mirror of
https://github.com/sqlite/sqlite.git
synced 2025-11-08 03:22:21 +03:00
are way too slow. And additional tests are needed for new features. (CVS 243) FossilOrigin-Name: e7b65e37fd88c4d69c89cfe73ab345b8b645ada6
1005 lines
30 KiB
C
1005 lines
30 KiB
C
/*
|
|
** Copyright (c) 1999, 2000 D. Richard Hipp
|
|
**
|
|
** This program is free software; you can redistribute it and/or
|
|
** modify it under the terms of the GNU General Public
|
|
** License as published by the Free Software Foundation; either
|
|
** version 2 of the License, or (at your option) any later version.
|
|
**
|
|
** This program is distributed in the hope that it will be useful,
|
|
** but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
** General Public License for more details.
|
|
**
|
|
** You should have received a copy of the GNU General Public
|
|
** License along with this library; if not, write to the
|
|
** Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
** Boston, MA 02111-1307, USA.
|
|
**
|
|
** Author contact information:
|
|
** drh@hwaci.com
|
|
** http://www.hwaci.com/drh/
|
|
**
|
|
*************************************************************************
|
|
** This file contains routines used for analyzing expressions and
|
|
** for generating VDBE code that evaluates expressions.
|
|
**
|
|
** $Id: expr.c,v 1.27 2001/09/14 03:24:25 drh Exp $
|
|
*/
|
|
#include "sqliteInt.h"
|
|
|
|
/*
|
|
** Walk an expression tree. Return 1 if the expression is constant
|
|
** and 0 if it involves variables.
|
|
*/
|
|
static int isConstant(Expr *p){
|
|
switch( p->op ){
|
|
case TK_ID:
|
|
case TK_COLUMN:
|
|
case TK_DOT:
|
|
return 0;
|
|
default: {
|
|
if( p->pLeft && !isConstant(p->pLeft) ) return 0;
|
|
if( p->pRight && !isConstant(p->pRight) ) return 0;
|
|
if( p->pList ){
|
|
int i;
|
|
for(i=0; i<p->pList->nExpr; i++){
|
|
if( !isConstant(p->pList->a[i].pExpr) ) return 0;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
** Walk the expression tree and process operators of the form:
|
|
**
|
|
** expr IN (SELECT ...)
|
|
**
|
|
** These operators have to be processed before column names are
|
|
** resolved because each such operator increments pParse->nTab
|
|
** to reserve cursor numbers for its own use. But pParse->nTab
|
|
** needs to be constant once we begin resolving column names.
|
|
**
|
|
** Actually, the processing of IN-SELECT is only started by this
|
|
** routine. This routine allocates a cursor number to the IN-SELECT
|
|
** and then moves on. The code generation is done by
|
|
** sqliteExprResolveIds() which must be called afterwards.
|
|
*/
|
|
void sqliteExprResolveInSelect(Parse *pParse, Expr *pExpr){
|
|
if( pExpr==0 ) return;
|
|
if( pExpr->op==TK_IN && pExpr->pSelect!=0 ){
|
|
pExpr->iTable = pParse->nTab++;
|
|
}else{
|
|
if( pExpr->pLeft ) sqliteExprResolveInSelect(pParse, pExpr->pLeft);
|
|
if( pExpr->pRight ) sqliteExprResolveInSelect(pParse, pExpr->pRight);
|
|
if( pExpr->pList ){
|
|
int i;
|
|
ExprList *pList = pExpr->pList;
|
|
for(i=0; i<pList->nExpr; i++){
|
|
sqliteExprResolveInSelect(pParse, pList->a[i].pExpr);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Return TRUE if the given string is a row-id column name.
