asyncUnlock, asyncCheckReservedLock
|
|
**
|
|
** These primitives implement in-process locking using a hash table
|
|
** on the file name. Files are locked correctly for connections coming
|
|
** from the same process. But other processes cannot see these locks
|
|
** and will therefore not honor them.
|
|
**
|
|
**
|
|
** The writer thread:
|
|
**
|
|
** The async.writerMutex is used to make sure only there is only
|
|
** a single writer thread running at a time.
|
|
**
|
|
** Inside the writer thread is a loop that works like this:
|
|
**
|
|
** WHILE (write-op list is not empty)
|
|
** Do IO operation at head of write-op list
|
|
** Remove entry from head of write-op list
|
|
** END WHILE
|
|
**
|
|
** The async.queueMutex is always held during the <write-op list is
|
|
** not empty> test, and when the entry is removed from the head
|
|
** of the write-op list. Sometimes it is held for the interim
|
|
** period (while the IO is performed), and sometimes it is
|
|
** relinquished. It is relinquished if (a) the IO op is an
|
|
** ASYNC_CLOSE or (b) when the file handle was opened, two of
|
|
** the underlying systems handles were opened on the same
|
|
** file-system entry.
|
|
**
|
|
** If condition (b) above is true, then one file-handle
|
|
** (AsyncFile.pBaseRead) is used exclusively by sqlite threads to read the
|
|
** file, the other (AsyncFile.pBaseWrite) by sqlite3_async_flush()
|
|
** threads to perform write() operations. This means that read
|
|
** operations are not blocked by asynchronous writes (although
|
|
** asynchronous writes may still be blocked by reads).
|
|
**
|
|
** This assumes that the OS keeps two handles open on the same file
|
|
** properly in sync. That is, any read operation that starts after a
|
|
** write operation on the same file system entry has completed returns
|
|
** data consistent with the write. We also assume that if one thread
|
|
** reads a file while another is writing it all bytes other than the
|
|
** ones actually being written contain valid data.
|
|
**
|
|
** If the above assumptions are not true, set the preprocessor symbol
|
|
** SQLITE_ASYNC_TWO_FILEHANDLES to 0.
|
|
*/
|
|
|
|
#ifndef SQLITE_ASYNC_TWO_FILEHANDLES
|
|
/* #define SQLITE_ASYNC_TWO_FILEHANDLES 0 */
|
|
#define SQLITE_ASYNC_TWO_FILEHANDLES 1
|
|
#endif
|
|
|
|
/*
|
|
** State information is held in the static variable "async" defined
|
|
** as the following structure.
|
|
**
|
|
** Both async.ioError and async.nFile are protected by async.queueMutex.
|
|
*/
|
|
static struct TestAsyncStaticData {
|
|
pthread_mutex_t lockMutex; /* For access to aLock hash table */
|
|
pthread_mutex_t queueMutex; /* Mutex for access to write operation queue */
|
|
pthread_mutex_t writerMutex; /* Prevents multiple writer threads */
|
|
pthread_cond_t queueSignal; /* For waking up sleeping writer thread */
|
|
pthread_cond_t emptySignal; /* Notify when the write queue is empty */
|
|
AsyncWrite *pQueueFirst; /* Next write operation to be processed */
|
|
AsyncWrite *pQueueLast; /* Last write operation on the list */
|
|
Hash aLock; /* Files locked */
|
|
volatile int ioDelay; /* Extra delay between write operations */
|
|
volatile int writerHaltWhenIdle; /* Writer thread halts when queue empty */
|
|
volatile int writerHaltNow; /* Writer thread halts after next op */
|
|
int ioError; /* True if an IO error has occured */
|
|
int nFile; /* Number of open files (from sqlite pov) */
|
|
} async = {
|
|
PTHREAD_MUTEX_INITIALIZER,
|
|
PTHREAD_MUTEX_INITIALIZER,
|
|
PTHREAD_MUTEX_INITIALIZER,
|
|
PTHREAD_COND_INITIALIZER,
|
|
PTHREAD_COND_INITIALIZER,
|
|
};
|
|
|
|
/* Possible values of AsyncWrite.op */
|
|
#define ASYNC_NOOP 0
|
|
#define ASYNC_WRITE 1
|
|
#define ASYNC_SYNC 2
|
|
#define ASYNC_TRUNCATE 3
|
|
#define ASYNC_CLOSE 4
|
|
#define ASYNC_DELETE 5
|
|
#define ASYNC_OPENEXCLUSIVE 6
|
|
#define ASYNC_UNLOCK 7
|
|
|
|
/* Names of opcodes. Used for debugging only.
|
|
** Make sure these stay in sync with the macros above!
|
|
*/
|
|
static const char *azOpcodeName[] = {
|
|
"NOOP", "WRITE", "SYNC", "TRUNCATE", "CLOSE", "DELETE", "OPENEX", "UNLOCK"
|
|
};
|
|
|
|
/*
|
|
** Entries on the write-op queue are instances of the AsyncWrite
|
|
** structure, defined here.
|
|
**
|
|
** The interpretation of the iOffset and nByte variables varies depending
|
|
** on the value of AsyncWrite.op:
|
|
**
|
|
** ASYNC_NOOP:
|
|
** No values used.
|
|
**
|
|
** ASYNC_WRITE:
|
|
** iOffset -> Offset in file to write to.
|
|
** nByte -> Number of bytes of data to write (pointed to by zBuf).
|
|
**
|
|
** ASYNC_SYNC:
|
|
** nByte -> flags to pass to sqlite3OsSync().
|
|
**
|
|
** ASYNC_TRUNCATE:
|
|
** iOffset -> Size to truncate file to.
|
|
** nByte -> Unused.
|
|
**
|
|
** ASYNC_CLOSE:
|
|
** iOffset -> Unused.
|
|
** nByte -> Unused.
|
|
**
|
|
** ASYNC_DELETE:
|
|
** iOffset -> Contains the "syncDir" flag.
|
|
** nByte -> Number of bytes of zBuf points to (file name).
|
|
**
|
|
** ASYNC_OPENEXCLUSIVE:
|
|
** iOffset -> Value of "delflag".
|
|
** nByte -> Number of bytes of zBuf points to (file name).
|
|
**
|
|
** ASYNC_UNLOCK:
|
|
** nByte -> Argument to sqlite3OsUnlock().
|
|
**
|
|
**
|
|
** For an ASYNC_WRITE operation, zBuf points to the data to write to the file.
|
|
** This space is sqlite3_malloc()d along with the AsyncWrite structure in a
|
|
** single blob, so is deleted when sqlite3_free() is called on the parent
|
|
** structure.
|
|
*/
|
|
struct AsyncWrite {
|
|
AsyncFileData *pFileData; /* File to write data to or sync */
|
|
int op; /* One of ASYNC_xxx etc. */
|
|
i64 iOffset; /* See above */
|
|
int nByte; /* See above */
|
|
char *zBuf; /* Data to write to file (or NULL if op!=ASYNC_WRITE) */
|
|
AsyncWrite *pNext; /* Next write operation (to any file) */
|
|
};