|
|
*/
|
|
static int sqliteIsRowid(const char *z){
|
|
if( sqliteStrICmp(z, "_ROWID_")==0 ) return 1;
|
|
if( sqliteStrICmp(z, "ROWID")==0 ) return 1;
|
|
if( sqliteStrICmp(z, "OID")==0 ) return 1;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** This routine walks an expression tree and resolves references to
|
|
** table columns. Nodes of the form ID.ID or ID resolve into an
|
|
** index to the table in the table list and a column offset. The opcode
|
|
** for such nodes is changed to TK_COLUMN. The iTable value is changed
|
|
** to the index of the referenced table in pTabList plus the pParse->nTab
|
|
** value. The iColumn value is changed to the index of the column of the
|
|
** referenced table.
|
|
**
|
|
** We also check for instances of the IN operator. IN comes in two
|
|
** forms:
|
|
**
|
|
** expr IN (exprlist)
|
|
** and
|
|
** expr IN (SELECT ...)
|
|
**
|
|
** The first form is handled by creating a set holding the list
|
|
** of allowed values. The second form causes the SELECT to generate
|
|
** a temporary table.
|
|
**
|
|
** This routine also looks for scalar SELECTs that are part of an expression.
|
|
** If it finds any, it generates code to write the value of that select
|
|
** into a memory cell.
|
|
**
|
|
** Unknown columns or tables provoke an error. The function returns
|
|
** the number of errors seen and leaves an error message on pParse->zErrMsg.
|
|
*/
|
|
int sqliteExprResolveIds(Parse *pParse, IdList *pTabList, Expr *pExpr){
|
|
if( pExpr==0 || pTabList==0 ) return 0;
|
|
switch( pExpr->op ){
|
|
/* A lone identifier */
|
|
case TK_ID: {
|
|
int cnt = 0; /* Number of matches */
|
|
int i; /* Loop counter */
|
|
char *z = sqliteStrNDup(pExpr->token.z, pExpr->token.n);
|
|
if( z==0 ) return 1;
|
|
for(i=0; i<pTabList->nId; i++){
|
|
int j;
|
|
Table *pTab = pTabList->a[i].pTab;
|
|
if( pTab==0 ) continue;
|
|
for(j=0; j<pTab->nCol; j++){
|
|
if( sqliteStrICmp(pTab->aCol[j].zName, z)==0 ){
|
|
cnt++;
|
|
pExpr->iTable = i + pParse->nTab;
|
|
pExpr->iColumn = j;
|
|
}
|
|
}
|
|
}
|
|
if( cnt==0 && sqliteIsRowid(z) ){
|
|
pExpr->iColumn = -1;
|
|
pExpr->iTable = pParse->nTab;
|
|
cnt = 1 + (pTabList->nId>1);
|
|
}
|
|
sqliteFree(z);
|
|
if( cnt==0 ){
|
|
sqliteSetNString(&pParse->zErrMsg, "no such column: ", -1,
|
|
pExpr->token.z, pExpr->token.n, 0);
|
|
pParse->nErr++;
|
|
return 1;
|
|
}else if( cnt>1 ){
|
|
sqliteSetNString(&pParse->zErrMsg, "ambiguous column name: ", -1,
|
|
pExpr->token.z, pExpr->token.n, 0);
|
|
pParse->nErr++;
|
|
return 1;
|
|
}
|
|
pExpr->op = TK_COLUMN;
|
|
break;
|
|
}
|
|
|
|
/* A table name and column name: ID.ID */
|
|
case TK_DOT: {
|
|
int cnt = 0; /* Number of matches */
|
|
int cntTab = 0; /* Number of matching tables */
|
|
int i; /* Loop counter */
|
|
Expr *pLeft, *pRight; /* Left and right subbranches of the expr */
|
|
char *zLeft, *zRight; /* Text of an identifier */
|
|
|
|
pLeft = pExpr->pLeft;
|
|
pRight = pExpr->pRight;
|
|
assert( pLeft && pLeft->op==TK_ID );
|
|
assert( pRight && pRight->op==TK_ID );
|
|
zLeft = sqliteStrNDup(pLeft->token.z, pLeft->token.n);
|
|
zRight = sqliteStrNDup(pRight->token.z, pRight->token.n);
|
|
if( zLeft==0 || zRight==0 ){
|
|
sqliteFree(zLeft);
|
|
sqliteFree(zRight);
|
|
return 1;
|
|
}
|
|
sqliteDequote(zLeft);
|
|
sqliteDequote(zRight);
|
|
pExpr->iTable = -1;
|
|
for(i=0; i<pTabList->nId; i++){
|
|
int j;
|
|
char *zTab;
|
|
Table *pTab = pTabList->a[i].pTab;
|
|
if( pTab==0 ) continue;
|
|
if( pTabList->a[i].zAlias ){
|
|
zTab = pTabList->a[i].zAlias;
|
|
}else{
|
|
zTab = pTab->zName;
|
|
}
|
|
if( sqliteStrICmp(zTab, zLeft)!=0 ) continue;
|
|
if( 0==(cntTab++) ) pExpr->iTable = i + pParse->nTab;
|
|
for(j=0; j<pTab->nCol; j++){
|
|
if( sqliteStrICmp(pTab->aCol[j].zName, zRight)==0 ){
|
|
cnt++;
|
|
pExpr->iTable = i + pParse->nTab;
|
|
pExpr->iColumn = j;
|
|
}
|
|
}
|
|
}
|
|
if( cnt==0 && cntTab==1 && sqliteIsRowid(zRight) ){
|
|
cnt = 1;
|
|
pExpr->iColumn = -1;
|
|
}
|
|
sqliteFree(zLeft);
|
|
sqliteFree(zRight);
|
|
if( cnt==0 ){
|
|
sqliteSetNString(&pParse->zErrMsg, "no such column: ", -1,
|
|
pLeft->token.z, pLeft->token.n, ".", 1,
|
|
pRight->token.z, pRight->token.n, 0);
|
|
pParse->nErr++;
|
|
return 1;
|
|
}else if( cnt>1 ){
|
|
sqliteSetNString(&pParse->zErrMsg, "ambiguous column name: ", -1,
|
|
pLeft->token.z, pLeft->token.n, ".", 1,
|
|
pRight->token.z, pRight->token.n, 0);
|
|
pParse->nErr++;
|
|
return 1;
|
|
}
|
|
sqliteExprDelete(pLeft);
|
|
pExpr->pLeft = 0;
|
|
sqliteExprDelete(pRight);
|
|
pExpr->pRight = 0;
|
|
pExpr->op = TK_COLUMN;
|
|
break;
|
|
}
|
|
|
|
case TK_IN: {
|
|
Vdbe *v = sqliteGetVdbe(pParse);
|
|
if( v==0 ) return 1;
|
|
if( sqliteExprResolveIds(pParse, pTabList, pExpr->pLeft) ){
|
|
return 1;
|
|
}
|
|
if( pExpr->pSelect ){
|
|
/* Case 1: expr IN (SELECT ...)
|
|
**
|
|
** Generate code to write the results of the select into a temporary
|
|
** table. The cursor number of the temporary table has already
|
|
** been put in iTable by sqliteExprResolveInSelect().
|
|
*/
|
|
sqliteVdbeAddOp(v, OP_OpenTemp, pExpr->iTable, 0, 0, 0);
|
|
if( sqliteSelect(pParse, pExpr->pSelect, SRT_Set, pExpr->iTable) );
|
|
}else if( pExpr->pList ){
|
|
/* Case 2: expr IN (exprlist)