|
|
|
|
/*
|
|
** An instance of this structure is created for each distinct open file
|
|
** (i.e. if two handles are opened on the one file, only one of these
|
|
** structures is allocated) and stored in the async.aLock hash table. The
|
|
** keys for async.aLock are the full pathnames of the opened files.
|
|
**
|
|
** AsyncLock.pList points to the head of a linked list of AsyncFileLock
|
|
** structures, one for each handle currently open on the file.
|
|
**
|
|
** If the opened file is not a main-database (the SQLITE_OPEN_MAIN_DB is
|
|
** not passed to the sqlite3OsOpen() call), or if ENABLE_FILE_LOCKING is
|
|
** not defined at compile time, variables AsyncLock.pFile and
|
|
** AsyncLock.eLock are never used. Otherwise, pFile is a file handle
|
|
** opened on the file in question and used to obtain the file-system
|
|
** locks required by database connections within this process.
|
|
**
|
|
** See comments above the asyncLock() function for more details on
|
|
** the implementation of database locking used by this backend.
|
|
*/
|
|
struct AsyncLock {
|
|
sqlite3_file *pFile;
|
|
int eLock;
|
|
AsyncFileLock *pList;
|
|
};
|
|
|
|
/*
|
|
** An instance of the following structure is allocated along with each
|
|
** AsyncFileData structure (see AsyncFileData.lock), but is only used if the
|
|
** file was opened with the SQLITE_OPEN_MAIN_DB.
|
|
*/
|
|
struct AsyncFileLock {
|
|
int eLock; /* Internally visible lock state (sqlite pov) */
|
|
int eAsyncLock; /* Lock-state with write-queue unlock */
|
|
AsyncFileLock *pNext;
|
|
};
|
|
|
|
/*
|
|
** The AsyncFile structure is a subclass of sqlite3_file used for
|
|
** asynchronous IO.
|
|
**
|
|
** All of the actual data for the structure is stored in the structure
|
|
** pointed to by AsyncFile.pData, which is allocated as part of the
|
|
** sqlite3OsOpen() using sqlite3_malloc(). The reason for this is that the
|
|
** lifetime of the AsyncFile structure is ended by the caller after OsClose()
|
|
** is called, but the data in AsyncFileData may be required by the
|
|
** writer thread after that point.
|
|
*/
|
|
struct AsyncFile {
|
|
sqlite3_io_methods *pMethod;
|
|
AsyncFileData *pData;
|
|
};
|
|
struct AsyncFileData {
|
|
char *zName; /* Underlying OS filename - used for debugging */
|
|
int nName; /* Number of characters in zName */
|
|
sqlite3_file *pBaseRead; /* Read handle to the underlying Os file */
|
|
sqlite3_file *pBaseWrite; /* Write handle to the underlying Os file */
|
|
AsyncFileLock lock;
|
|
AsyncWrite close;
|
|
};
|
|
|
|
/*
|
|
** The following async_XXX functions are debugging wrappers around the
|
|
** corresponding pthread_XXX functions:
|
|
**
|
|
** pthread_mutex_lock();
|
|
** pthread_mutex_unlock();
|
|
** pthread_mutex_trylock();
|
|
** pthread_cond_wait();
|
|
**
|
|
** It is illegal to pass any mutex other than those stored in the
|
|
** following global variables of these functions.
|
|
**
|
|
** async.queueMutex
|
|
** async.writerMutex
|
|
** async.lockMutex
|
|
**
|
|
** If NDEBUG is defined, these wrappers do nothing except call the
|
|
** corresponding pthreads function. If NDEBUG is not defined, then the
|
|
** following variables are used to store the thread-id (as returned
|
|
** by pthread_self()) currently holding the mutex, or 0 otherwise:
|
|
**
|
|
** asyncdebug.queueMutexHolder
|
|
** asyncdebug.writerMutexHolder
|
|
** asyncdebug.lockMutexHolder
|
|
**
|
|
** These variables are used by some assert() statements that verify
|
|
** the statements made in the "Deadlock Prevention" notes earlier
|
|
** in this file.
|
|
*/
|
|
#ifndef NDEBUG
|
|
|
|
static struct TestAsyncDebugData {
|
|
pthread_t lockMutexHolder;
|
|
pthread_t queueMutexHolder;
|
|
pthread_t writerMutexHolder;
|
|
} asyncdebug = {0, 0, 0};
|
|
|
|
/*
|
|
** Wrapper around pthread_mutex_lock(). Checks that we have not violated
|
|
** the anti-deadlock rules (see "Deadlock prevention" above).
|
|
*/
|
|
static int async_mutex_lock(pthread_mutex_t *pMutex){
|
|
int iIdx;
|
|
int rc;
|
|
pthread_mutex_t *aMutex = (pthread_mutex_t *)(&async);
|
|
pthread_t *aHolder = (pthread_t *)(&asyncdebug);
|
|
|
|
/* The code in this 'ifndef NDEBUG' block depends on a certain alignment
|
|
* of the variables in TestAsyncStaticData and TestAsyncDebugData. The
|
|
* following assert() statements check that this has not been changed.
|
|
*
|
|
* Really, these only need to be run once at startup time.
|
|
*/
|
|
assert(&(aMutex[0])==&async.lockMutex);
|
|
assert(&(aMutex[1])==&async.queueMutex);
|
|
assert(&(aMutex[2])==&async.writerMutex);
|
|
assert(&(aHolder[0])==&asyncdebug.lockMutexHolder);
|
|
assert(&(aHolder[1])==&asyncdebug.queueMutexHolder);
|
|
assert(&(aHolder[2])==&asyncdebug.writerMutexHolder);
|
|
|
|
assert( pthread_self()!=0 );
|
|
|
|
for(iIdx=0; iIdx<3; iIdx++){
|
|
if( pMutex==&aMutex[iIdx] ) break;
|
|
|
|
/* This is the key assert(). Here we are checking that if the caller
|
|
* is trying to block on async.writerMutex, neither of the other two
|
|
* mutex are held. If the caller is trying to block on async.queueMutex,
|
|
* lockMutex is not held.
|
|
*/
|
|
assert(!pthread_equal(aHolder[iIdx], pthread_self()));
|
|
}
|
|
assert(iIdx<3);
|
|
|
|
rc = pthread_mutex_lock(pMutex);
|
|
if( rc==0 ){
|
|
assert(aHolder[iIdx]==0);
|
|
aHolder[iIdx] = pthread_self();
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Wrapper around pthread_mutex_unlock().
|
|
*/
|
|
static int async_mutex_unlock(pthread_mutex_t *pMutex){
|
|
int iIdx;
|
|
int rc;
|
|
pthread_mutex_t *aMutex = (pthread_mutex_t *)(&async);
|
|
pthread_t *aHolder = (pthread_t *)(&asyncdebug);
|
|
|
|
for(iIdx=0; iIdx<3; iIdx++){
|
|
if( pMutex==&aMutex[iIdx] ) break;
|
|
}
|
|
assert(iIdx<3);
|
|
|
|
assert(pthread_equal(aHolder[iIdx], pthread_self()));
|
|
aHolder[iIdx] = 0;
|
|
rc = pthread_mutex_unlock(pMutex);
|
|
assert(rc==0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** Wrapper around pthread_mutex_trylock().
|
|
*/
|
|
static int async_mutex_trylock(pthread_mutex_t *pMutex){
|
|
int iIdx;
|
|
int rc;
|
|
pthread_mutex_t *aMutex = (pthread_mutex_t *)(&async);
|
|
pthread_t *aHolder = (pthread_t *)(&asyncdebug);
|
|
|
|
for(iIdx=0; iIdx<3; iIdx++){
|
|
if( pMutex==&aMutex[iIdx] ) break;
|
|
}
|
|
assert(iIdx<3);
|
|
|
|
rc = pthread_mutex_trylock(pMutex);
|
|
if( rc==0 ){
|
|
assert(aHolder[iIdx]==0);
|
|
aHolder[iIdx] = pthread_self();
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Wrapper around pthread_cond_wait().
|
|
*/
|
|
static int async_cond_wait(pthread_cond_t *pCond, pthread_mutex_t *pMutex){
|
|
int iIdx;
|
|
int rc;
|
|
pthread_mutex_t *aMutex = (pthread_mutex_t *)(&async);
|
|
pthread_t *aHolder = (pthread_t *)(&asyncdebug);
|
|
|
|
for(iIdx=0; iIdx<3; iIdx++){
|
|
if( pMutex==&aMutex[iIdx] ) break;
|
|
}
|
|
assert(iIdx<3);
|
|
|
|
assert(pthread_equal(aHolder[iIdx],pthread_self()));
|
|
aHolder[iIdx] = 0;
|
|
rc = pthread_cond_wait(pCond, pMutex);
|
|
if( rc==0 ){
|
|
aHolder[iIdx] = pthread_self();
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/* Call our async_XX wrappers instead of selected pthread_XX functions */
|
|
#define pthread_mutex_lock async_mutex_lock
|
|
#define pthread_mutex_unlock async_mutex_unlock
|
|
#define pthread_mutex_trylock async_mutex_trylock
|
|
#define pthread_cond_wait async_cond_wait
|
|
|
|
#endif /* !defined(NDEBUG) */
|
|
|
|
/*
|
|
** Add an entry to the end of the global write-op list. pWrite should point
|
|
** to an AsyncWrite structure allocated using sqlite3_malloc(). The writer
|
|
** thread will call sqlite3_free() to free the structure after the specified
|
|
** operation has been completed.
|
|
**
|
|
** Once an AsyncWrite structure has been added to the list, it becomes the
|
|
** property of the writer thread and must not be read or modified by the
|
|
** caller.
|
|
*/
|
|
static void addAsyncWrite(AsyncWrite *pWrite){
|
|
/* We must hold the queue mutex in order to modify the queue pointers */
|
|
pthread_mutex_lock(&async.queueMutex);
|
|
|
|
/* Add the record to the end of the write-op queue */
|
|
assert( !pWrite->pNext );
|
|
if( async.pQueueLast ){
|
|
assert( async.pQueueFirst );
|
|
async.pQueueLast->pNext = pWrite;
|
|
}else{
|
|
async.pQueueFirst = pWrite;
|
|
}
|
|
async.pQueueLast = pWrite;
|
|
ASYNC_TRACE(("PUSH %p (%s %s %d)\n", pWrite, azOpcodeName[pWrite->op],
|
|
pWrite->pFileData ? pWrite->pFileData->zName : "-", pWrite->iOffset));
|
|
|
|
if( pWrite->op==ASYNC_CLOSE ){
|
|
async.nFile--;
|
|
}
|
|
|
|
/* Drop the queue mutex */
|
|
pthread_mutex_unlock(&async.queueMutex);
|
|
|
|
/* The writer thread might have been idle because there was nothing
|
|
** on the write-op queue for it to do. So wake it up. */
|
|
pthread_cond_signal(&async.queueSignal);
|
|
}
|
|
|
|
/*
|
|
** Increment async.nFile in a thread-safe manner.
|
|
*/
|
|
static void incrOpenFileCount(){
|
|
/* We must hold the queue mutex in order to modify async.nFile */
|
|
pthread_mutex_lock(&async.queueMutex);
|
|
if( async.nFile==0 ){
|
|
async.ioError = SQLITE_OK;
|
|
}
|
|
async.nFile++;
|
|
pthread_mutex_unlock(&async.queueMutex);
|
|
}
|
|
|
|
/*
|
|
** This is a utility function to allocate and populate a new AsyncWrite
|
|
** structure and insert it (via addAsyncWrite() ) into the global list.
|
|
*/
|
|
static int addNewAsyncWrite(
|
|
AsyncFileData *pFileData,
|
|
int op,
|
|
i64 iOffset,
|
|
int nByte,
|
|
const char *zByte
|
|
){
|
|
AsyncWrite *p;
|
|
if( op!=ASYNC_CLOSE && async.ioError ){
|
|
return async.ioError;
|
|
}
|
|
p = sqlite3_malloc(sizeof(AsyncWrite) + (zByte?nByte:0));
|
|
if( !p ){
|
|
/* The upper layer does not expect operations like OsWrite() to
|
|
** return SQLITE_NOMEM. This is partly because under normal conditions
|
|
** SQLite is required to do rollback without calling malloc(). So
|
|
** if malloc() fails here, treat it as an I/O error. The above
|
|
** layer knows how to handle that.
|
|
*/
|
|
return SQLITE_IOERR;
|
|
}
|
|
p->op = op;
|
|
p->iOffset = iOffset;
|
|
p->nByte = nByte;
|
|
p->pFileData = pFileData;
|
|
p->pNext = 0;
|
|
if( zByte ){
|
|
p->zBuf = (char *)&p[1];
|
|
memcpy(p->zBuf, zByte, nByte);
|
|
}else{
|
|
p->zBuf = 0;
|
|
}
|
|
addAsyncWrite(p);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Close the file. This just adds an entry to the write-op list, the file is
|
|
** not actually closed.
|
|
*/
|
|
static int asyncClose(sqlite3_file *pFile){
|
|
AsyncFileData *p = ((AsyncFile *)pFile)->pData;
|
|
|
|
/* Unlock the file, if it is locked */
|
|
pthread_mutex_lock(&async.lockMutex);
|
|
p->lock.eLock = 0;
|
|
pthread_mutex_unlock(&async.lockMutex);
|
|
|
|
addAsyncWrite(&p->close);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Implementation of sqlite3OsWrite() for asynchronous files. Instead of
|
|
** writing to the underlying file, this function adds an entry to the end of
|
|
** the global AsyncWrite list. Either SQLITE_OK or SQLITE_NOMEM may be
|
|
** returned.
|
|
*/
|
|
static int asyncWrite(sqlite3_file *pFile, const void *pBuf, int amt, i64 iOff){
|
|
AsyncFileData *p = ((AsyncFile *)pFile)->pData;
|
|
return addNewAsyncWrite(p, ASYNC_WRITE, iOff, amt, pBuf);
|
|
}
|
|
|
|
/*
|
|
** Read data from the file. First we read from the filesystem, then adjust
|
|
** the contents of the buffer based on ASYNC_WRITE operations in the
|
|
** write-op queue.
|
|
**
|
|
** This method holds the mutex from start to finish.
|
|
*/
|
|
static int asyncRead(sqlite3_file *pFile, void *zOut, int iAmt, i64 iOffset){
|
|
AsyncFileData *p = ((AsyncFile *)pFile)->pData;
|
|
int rc = SQLITE_OK;
|
|
i64 filesize;
|
|
int nRead;
|
|
sqlite3_file *pBase = p->pBaseRead;
|
|
|
|
/* Grab the write queue mutex for the duration of the call */
|
|
pthread_mutex_lock(&async.queueMutex);
|
|
|
|
/* If an I/O error has previously occurred in this virtual file
|
|
** system, then all subsequent operations fail.
|
|
*/
|
|
if( async.ioError!=SQLITE_OK ){
|
|
rc = async.ioError;
|
|
goto asyncread_out;
|
|
}
|
|
|
|
if( pBase->pMethods ){
|
|
rc = sqlite3OsFileSize(pBase, &filesize);
|
|
if( rc!=SQLITE_OK ){
|
|
goto asyncread_out;
|
|
}
|
|
nRead = MIN(filesize - iOffset, iAmt);
|
|
if( nRead>0 ){
|
|
rc = sqlite3OsRead(pBase, zOut, nRead, iOffset);
|
|
ASYNC_TRACE(("READ %s %d bytes at %d\n", p->zName, nRead, iOffset));
|
|
}
|
|
}
|
|
|
|
if( rc==SQLITE_OK ){
|
|
AsyncWrite *pWrite;
|
|
char *zName = p->zName;
|
|
|
|
for(pWrite=async.pQueueFirst; pWrite; pWrite = pWrite->pNext){
|
|
if( pWrite->op==ASYNC_WRITE && pWrite->pFileData->zName==zName ){
|
|
int iBeginOut = (pWrite->iOffset-iOffset);
|
|
int iBeginIn = -iBeginOut;
|
|
int nCopy;
|
|
|
|
if( iBeginIn<0 ) iBeginIn = 0;
|
|
if( iBeginOut<0 ) iBeginOut = 0;
|
|
nCopy = MIN(pWrite->nByte-iBeginIn, iAmt-iBeginOut);
|
|
|
|
if( nCopy>0 ){
|
|
memcpy(&((char *)zOut)[iBeginOut], &pWrite->zBuf[iBeginIn], nCopy);
|
|
ASYNC_TRACE(("OVERREAD %d bytes at %d\n", nCopy, iBeginOut+iOffset));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
asyncread_out:
|
|
pthread_mutex_unlock(&async.queueMutex);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Truncate the file to nByte bytes in length. This just adds an entry to
|
|
** the write-op list, no IO actually takes place.
|
|
*/
|
|
static int asyncTruncate(sqlite3_file *pFile, i64 nByte){
|
|
AsyncFileData *p = ((AsyncFile *)pFile)->pData;
|
|
return addNewAsyncWrite(p, ASYNC_TRUNCATE, nByte, 0, 0);