|
|
**
|
|
** Create a set to put the exprlist values in. The Set id is stored
|
|
** in iTable.
|
|
*/
|
|
int i, iSet;
|
|
for(i=0; i<pExpr->pList->nExpr; i++){
|
|
Expr *pE2 = pExpr->pList->a[i].pExpr;
|
|
if( !isConstant(pE2) ){
|
|
sqliteSetString(&pParse->zErrMsg,
|
|
"right-hand side of IN operator must be constant", 0);
|
|
pParse->nErr++;
|
|
return 1;
|
|
}
|
|
if( sqliteExprCheck(pParse, pE2, 0, 0) ){
|
|
return 1;
|
|
}
|
|
}
|
|
iSet = pExpr->iTable = pParse->nSet++;
|
|
for(i=0; i<pExpr->pList->nExpr; i++){
|
|
Expr *pE2 = pExpr->pList->a[i].pExpr;
|
|
switch( pE2->op ){
|
|
case TK_FLOAT:
|
|
case TK_INTEGER:
|
|
case TK_STRING: {
|
|
int addr = sqliteVdbeAddOp(v, OP_SetInsert, iSet, 0, 0, 0);
|
|
sqliteVdbeChangeP3(v, addr, pE2->token.z, pE2->token.n);
|
|
sqliteVdbeDequoteP3(v, addr);
|
|
break;
|
|
}
|
|
default: {
|
|
sqliteExprCode(pParse, pE2);
|
|
sqliteVdbeAddOp(v, OP_SetInsert, iSet, 0, 0, 0);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
case TK_SELECT: {
|
|
/* This has to be a scalar SELECT. Generate code to put the
|
|
** value of this select in a memory cell and record the number
|
|
** of the memory cell in iColumn.
|
|
*/
|
|
pExpr->iColumn = pParse->nMem++;
|
|
if( sqliteSelect(pParse, pExpr->pSelect, SRT_Mem, pExpr->iColumn) ){
|
|
return 1;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* For all else, just recursively walk the tree */
|
|
default: {
|
|
if( pExpr->pLeft
|
|
&& sqliteExprResolveIds(pParse, pTabList, pExpr->pLeft) ){
|
|
return 1;
|
|
}
|
|
if( pExpr->pRight
|
|
&& sqliteExprResolveIds(pParse, pTabList, pExpr->pRight) ){
|
|
return 1;
|
|
}
|
|
if( pExpr->pList ){
|
|
int i;
|
|
ExprList *pList = pExpr->pList;
|
|
for(i=0; i<pList->nExpr; i++){
|
|
if( sqliteExprResolveIds(pParse, pTabList, pList->a[i].pExpr) ){
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#if 0 /* NOT USED */
|
|
/*
|
|
** Compare a token against a string. Return TRUE if they match.
|
|
*/
|
|
static int sqliteTokenCmp(Token *pToken, const char *zStr){
|
|
int n = strlen(zStr);
|
|
if( n!=pToken->n ) return 0;
|
|
return sqliteStrNICmp(pToken->z, zStr, n)==0;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** Convert a function name into its integer identifier. Return the
|
|
** identifier. Return FN_Unknown if the function name is unknown.
|
|
*/
|
|
int sqliteFuncId(Token *pToken){
|
|
static const struct {
|
|
char *zName;
|
|
int len;
|
|
int id;
|
|
} aFunc[] = {
|
|
{ "count", 5, FN_Count },
|
|
{ "min", 3, FN_Min },
|
|
{ "max", 3, FN_Max },
|
|
{ "sum", 3, FN_Sum },
|
|
{ "avg", 3, FN_Avg },
|
|
{ "fcnt", 4, FN_Fcnt }, /* Used for testing only */
|
|
{ "length", 6, FN_Length},
|
|
{ "substr", 6, FN_Substr},
|
|
};
|
|
int i;
|
|
for(i=0; i<ArraySize(aFunc); i++){
|
|
if( aFunc[i].len==pToken->n
|
|
&& sqliteStrNICmp(pToken->z, aFunc[i].zName, aFunc[i].len)==0 ){
|
|
return aFunc[i].id;
|
|
}
|
|
}
|
|
return FN_Unknown;