|
|
}
|
|
|
|
/*
|
|
** Sync the file. This just adds an entry to the write-op list, the
|
|
** sync() is done later by sqlite3_async_flush().
|
|
*/
|
|
static int asyncSync(sqlite3_file *pFile, int flags){
|
|
AsyncFileData *p = ((AsyncFile *)pFile)->pData;
|
|
return addNewAsyncWrite(p, ASYNC_SYNC, 0, flags, 0);
|
|
}
|
|
|
|
/*
|
|
** Read the size of the file. First we read the size of the file system
|
|
** entry, then adjust for any ASYNC_WRITE or ASYNC_TRUNCATE operations
|
|
** currently in the write-op list.
|
|
**
|
|
** This method holds the mutex from start to finish.
|
|
*/
|
|
int asyncFileSize(sqlite3_file *pFile, i64 *piSize){
|
|
AsyncFileData *p = ((AsyncFile *)pFile)->pData;
|
|
int rc = SQLITE_OK;
|
|
i64 s = 0;
|
|
sqlite3_file *pBase;
|
|
|
|
pthread_mutex_lock(&async.queueMutex);
|
|
|
|
/* Read the filesystem size from the base file. If pBaseRead is NULL, this
|
|
** means the file hasn't been opened yet. In this case all relevant data
|
|
** must be in the write-op queue anyway, so we can omit reading from the
|
|
** file-system.
|
|
*/
|
|
pBase = p->pBaseRead;
|
|
if( pBase->pMethods ){
|
|
rc = sqlite3OsFileSize(pBase, &s);
|
|
}
|
|
|
|
if( rc==SQLITE_OK ){
|
|
AsyncWrite *pWrite;
|
|
for(pWrite=async.pQueueFirst; pWrite; pWrite = pWrite->pNext){
|
|
if( pWrite->op==ASYNC_DELETE && strcmp(p->zName, pWrite->zBuf)==0 ){
|
|
s = 0;
|
|
}else if( pWrite->pFileData && pWrite->pFileData->zName==p->zName){
|
|
switch( pWrite->op ){
|
|
case ASYNC_WRITE:
|
|
s = MAX(pWrite->iOffset + (i64)(pWrite->nByte), s);
|
|
break;
|
|
case ASYNC_TRUNCATE:
|
|
s = MIN(s, pWrite->iOffset);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
*piSize = s;
|
|
}
|
|
pthread_mutex_unlock(&async.queueMutex);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Lock or unlock the actual file-system entry.
|
|
*/
|
|
static int getFileLock(AsyncLock *pLock){
|
|
int rc = SQLITE_OK;
|
|
AsyncFileLock *pIter;
|
|
int eRequired = 0;
|
|
|
|
if( pLock->pFile ){
|
|
for(pIter=pLock->pList; pIter; pIter=pIter->pNext){
|
|
assert(pIter->eAsyncLock>=pIter->eLock);
|
|
if( pIter->eAsyncLock>eRequired ){
|
|
eRequired = pIter->eAsyncLock;
|
|
assert(eRequired>=0 && eRequired<=SQLITE_LOCK_EXCLUSIVE);
|
|
}
|
|
}
|
|
|
|
if( eRequired>pLock->eLock ){
|
|
rc = sqlite3OsLock(pLock->pFile, eRequired);
|
|
if( rc==SQLITE_OK ){
|
|
pLock->eLock = eRequired;
|
|
}
|
|
}
|
|
else if( eRequired<pLock->eLock && eRequired<=SQLITE_LOCK_SHARED ){
|
|
rc = sqlite3OsUnlock(pLock->pFile, eRequired);
|
|
if( rc==SQLITE_OK ){
|
|
pLock->eLock = eRequired;
|
|
}
|
|
}
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** The following two methods - asyncLock() and asyncUnlock() - are used
|
|
** to obtain and release locks on database files opened with the
|
|
** asynchronous backend.
|
|
*/
|
|
static int asyncLock(sqlite3_file *pFile, int eLock){
|
|
int rc = SQLITE_OK;
|
|
AsyncFileData *p = ((AsyncFile *)pFile)->pData;
|
|
|
|
pthread_mutex_lock(&async.lockMutex);
|
|
if( p->lock.eLock<eLock ){
|
|
AsyncLock *pLock;
|
|
AsyncFileLock *pIter;
|
|
pLock = (AsyncLock *)sqlite3HashFind(&async.aLock, p->zName, p->nName);
|
|
assert(pLock && pLock->pList);
|
|
for(pIter=pLock->pList; pIter; pIter=pIter->pNext){
|
|
if( pIter!=&p->lock && (
|
|
(eLock==SQLITE_LOCK_EXCLUSIVE && pIter->eLock>=SQLITE_LOCK_SHARED) ||
|
|
(eLock==SQLITE_LOCK_PENDING && pIter->eLock>=SQLITE_LOCK_RESERVED) ||
|
|
(eLock==SQLITE_LOCK_RESERVED && pIter->eLock>=SQLITE_LOCK_RESERVED) ||
|
|
(eLock==SQLITE_LOCK_SHARED && pIter->eLock>=SQLITE_LOCK_PENDING)
|
|
)){
|
|
rc = SQLITE_BUSY;
|
|
}
|
|
}
|
|
if( rc==SQLITE_OK ){
|
|
p->lock.eLock = eLock;
|
|
p->lock.eAsyncLock = MAX(p->lock.eAsyncLock, eLock);
|
|
}
|
|
assert(p->lock.eAsyncLock>=p->lock.eLock);
|
|
if( rc==SQLITE_OK ){
|
|
rc = getFileLock(pLock);
|
|
}
|
|
}
|
|
pthread_mutex_unlock(&async.lockMutex);
|
|
|
|
ASYNC_TRACE(("LOCK %d (%s) rc=%d\n", eLock, p->zName, rc));
|
|
return rc;
|
|
}
|
|
static int asyncUnlock(sqlite3_file *pFile, int eLock){
|
|
AsyncFileData *p = ((AsyncFile *)pFile)->pData;
|
|
AsyncFileLock *pLock = &p->lock;
|
|
pthread_mutex_lock(&async.lockMutex);
|
|
pLock->eLock = MIN(pLock->eLock, eLock);
|
|
pthread_mutex_unlock(&async.lockMutex);
|
|
return addNewAsyncWrite(p, ASYNC_UNLOCK, 0, eLock, 0);
|
|
}
|
|
|
|
/*
|
|
** This function is called when the pager layer first opens a database file
|
|
** and is checking for a hot-journal.
|
|
*/
|
|
static int asyncCheckReservedLock(sqlite3_file *pFile){
|
|
int ret = 0;
|
|
AsyncFileLock *pIter;
|
|
AsyncLock *pLock;
|
|
AsyncFileData *p = ((AsyncFile *)pFile)->pData;
|
|
|
|
pthread_mutex_lock(&async.lockMutex);
|
|
pLock = (AsyncLock *)sqlite3HashFind(&async.aLock, p->zName, p->nName);
|
|
for(pIter=pLock->pList; pIter; pIter=pIter->pNext){
|
|
if( pIter->eLock>=SQLITE_LOCK_RESERVED ){
|
|
ret = 1;
|
|
}
|
|
}
|
|
pthread_mutex_unlock(&async.lockMutex);
|
|
|
|
ASYNC_TRACE(("CHECK-LOCK %d (%s)\n", ret, p->zName));
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
** This is a no-op, as the asynchronous backend does not support locking.
|
|
*/
|
|
static int asyncFileControl(sqlite3_file *id, int op, void *pArg){
|
|
switch( op ){
|
|
case SQLITE_FCNTL_LOCKSTATE: {
|
|
pthread_mutex_lock(&async.lockMutex);
|
|
*(int*)pArg = ((AsyncFile*)id)->pData->lock.eLock;
|
|
pthread_mutex_unlock(&async.lockMutex);
|
|
return SQLITE_OK;
|
|
}
|
|
}
|
|
return SQLITE_ERROR;
|
|
}
|
|
|
|
/*
|
|
** Return the device characteristics and sector-size of the device. It
|
|
** is not tricky to implement these correctly, as this backend might
|
|
** not have an open file handle at this point.
|
|
*/
|
|
static int asyncSectorSize(sqlite3_file *pFile){
|
|
return 512;
|
|
}
|
|
static int asyncDeviceCharacteristics(sqlite3_file *pFile){
|
|
return 0;
|
|
}
|
|
|
|
static int unlinkAsyncFile(AsyncFileData *pData){
|
|
AsyncLock *pLock;
|
|
AsyncFileLock **ppIter;
|
|
int rc = SQLITE_OK;
|
|
|
|
pLock = sqlite3HashFind(&async.aLock, pData->zName, pData->nName);
|
|
for(ppIter=&pLock->pList; *ppIter; ppIter=&((*ppIter)->pNext)){
|
|
if( (*ppIter)==&pData->lock ){
|
|
*ppIter = pData->lock.pNext;
|
|
break;
|
|
}
|
|
}
|
|
if( !pLock->pList ){
|
|
if( pLock->pFile ){
|
|
sqlite3OsClose(pLock->pFile);
|
|
}
|
|
sqlite3_free(pLock);
|
|
sqlite3HashInsert(&async.aLock, pData->zName, pData->nName, 0);
|
|
if( !sqliteHashFirst(&async.aLock) ){
|
|
sqlite3HashClear(&async.aLock);
|
|
}
|
|
}else{
|
|
rc = getFileLock(pLock);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Open a file.