|
|
}
|
|
|
|
/*
|
|
** Error check the functions in an expression. Make sure all
|
|
** function names are recognized and all functions have the correct
|
|
** number of arguments. Leave an error message in pParse->zErrMsg
|
|
** if anything is amiss. Return the number of errors.
|
|
**
|
|
** if pIsAgg is not null and this expression is an aggregate function
|
|
** (like count(*) or max(value)) then write a 1 into *pIsAgg.
|
|
*/
|
|
int sqliteExprCheck(Parse *pParse, Expr *pExpr, int allowAgg, int *pIsAgg){
|
|
int nErr = 0;
|
|
if( pExpr==0 ) return 0;
|
|
switch( pExpr->op ){
|
|
case TK_FUNCTION: {
|
|
int id = sqliteFuncId(&pExpr->token);
|
|
int n = pExpr->pList ? pExpr->pList->nExpr : 0;
|
|
int no_such_func = 0;
|
|
int too_many_args = 0;
|
|
int too_few_args = 0;
|
|
int is_agg = 0;
|
|
int i;
|
|
pExpr->iColumn = id;
|
|
switch( id ){
|
|
case FN_Unknown: {
|
|
no_such_func = 1;
|
|
break;
|
|
}
|
|
case FN_Count: {
|
|
no_such_func = !allowAgg;
|
|
too_many_args = n>1;
|
|
is_agg = 1;
|
|
break;
|
|
}
|
|
case FN_Max:
|
|
case FN_Min: {
|
|
too_few_args = allowAgg ? n<1 : n<2;
|
|
is_agg = n==1;
|
|
break;
|
|
}
|
|
case FN_Avg:
|
|
case FN_Sum: {
|
|
no_such_func = !allowAgg;
|
|
too_many_args = n>1;
|
|
too_few_args = n<1;
|
|
is_agg = 1;
|
|
break;
|
|
}
|
|
case FN_Length: {
|
|
too_few_args = n<1;
|
|
too_many_args = n>1;
|
|
break;
|
|
}
|
|
case FN_Substr: {
|
|
too_few_args = n<3;
|
|
too_many_args = n>3;
|
|
break;
|
|
}
|
|
/* The "fcnt(*)" function always returns the number of fetch
|
|
** operations that have occurred so far while processing the
|
|
** SQL statement. This information can be used by test procedures
|
|
** to verify that indices are being used properly to minimize
|
|
** searching. All arguments to fcnt() are ignored. fcnt() has
|
|
** no use (other than testing) that we are aware of.
|
|
*/
|
|
case FN_Fcnt: {
|
|
n = 0;
|
|
break;
|
|
}
|
|
|
|
default: break;
|
|
}
|
|
if( no_such_func ){
|
|
sqliteSetNString(&pParse->zErrMsg, "no such function: ", -1,
|
|
pExpr->token.z, pExpr->token.n, 0);
|
|
pParse->nErr++;
|
|
nErr++;
|
|
}else if( too_many_args ){
|
|
sqliteSetNString(&pParse->zErrMsg, "too many arguments to function ",-1,
|
|
pExpr->token.z, pExpr->token.n, "()", 2, 0);
|
|
pParse->nErr++;
|
|
nErr++;
|
|
}else if( too_few_args ){
|
|
sqliteSetNString(&pParse->zErrMsg, "too few arguments to function ",-1,
|
|
pExpr->token.z, pExpr->token.n, "()", 2, 0);
|
|
pParse->nErr++;
|
|
nErr++;
|
|
}
|
|
if( is_agg ) pExpr->op = TK_AGG_FUNCTION;
|
|
if( is_agg && pIsAgg ) *pIsAgg = 1;
|
|
for(i=0; nErr==0 && i<n; i++){
|
|
nErr = sqliteExprCheck(pParse, pExpr->pList->a[i].pExpr,
|
|
allowAgg && !is_agg, pIsAgg);
|
|
}
|
|
}
|
|
default: {
|
|
if( pExpr->pLeft ){
|
|
nErr = sqliteExprCheck(pParse, pExpr->pLeft, allowAgg, pIsAgg);
|
|
}
|
|
if( nErr==0 && pExpr->pRight ){
|
|
nErr = sqliteExprCheck(pParse, pExpr->pRight, allowAgg, pIsAgg);
|
|
}
|
|
if( nErr==0 && pExpr->pList ){
|
|
int n = pExpr->pList->nExpr;
|
|
int i;
|
|
for(i=0; nErr==0 && i<n; i++){
|
|
Expr *pE2 = pExpr->pList->a[i].pExpr;
|
|
nErr = sqliteExprCheck(pParse, pE2, allowAgg, pIsAgg);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
return nErr;