|
|
*/
|
|
static int asyncOpen(
|
|
sqlite3_vfs *pAsyncVfs,
|
|
const char *zName,
|
|
sqlite3_file *pFile,
|
|
int flags,
|
|
int *pOutFlags
|
|
){
|
|
static sqlite3_io_methods async_methods = {
|
|
1, /* iVersion */
|
|
asyncClose, /* xClose */
|
|
asyncRead, /* xRead */
|
|
asyncWrite, /* xWrite */
|
|
asyncTruncate, /* xTruncate */
|
|
asyncSync, /* xSync */
|
|
asyncFileSize, /* xFileSize */
|
|
asyncLock, /* xLock */
|
|
asyncUnlock, /* xUnlock */
|
|
asyncCheckReservedLock, /* xCheckReservedLock */
|
|
asyncFileControl, /* xFileControl */
|
|
asyncSectorSize, /* xSectorSize */
|
|
asyncDeviceCharacteristics /* xDeviceCharacteristics */
|
|
};
|
|
|
|
sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
|
|
AsyncFile *p = (AsyncFile *)pFile;
|
|
int nName = strlen(zName)+1;
|
|
int rc = SQLITE_OK;
|
|
int nByte;
|
|
AsyncFileData *pData;
|
|
AsyncLock *pLock = 0;
|
|
int isExclusive = (flags&SQLITE_OPEN_EXCLUSIVE);
|
|
|
|
nByte = (
|
|
sizeof(AsyncFileData) + /* AsyncFileData structure */
|
|
2 * pVfs->szOsFile + /* AsyncFileData.pBaseRead and pBaseWrite */
|
|
nName /* AsyncFileData.zName */
|
|
);
|
|
pData = sqlite3_malloc(nByte);
|
|
if( !pData ){
|
|
return SQLITE_NOMEM;
|
|
}
|
|
memset(pData, 0, nByte);
|
|
pData->zName = (char *)&pData[1];
|
|
pData->nName = nName;
|
|
pData->pBaseRead = (sqlite3_file *)&pData->zName[nName];
|
|
pData->pBaseWrite = (sqlite3_file *)&pData->zName[nName+pVfs->szOsFile];
|
|
pData->close.pFileData = pData;
|
|
pData->close.op = ASYNC_CLOSE;
|
|
memcpy(pData->zName, zName, nName);
|
|
|
|
if( !isExclusive ){
|
|
rc = sqlite3OsOpen(pVfs, zName, pData->pBaseRead, flags, pOutFlags);
|
|
if( rc==SQLITE_OK && ((*pOutFlags)&SQLITE_OPEN_READWRITE) ){
|
|
rc = sqlite3OsOpen(pVfs, zName, pData->pBaseWrite, flags, 0);
|
|
}
|
|
}
|
|
|
|
pthread_mutex_lock(&async.lockMutex);
|
|
|
|
if( rc==SQLITE_OK ){
|
|
pLock = sqlite3HashFind(&async.aLock, pData->zName, pData->nName);
|
|
if( !pLock ){
|
|
pLock = sqlite3MallocZero(pVfs->szOsFile + sizeof(AsyncLock));
|
|
if( pLock ){
|
|
AsyncLock *pDelete;
|
|
#ifdef ENABLE_FILE_LOCKING
|
|
if( flags&SQLITE_OPEN_MAIN_DB ){
|
|
pLock->pFile = (sqlite3_file *)&pLock[1];
|
|
rc = sqlite3OsOpen(pVfs, zName, pLock->pFile, flags, 0);
|
|
if( rc!=SQLITE_OK ){
|
|
sqlite3_free(pLock);
|
|
pLock = 0;
|
|
}
|
|
}
|
|
#endif
|
|
pDelete = sqlite3HashInsert(
|
|
&async.aLock, pData->zName, pData->nName, (void *)pLock
|
|
);
|
|
if( pDelete ){
|
|
rc = SQLITE_NOMEM;
|
|
sqlite3_free(pLock);
|
|
}
|
|
}else{
|
|
rc = SQLITE_NOMEM;
|
|
}
|
|
}
|
|
}
|
|
|
|
if( rc==SQLITE_OK ){
|
|
HashElem *pElem;
|
|
p->pMethod = &async_methods;
|
|
p->pData = pData;
|
|
|
|
/* Link AsyncFileData.lock into the linked list of
|
|
** AsyncFileLock structures for this file.
|
|
*/
|
|
pData->lock.pNext = pLock->pList;
|
|
pLock->pList = &pData->lock;
|
|
|
|
pElem = sqlite3HashFindElem(&async.aLock, pData->zName, pData->nName);
|
|
pData->zName = (char *)sqliteHashKey(pElem);
|
|
}else{
|
|
sqlite3OsClose(pData->pBaseRead);
|
|
sqlite3OsClose(pData->pBaseWrite);
|
|
sqlite3_free(pData);
|
|
}
|
|
|
|
pthread_mutex_unlock(&async.lockMutex);
|
|
|
|
if( rc==SQLITE_OK ){
|
|
incrOpenFileCount();
|
|
}
|
|
|
|
if( rc==SQLITE_OK && isExclusive ){
|
|
rc = addNewAsyncWrite(pData, ASYNC_OPENEXCLUSIVE, (i64)flags, 0, 0);
|
|
if( rc==SQLITE_OK ){
|
|
if( pOutFlags ) *pOutFlags = flags;
|
|
}else{
|
|
pthread_mutex_lock(&async.lockMutex);
|
|
unlinkAsyncFile(pData);
|
|
pthread_mutex_unlock(&async.lockMutex);
|
|
sqlite3_free(pData);
|
|
}
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Implementation of sqlite3OsDelete. Add an entry to the end of the
|
|
** write-op queue to perform the delete.
|
|
*/
|
|
static int asyncDelete(sqlite3_vfs *pAsyncVfs, const char *z, int syncDir){
|
|
return addNewAsyncWrite(0, ASYNC_DELETE, syncDir, strlen(z)+1, z);
|
|
}
|
|
|
|
/*
|
|
** Implementation of sqlite3OsAccess. This method holds the mutex from
|
|
** start to finish.
|
|
*/
|
|
static int asyncAccess(sqlite3_vfs *pAsyncVfs, const char *zName, int flags){
|
|
int ret;
|
|
AsyncWrite *p;
|
|
sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
|
|
|
|
assert(flags==SQLITE_ACCESS_READWRITE
|
|
|| flags==SQLITE_ACCESS_READ
|
|
|| flags==SQLITE_ACCESS_EXISTS
|
|
);
|
|
|
|
pthread_mutex_lock(&async.queueMutex);
|
|
ret = sqlite3OsAccess(pVfs, zName, flags);
|
|
if( flags==SQLITE_ACCESS_EXISTS ){
|
|
for(p=async.pQueueFirst; p; p = p->pNext){
|
|
if( p->op==ASYNC_DELETE && 0==strcmp(p->zBuf, zName) ){
|
|
ret = 0;
|
|
}else if( p->op==ASYNC_OPENEXCLUSIVE
|
|
&& 0==strcmp(p->pFileData->zName, zName)
|
|
){
|
|
ret = 1;
|
|
}
|
|
}
|
|
}
|
|
ASYNC_TRACE(("ACCESS(%s): %s = %d\n",
|
|
flags==SQLITE_ACCESS_READWRITE?"read-write":
|
|
flags==SQLITE_ACCESS_READ?"read":"exists"
|
|
, zName, ret)
|
|
);
|
|
pthread_mutex_unlock(&async.queueMutex);
|
|
return ret;
|
|
}
|
|
|
|
static int asyncGetTempname(sqlite3_vfs *pAsyncVfs, int nBufOut, char *zBufOut){
|
|
sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
|
|
return pVfs->xGetTempname(pVfs, nBufOut, zBufOut);
|
|
}
|
|
|
|
/*
|
|
** Fill in zPathOut with the full path to the file identified by zPath.
|
|
*/
|
|
static int asyncFullPathname(
|
|
sqlite3_vfs *pAsyncVfs,
|
|
const char *zPath,
|
|
int nPathOut,
|
|
char *zPathOut
|
|
){
|
|
int rc;
|
|
sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
|
|
rc = sqlite3OsFullPathname(pVfs, zPath, nPathOut, zPathOut);
|
|
|
|
/* Because of the way intra-process file locking works, this backend
|
|
** needs to return a canonical path. The following block assumes the
|
|
** file-system uses unix style paths.
|
|
*/
|
|
if( rc==SQLITE_OK ){
|
|
int iIn;
|
|
int iOut = 0;
|
|
int nPathOut = strlen(zPathOut);
|
|
|
|
for(iIn=0; iIn<nPathOut; iIn++){
|
|
|
|
/* Replace any occurences of "//" with "/" */
|
|
if( iIn<=(nPathOut-2) && zPathOut[iIn]=='/' && zPathOut[iIn+1]=='/'
|
|
){
|
|
continue;
|
|
}
|
|
|
|
/* Replace any occurences of "/./" with "/" */
|
|
if( iIn<=(nPathOut-3)
|
|
&& zPathOut[iIn]=='/' && zPathOut[iIn+1]=='.' && zPathOut[iIn+2]=='/'
|
|
){
|
|
iIn++;
|
|
continue;
|
|
}
|
|
|
|
/* Replace any occurences of "<path-component>/../" with "" */
|
|
if( iOut>0 && iIn<=(nPathOut-4)
|
|
&& zPathOut[iIn]=='/' && zPathOut[iIn+1]=='.'
|
|
&& zPathOut[iIn+2]=='.' && zPathOut[iIn+3]=='/'
|
|
){
|
|
iIn += 3;
|
|
iOut--;
|
|
for( ; iOut>0 && zPathOut[iOut-1]!='/'; iOut--);
|
|
continue;
|
|
}
|
|
|
|
zPathOut[iOut++] = zPathOut[iIn];
|
|
}
|
|
zPathOut[iOut] = '\0';
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
static void *asyncDlOpen(sqlite3_vfs *pAsyncVfs, const char *zPath){
|
|
sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
|
|
return pVfs->xDlOpen(pVfs, zPath);
|
|
}
|
|
static void asyncDlError(sqlite3_vfs *pAsyncVfs, int nByte, char *zErrMsg){
|
|
sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
|
|
pVfs->xDlError(pVfs, nByte, zErrMsg);
|
|
}
|
|
static void *asyncDlSym(
|
|
sqlite3_vfs *pAsyncVfs,
|
|
void *pHandle,
|
|
const char *zSymbol
|
|
){
|
|
sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
|
|
return pVfs->xDlSym(pVfs, pHandle, zSymbol);
|
|
}
|
|
static void asyncDlClose(sqlite3_vfs *pAsyncVfs, void *pHandle){
|
|
sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
|
|
pVfs->xDlClose(pVfs, pHandle);
|
|
}
|
|
static int asyncRandomness(sqlite3_vfs *pAsyncVfs, int nByte, char *zBufOut){
|
|
sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
|
|
return pVfs->xRandomness(pVfs, nByte, zBufOut);
|
|
}
|
|
static int asyncSleep(sqlite3_vfs *pAsyncVfs, int nMicro){
|
|
sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
|
|
return pVfs->xSleep(pVfs, nMicro);
|
|
}
|
|
static int asyncCurrentTime(sqlite3_vfs *pAsyncVfs, double *pTimeOut){
|
|
sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
|
|
return pVfs->xCurrentTime(pVfs, pTimeOut);
|
|
}
|
|
|
|
static sqlite3_vfs async_vfs = {
|
|
1, /* iVersion */
|
|
sizeof(AsyncFile), /* szOsFile */
|
|
0, /* mxPathname */
|
|
0, /* pNext */
|
|
"async", /* zName */
|
|
0, /* pAppData */
|
|
asyncOpen, /* xOpen */
|
|
asyncDelete, /* xDelete */
|
|
asyncAccess, /* xAccess */
|
|
asyncGetTempname, /* xGetTempName */
|
|
asyncFullPathname, /* xFullPathname */
|
|
asyncDlOpen, /* xDlOpen */
|
|
asyncDlError, /* xDlError */
|
|
asyncDlSym, /* xDlSym */
|
|
asyncDlClose, /* xDlClose */
|
|
asyncRandomness, /* xDlError */
|
|
asyncSleep, /* xDlSym */
|
|
asyncCurrentTime /* xDlClose */
|
|
};
|
|
|
|
/*
|
|
** Call this routine to enable or disable the
|
|
** asynchronous IO features implemented in this file.
|
|
**
|
|
** This routine is not even remotely threadsafe. Do not call
|
|
** this routine while any SQLite database connections are open.
|
|
*/
|
|
static void asyncEnable(int enable){
|
|
if( enable ){
|
|
if( !async_vfs.pAppData ){
|
|
static int hashTableInit = 0;
|
|
async_vfs.pAppData = (void *)sqlite3_vfs_find(0);
|
|
async_vfs.mxPathname = ((sqlite3_vfs *)async_vfs.pAppData)->mxPathname;
|
|
sqlite3_vfs_register(&async_vfs, 1);
|
|
if( !hashTableInit ){
|
|
sqlite3HashInit(&async.aLock, SQLITE_HASH_BINARY, 1);
|
|
hashTableInit = 1;
|
|
}
|
|
}
|
|
}else{
|
|
if( async_vfs.pAppData ){
|
|
sqlite3_vfs_unregister(&async_vfs);
|
|
async_vfs.pAppData = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** This procedure runs in a separate thread, reading messages off of the
|
|
** write queue and processing them one by one.
|
|
**
|
|
** If async.writerHaltNow is true, then this procedure exits
|
|
** after processing a single message.
|
|
**
|
|
** If async.writerHaltWhenIdle is true, then this procedure exits when
|
|
** the write queue is empty.
|
|
**
|
|
** If both of the above variables are false, this procedure runs
|
|
** indefinately, waiting for operations to be added to the write queue
|
|
** and processing them in the order in which they arrive.
|
|
**
|
|
** An artifical delay of async.ioDelay milliseconds is inserted before
|
|
** each write operation in order to simulate the effect of a slow disk.
|
|
**
|
|
** Only one instance of this procedure may be running at a time.
|
|
*/
|
|
static void *asyncWriterThread(void *pIsStarted){
|
|
sqlite3_vfs *pVfs = (sqlite3_vfs *)(async_vfs.pAppData);
|
|
AsyncWrite *p = 0;
|
|
int rc = SQLITE_OK;
|
|
int holdingMutex = 0;
|
|
|
|
if( pthread_mutex_trylock(&async.writerMutex) ){
|
|
return 0;
|
|
}
|
|
(*(int *)pIsStarted) = 1;
|
|
while( async.writerHaltNow==0 ){
|
|
int doNotFree = 0;
|
|
sqlite3_file *pBase = 0;
|
|
|
|
if( !holdingMutex ){
|
|
pthread_mutex_lock(&async.queueMutex);
|
|
}
|
|
while( (p = async.pQueueFirst)==0 ){
|
|
pthread_cond_broadcast(&async.emptySignal);
|
|
if( async.writerHaltWhenIdle ){
|
|
pthread_mutex_unlock(&async.queueMutex);
|
|
break;
|
|
}else{
|
|
ASYNC_TRACE(("IDLE\n"));
|
|
pthread_cond_wait(&async.queueSignal, &async.queueMutex);
|
|
ASYNC_TRACE(("WAKEUP\n"));
|
|
}
|
|
}
|
|
if( p==0 ) break;
|
|
holdingMutex = 1;
|
|
|
|
/* Right now this thread is holding the mutex on the write-op queue.