|
|
}
|
|
|
|
/*
|
|
** Generate code into the current Vdbe to evaluate the given
|
|
** expression and leave the result on the top of stack.
|
|
*/
|
|
void sqliteExprCode(Parse *pParse, Expr *pExpr){
|
|
Vdbe *v = pParse->pVdbe;
|
|
int op;
|
|
if( v==0 || pExpr==0 ) return;
|
|
switch( pExpr->op ){
|
|
case TK_PLUS: op = OP_Add; break;
|
|
case TK_MINUS: op = OP_Subtract; break;
|
|
case TK_STAR: op = OP_Multiply; break;
|
|
case TK_SLASH: op = OP_Divide; break;
|
|
case TK_AND: op = OP_And; break;
|
|
case TK_OR: op = OP_Or; break;
|
|
case TK_LT: op = OP_Lt; break;
|
|
case TK_LE: op = OP_Le; break;
|
|
case TK_GT: op = OP_Gt; break;
|
|
case TK_GE: op = OP_Ge; break;
|
|
case TK_NE: op = OP_Ne; break;
|
|
case TK_EQ: op = OP_Eq; break;
|
|
case TK_LIKE: op = OP_Like; break;
|
|
case TK_GLOB: op = OP_Glob; break;
|
|
case TK_ISNULL: op = OP_IsNull; break;
|
|
case TK_NOTNULL: op = OP_NotNull; break;
|
|
case TK_NOT: op = OP_Not; break;
|
|
case TK_UMINUS: op = OP_Negative; break;
|
|
default: break;
|
|
}
|
|
switch( pExpr->op ){
|
|
case TK_COLUMN: {
|
|
if( pParse->useAgg ){
|
|
sqliteVdbeAddOp(v, OP_AggGet, 0, pExpr->iAgg, 0, 0);
|
|
}else if( pExpr->iColumn>=0 ){
|
|
sqliteVdbeAddOp(v, OP_Column, pExpr->iTable, pExpr->iColumn, 0, 0);
|
|
}else{
|
|
sqliteVdbeAddOp(v, OP_Recno, pExpr->iTable, 0, 0, 0);
|
|
}
|
|
break;
|
|
}
|
|
case TK_INTEGER: {
|
|
int i = atoi(pExpr->token.z);
|
|
sqliteVdbeAddOp(v, OP_Integer, i, 0, 0, 0);
|
|
break;
|
|
}
|
|
case TK_FLOAT: {
|
|
int addr = sqliteVdbeAddOp(v, OP_String, 0, 0, 0, 0);
|
|
sqliteVdbeChangeP3(v, addr, pExpr->token.z, pExpr->token.n);
|
|
break;
|
|
}
|
|
case TK_STRING: {
|
|
int addr = sqliteVdbeAddOp(v, OP_String, 0, 0, 0, 0);
|
|
sqliteVdbeChangeP3(v, addr, pExpr->token.z, pExpr->token.n);
|
|
sqliteVdbeDequoteP3(v, addr);
|
|
break;
|
|
}
|
|
case TK_NULL: {
|
|
sqliteVdbeAddOp(v, OP_Null, 0, 0, 0, 0);
|
|
break;
|
|
}
|
|
case TK_AND:
|
|
case TK_OR:
|
|
case TK_PLUS:
|
|
case TK_STAR:
|
|
case TK_MINUS:
|
|
case TK_SLASH: {
|
|
sqliteExprCode(pParse, pExpr->pLeft);
|
|
sqliteExprCode(pParse, pExpr->pRight);
|
|
sqliteVdbeAddOp(v, op, 0, 0, 0, 0);
|
|
break;
|
|
}
|
|
case TK_CONCAT: {
|
|
sqliteExprCode(pParse, pExpr->pLeft);
|
|
sqliteExprCode(pParse, pExpr->pRight);
|
|
sqliteVdbeAddOp(v, OP_Concat, 2, 0, 0, 0);
|
|
break;
|
|
}
|
|
case TK_LT:
|
|
case TK_LE:
|
|
case TK_GT:
|
|
case TK_GE:
|
|
case TK_NE:
|
|
case TK_EQ:
|
|
case TK_LIKE:
|
|
case TK_GLOB: {
|
|
int dest;
|
|
sqliteVdbeAddOp(v, OP_Integer, 1, 0, 0, 0);
|
|
sqliteExprCode(pParse, pExpr->pLeft);
|
|
sqliteExprCode(pParse, pExpr->pRight);
|
|
dest = sqliteVdbeCurrentAddr(v) + 2;
|
|
sqliteVdbeAddOp(v, op, 0, dest, 0, 0);
|
|
sqliteVdbeAddOp(v, OP_AddImm, -1, 0, 0, 0);
|
|
break;
|
|
}
|
|
case TK_UMINUS: {
|
|
assert( pExpr->pLeft );
|
|
if( pExpr->pLeft->op==TK_INTEGER ){
|
|
int i = atoi(pExpr->pLeft->token.z);
|
|
sqliteVdbeAddOp(v, OP_Integer, -i, 0, 0, 0);
|
|
break;
|
|
}else if( pExpr->pLeft->op==TK_FLOAT ){
|
|
Token *p = &pExpr->pLeft->token;
|
|
char *z = sqliteMalloc( p->n + 2 );
|
|
sprintf(z, "-%.*s", p->n, p->z);
|
|
sqliteVdbeAddOp(v, OP_String, 0, 0, z, 0);
|
|
sqliteFree(z);
|
|
break;
|
|
}
|
|
/* Fall through into TK_NOT */
|
|
}
|
|
case TK_NOT: {
|
|
sqliteExprCode(pParse, pExpr->pLeft);
|
|
sqliteVdbeAddOp(v, op, 0, 0, 0, 0);
|
|
break;
|
|
}
|
|
case TK_ISNULL:
|
|
case TK_NOTNULL: {
|
|
int dest;
|
|
sqliteVdbeAddOp(v, OP_Integer, 1, 0, 0, 0);
|
|
sqliteExprCode(pParse, pExpr->pLeft);
|
|
dest = sqliteVdbeCurrentAddr(v) + 2;
|
|
sqliteVdbeAddOp(v, op, 0, dest, 0, 0);
|
|
sqliteVdbeAddOp(v, OP_AddImm, -1, 0, 0, 0);
|
|
break;
|
|
}
|
|
case TK_AGG_FUNCTION: {
|
|
sqliteVdbeAddOp(v, OP_AggGet, 0, pExpr->iAgg, 0, 0);
|
|
if( pExpr->iColumn==FN_Avg ){
|
|
assert( pParse->iAggCount>=0 && pParse->iAggCount<pParse->nAgg );
|
|
sqliteVdbeAddOp(v, OP_AggGet, 0, pParse->iAggCount, 0, 0);
|
|
sqliteVdbeAddOp(v, OP_Divide, 0, 0, 0, 0);
|
|
}
|
|
break;
|
|
}
|
|
case TK_FUNCTION: {
|
|
int id = pExpr->iColumn;
|
|
int op;
|
|
int i;
|
|
ExprList *pList = pExpr->pList;
|
|
switch( id ){
|
|
case FN_Fcnt: {
|
|
sqliteVdbeAddOp(v, OP_Fcnt, 0, 0, 0, 0);
|
|
break;
|
|
}
|
|
case FN_Min:
|
|
case FN_Max: {
|
|
op = id==FN_Min ? OP_Min : OP_Max;
|
|
for(i=0; i<pList->nExpr; i++){
|
|
sqliteExprCode(pParse, pList->a[i].pExpr);
|
|
if( i>0 ){
|
|
sqliteVdbeAddOp(v, op, 0, 0, 0, 0);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case FN_Length: {
|
|
sqliteExprCode(pParse, pList->a[0].pExpr);
|
|
sqliteVdbeAddOp(v, OP_Strlen, 0, 0, 0, 0);
|
|
break;
|
|
}
|
|
case FN_Substr: {
|
|
for(i=0; i<pList->nExpr; i++){
|
|
sqliteExprCode(pParse, pList->a[i].pExpr);
|
|
}
|
|
sqliteVdbeAddOp(v, OP_Substr, 0, 0, 0, 0);