|
|
** Variable 'p' points to the first entry in the write-op queue. In
|
|
** the general case, we hold on to the mutex for the entire body of
|
|
** the loop.
|
|
**
|
|
** However in the cases enumerated below, we relinquish the mutex,
|
|
** perform the IO, and then re-request the mutex before removing 'p' from
|
|
** the head of the write-op queue. The idea is to increase concurrency with
|
|
** sqlite threads.
|
|
**
|
|
** * An ASYNC_CLOSE operation.
|
|
** * An ASYNC_OPENEXCLUSIVE operation. For this one, we relinquish
|
|
** the mutex, call the underlying xOpenExclusive() function, then
|
|
** re-aquire the mutex before seting the AsyncFile.pBaseRead
|
|
** variable.
|
|
** * ASYNC_SYNC and ASYNC_WRITE operations, if
|
|
** SQLITE_ASYNC_TWO_FILEHANDLES was set at compile time and two
|
|
** file-handles are open for the particular file being "synced".
|
|
*/
|
|
if( async.ioError!=SQLITE_OK && p->op!=ASYNC_CLOSE ){
|
|
p->op = ASYNC_NOOP;
|
|
}
|
|
if( p->pFileData ){
|
|
pBase = p->pFileData->pBaseWrite;
|
|
if(
|
|
p->op==ASYNC_CLOSE ||
|
|
p->op==ASYNC_OPENEXCLUSIVE ||
|
|
(pBase->pMethods && (p->op==ASYNC_SYNC || p->op==ASYNC_WRITE) )
|
|
){
|
|
pthread_mutex_unlock(&async.queueMutex);
|
|
holdingMutex = 0;
|
|
}
|
|
if( !pBase->pMethods ){
|
|
pBase = p->pFileData->pBaseRead;
|
|
}
|
|
}
|
|
|
|
switch( p->op ){
|
|
case ASYNC_NOOP:
|
|
break;
|
|
|
|
case ASYNC_WRITE:
|
|
assert( pBase );
|
|
ASYNC_TRACE(("WRITE %s %d bytes at %d\n",
|
|
p->pFileData->zName, p->nByte, p->iOffset));
|
|
rc = sqlite3OsWrite(pBase, (void *)(p->zBuf), p->nByte, p->iOffset);
|
|
break;
|
|
|
|
case ASYNC_SYNC:
|
|
assert( pBase );
|
|
ASYNC_TRACE(("SYNC %s\n", p->pFileData->zName));
|
|
rc = sqlite3OsSync(pBase, p->nByte);
|
|
break;
|
|
|
|
case ASYNC_TRUNCATE:
|
|
assert( pBase );
|
|
ASYNC_TRACE(("TRUNCATE %s to %d bytes\n",
|
|
p->pFileData->zName, p->iOffset));
|
|
rc = sqlite3OsTruncate(pBase, p->iOffset);
|
|
break;
|
|
|
|
case ASYNC_CLOSE: {
|
|
AsyncFileData *pData = p->pFileData;
|
|
ASYNC_TRACE(("CLOSE %s\n", p->pFileData->zName));
|
|
sqlite3OsClose(pData->pBaseWrite);
|
|
sqlite3OsClose(pData->pBaseRead);
|
|
|
|
/* Unlink AsyncFileData.lock from the linked list of AsyncFileLock
|
|
** structures for this file. Obtain the async.lockMutex mutex
|
|
** before doing so.
|
|
*/
|
|
pthread_mutex_lock(&async.lockMutex);
|
|
rc = unlinkAsyncFile(pData);
|
|
pthread_mutex_unlock(&async.lockMutex);
|
|
|
|
async.pQueueFirst = p->pNext;
|
|
sqlite3_free(pData);
|
|
doNotFree = 1;
|
|
break;
|
|
}
|
|
|
|
case ASYNC_UNLOCK: {
|
|
AsyncLock *pLock;
|
|
AsyncFileData *pData = p->pFileData;
|
|
int eLock = p->nByte;
|
|
pthread_mutex_lock(&async.lockMutex);
|
|
pData->lock.eAsyncLock = MIN(
|
|
pData->lock.eAsyncLock, MAX(pData->lock.eLock, eLock)
|
|
);
|
|
assert(pData->lock.eAsyncLock>=pData->lock.eLock);
|
|
pLock = sqlite3HashFind(&async.aLock, pData->zName, pData->nName);
|
|
rc = getFileLock(pLock);
|
|
pthread_mutex_unlock(&async.lockMutex);
|
|
break;
|
|
}
|
|
|
|
case ASYNC_DELETE:
|
|
ASYNC_TRACE(("DELETE %s\n", p->zBuf));
|
|
rc = sqlite3OsDelete(pVfs, p->zBuf, (int)p->iOffset);
|
|
break;
|
|
|
|
case ASYNC_OPENEXCLUSIVE: {
|
|
int flags = (int)p->iOffset;
|
|
AsyncFileData *pData = p->pFileData;
|
|
ASYNC_TRACE(("OPEN %s flags=%d\n", p->zBuf, (int)p->iOffset));
|
|
assert(pData->pBaseRead->pMethods==0 && pData->pBaseWrite->pMethods==0);
|
|
rc = sqlite3OsOpen(pVfs, pData->zName, pData->pBaseRead, flags, 0);
|
|
assert( holdingMutex==0 );
|
|
pthread_mutex_lock(&async.queueMutex);
|
|
holdingMutex = 1;
|
|
break;
|
|
}
|
|
|
|
default: assert(!"Illegal value for AsyncWrite.op");
|
|
}
|
|
|
|
/* If we didn't hang on to the mutex during the IO op, obtain it now
|
|
** so that the AsyncWrite structure can be safely removed from the
|
|
** global write-op queue.
|
|
*/
|
|
if( !holdingMutex ){
|
|
pthread_mutex_lock(&async.queueMutex);
|
|
holdingMutex = 1;
|
|
}
|
|
/* ASYNC_TRACE(("UNLINK %p\n", p)); */
|
|
if( p==async.pQueueLast ){
|
|
async.pQueueLast = 0;
|
|
}
|
|
if( !doNotFree ){
|
|
async.pQueueFirst = p->pNext;
|
|
sqlite3_free(p);
|
|
}
|
|
assert( holdingMutex );
|
|
|
|
/* An IO error has occured. We cannot report the error back to the
|
|
** connection that requested the I/O since the error happened
|
|
** asynchronously. The connection has already moved on. There
|
|
** really is nobody to report the error to.
|
|
**
|
|
** The file for which the error occured may have been a database or
|
|
** journal file. Regardless, none of the currently queued operations
|
|
** associated with the same database should now be performed. Nor should
|
|
** any subsequently requested IO on either a database or journal file
|
|
** handle for the same database be accepted until the main database
|
|
** file handle has been closed and reopened.
|
|
**
|
|
** Furthermore, no further IO should be queued or performed on any file
|
|
** handle associated with a database that may have been part of a
|
|
** multi-file transaction that included the database associated with
|
|
** the IO error (i.e. a database ATTACHed to the same handle at some
|
|
** point in time).
|
|
*/
|
|
if( rc!=SQLITE_OK ){
|
|
async.ioError = rc;
|
|
}
|
|
|
|
if( async.ioError && !async.pQueueFirst ){
|
|
pthread_mutex_lock(&async.lockMutex);
|
|
if( 0==sqliteHashFirst(&async.aLock) ){
|
|
async.ioError = SQLITE_OK;
|
|
}
|
|
pthread_mutex_unlock(&async.lockMutex);
|
|
}
|
|
|
|
/* Drop the queue mutex before continuing to the next write operation
|
|
** in order to give other threads a chance to work with the write queue.
|
|
*/
|
|
if( !async.pQueueFirst || !async.ioError ){
|
|
pthread_mutex_unlock(&async.queueMutex);
|
|
holdingMutex = 0;
|
|
if( async.ioDelay>0 ){
|
|
sqlite3OsSleep(pVfs, async.ioDelay);
|
|
}else{
|
|
sched_yield();
|
|
}
|
|
}
|
|
}
|
|
|
|
pthread_mutex_unlock(&async.writerMutex);
|
|
return 0;
|
|
}
|
|
|
|
/**************************************************************************
|
|
** The remaining code defines a Tcl interface for testing the asynchronous
|
|
** IO implementation in this file.
|
|
**
|
|
** To adapt the code to a non-TCL environment, delete or comment out
|
|
** the code that follows.
|
|
*/
|
|
|
|
/*
|
|
** sqlite3async_enable ?YES/NO?
|
|
**
|
|
** Enable or disable the asynchronous I/O backend. This command is
|
|
** not thread-safe. Do not call it while any database connections
|
|
** are open.
|
|
*/
|
|
static int testAsyncEnable(
|
|
void * clientData,
|
|
Tcl_Interp *interp,
|
|
int objc,
|
|
Tcl_Obj *CONST objv[]
|
|
){
|
|
if( objc!=1 && objc!=2 ){
|
|
Tcl_WrongNumArgs(interp, 1, objv, "?YES/NO?");
|
|
return TCL_ERROR;
|
|
}
|
|
if( objc==1 ){
|
|
Tcl_SetObjResult(interp, Tcl_NewBooleanObj(async_vfs.pAppData!=0));
|
|
}else{
|
|
int en;
|
|
if( Tcl_GetBooleanFromObj(interp, objv[1], &en) ) return TCL_ERROR;
|
|
asyncEnable(en);
|
|
}
|
|
return TCL_OK;
|
|
}
|
|
|
|
/*
|
|
** sqlite3async_halt "now"|"idle"|"never"
|
|
**
|
|
** Set the conditions at which the writer thread will halt.
|
|
*/
|
|
static int testAsyncHalt(
|
|
void * clientData,
|
|
Tcl_Interp *interp,
|
|
int objc,
|
|
Tcl_Obj *CONST objv[]
|
|
){
|
|
const char *zCond;
|
|
if( objc!=2 ){
|
|
Tcl_WrongNumArgs(interp, 1, objv, "\"now\"|\"idle\"|\"never\"");
|
|
return TCL_ERROR;
|
|
}
|
|
zCond = Tcl_GetString(objv[1]);
|
|
if( strcmp(zCond, "now")==0 ){
|
|
async.writerHaltNow = 1;
|
|
pthread_cond_broadcast(&async.queueSignal);
|
|
}else if( strcmp(zCond, "idle")==0 ){
|
|
async.writerHaltWhenIdle = 1;
|
|
async.writerHaltNow = 0;
|
|
pthread_cond_broadcast(&async.queueSignal);
|
|
}else if( strcmp(zCond, "never")==0 ){
|
|
async.writerHaltWhenIdle = 0;
|
|
async.writerHaltNow = 0;
|
|
}else{
|
|
Tcl_AppendResult(interp,
|
|
"should be one of: \"now\", \"idle\", or \"never\"", (char*)0);
|
|
return TCL_ERROR;
|
|
}
|
|
return TCL_OK;
|
|
}
|
|
|
|
/*
|
|
** sqlite3async_delay ?MS?
|
|
**
|
|
** Query or set the number of milliseconds of delay in the writer
|
|
** thread after each write operation. The default is 0. By increasing
|
|
** the memory delay we can simulate the effect of slow disk I/O.
|
|
*/
|
|
static int testAsyncDelay(
|
|
void * clientData,
|
|
Tcl_Interp *interp,
|
|
int objc,
|
|
Tcl_Obj *CONST objv[]
|
|
){
|
|
if( objc!=1 && objc!=2 ){
|
|
Tcl_WrongNumArgs(interp, 1, objv, "?MS?");
|
|
return TCL_ERROR;
|
|
}
|
|
if( objc==1 ){
|
|
Tcl_SetObjResult(interp, Tcl_NewIntObj(async.ioDelay));
|
|
}else{
|
|
int ioDelay;
|
|
if( Tcl_GetIntFromObj(interp, objv[1], &ioDelay) ) return TCL_ERROR;
|
|
async.ioDelay = ioDelay;
|
|
}
|
|
return TCL_OK;
|
|
}
|
|
|
|
/*
|
|
** sqlite3async_start
|
|
**
|
|
** Start a new writer thread.
|
|
*/
|
|
static int testAsyncStart(
|
|
void * clientData,
|
|
Tcl_Interp *interp,
|
|
int objc,
|
|
Tcl_Obj *CONST objv[]
|
|
){
|
|
pthread_t x;
|
|
int rc;
|
|
volatile int isStarted = 0;
|
|
rc = pthread_create(&x, 0, asyncWriterThread, (void *)&isStarted);
|
|
if( rc ){
|
|
Tcl_AppendResult(interp, "failed to create the thread", 0);
|
|
return TCL_ERROR;
|
|
}
|
|
pthread_detach(x);
|
|
while( isStarted==0 ){
|
|
sched_yield();
|
|
}
|
|
return TCL_OK;
|
|
}
|
|
|
|
/*
|
|
** sqlite3async_wait
|
|
**
|
|
** Wait for the current writer thread to terminate.
|
|
**
|
|
** If the current writer thread is set to run forever then this
|
|
** command would block forever. To prevent that, an error is returned.
|
|
*/
|
|
static int testAsyncWait(
|
|
void * clientData,
|
|
Tcl_Interp *interp,
|
|
int objc,
|
|
Tcl_Obj *CONST objv[]
|
|
){
|
|
int cnt = 10;
|
|
if( async.writerHaltNow==0 && async.writerHaltWhenIdle==0 ){
|
|
Tcl_AppendResult(interp, "would block forever", (char*)0);
|
|
return TCL_ERROR;
|
|
}
|
|
|
|
while( cnt-- && !pthread_mutex_trylock(&async.writerMutex) ){
|
|
pthread_mutex_unlock(&async.writerMutex);
|
|
sched_yield();
|
|
}
|
|
if( cnt>=0 ){
|
|
ASYNC_TRACE(("WAIT\n"));
|
|
pthread_mutex_lock(&async.queueMutex);
|
|
pthread_cond_broadcast(&async.queueSignal);
|
|
pthread_mutex_unlock(&async.queueMutex);
|
|
pthread_mutex_lock(&async.writerMutex);
|
|
pthread_mutex_unlock(&async.writerMutex);
|
|
}else{
|
|
ASYNC_TRACE(("NO-WAIT\n"));
|
|
}
|
|
return TCL_OK;
|
|
}
|
|
|
|
|
|
#endif /* OS_UNIX and SQLITE_THREADSAFE */
|
|
|
|
/*
|
|
** This routine registers the custom TCL commands defined in this
|
|
** module. This should be the only procedure visible from outside
|
|
** of this module.
|
|
*/
|
|
int Sqlitetestasync_Init(Tcl_Interp *interp){
|
|
#if OS_UNIX && SQLITE_THREADSAFE
|
|
Tcl_CreateObjCommand(interp,"sqlite3async_enable",testAsyncEnable,0,0);
|
|
Tcl_CreateObjCommand(interp,"sqlite3async_halt",testAsyncHalt,0,0);
|
|
Tcl_CreateObjCommand(interp,"sqlite3async_delay",testAsyncDelay,0,0);
|
|
Tcl_CreateObjCommand(interp,"sqlite3async_start",testAsyncStart,0,0);
|
|
Tcl_CreateObjCommand(interp,"sqlite3async_wait",testAsyncWait,0,0);
|
|
Tcl_LinkVar(interp, "sqlite3async_trace",
|
|
(char*)&sqlite3async_trace, TCL_LINK_INT);
|
|
#endif /* OS_UNIX and SQLITE_THREADSAFE */
|
|
return TCL_OK;
|
|
}
|