|
|
break;
|
|
}
|
|
default: {
|
|
/* Can't happen! */
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case TK_SELECT: {
|
|
sqliteVdbeAddOp(v, OP_MemLoad, pExpr->iColumn, 0, 0, 0);
|
|
break;
|
|
}
|
|
case TK_IN: {
|
|
int addr;
|
|
sqliteVdbeAddOp(v, OP_Integer, 1, 0, 0, 0);
|
|
sqliteExprCode(pParse, pExpr->pLeft);
|
|
addr = sqliteVdbeCurrentAddr(v);
|
|
if( pExpr->pSelect ){
|
|
sqliteVdbeAddOp(v, OP_Found, pExpr->iTable, addr+2, 0, 0);
|
|
}else{
|
|
sqliteVdbeAddOp(v, OP_SetFound, pExpr->iTable, addr+2, 0, 0);
|
|
}
|
|
sqliteVdbeAddOp(v, OP_AddImm, -1, 0, 0, 0);
|
|
break;
|
|
}
|
|
case TK_BETWEEN: {
|
|
int lbl = sqliteVdbeMakeLabel(v);
|
|
sqliteVdbeAddOp(v, OP_Integer, 0, 0, 0, 0);
|
|
sqliteExprIfFalse(pParse, pExpr, lbl);
|
|
sqliteVdbeAddOp(v, OP_AddImm, 1, 0, 0, 0);
|
|
sqliteVdbeResolveLabel(v, lbl);
|
|
break;
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
/*
|
|
** Generate code for a boolean expression such that a jump is made
|
|
** to the label "dest" if the expression is true but execution
|
|
** continues straight thru if the expression is false.
|
|
*/
|
|
void sqliteExprIfTrue(Parse *pParse, Expr *pExpr, int dest){
|
|
Vdbe *v = pParse->pVdbe;
|
|
int op = 0;
|
|
if( v==0 || pExpr==0 ) return;
|
|
switch( pExpr->op ){
|
|
case TK_LT: op = OP_Lt; break;
|
|
case TK_LE: op = OP_Le; break;
|
|
case TK_GT: op = OP_Gt; break;
|
|
case TK_GE: op = OP_Ge; break;
|
|
case TK_NE: op = OP_Ne; break;
|
|
case TK_EQ: op = OP_Eq; break;
|
|
case TK_LIKE: op = OP_Like; break;
|
|
case TK_GLOB: op = OP_Glob; break;
|
|
case TK_ISNULL: op = OP_IsNull; break;
|
|
case TK_NOTNULL: op = OP_NotNull; break;
|
|
default: break;
|
|
}
|
|
switch( pExpr->op ){
|
|
case TK_AND: {
|
|
int d2 = sqliteVdbeMakeLabel(v);
|
|
sqliteExprIfFalse(pParse, pExpr->pLeft, d2);
|
|
sqliteExprIfTrue(pParse, pExpr->pRight, dest);
|
|
sqliteVdbeResolveLabel(v, d2);
|
|
break;
|
|
}
|
|
case TK_OR: {
|
|
sqliteExprIfTrue(pParse, pExpr->pLeft, dest);
|
|
sqliteExprIfTrue(pParse, pExpr->pRight, dest);
|
|
break;
|
|
}
|
|
case TK_NOT: {
|
|
sqliteExprIfFalse(pParse, pExpr->pLeft, dest);
|
|
break;
|
|
}
|
|
case TK_LT:
|
|
case TK_LE:
|
|
case TK_GT:
|
|
case TK_GE:
|
|
case TK_NE:
|
|
case TK_EQ:
|
|
case TK_LIKE:
|
|
case TK_GLOB: {
|
|
sqliteExprCode(pParse, pExpr->pLeft);
|
|
sqliteExprCode(pParse, pExpr->pRight);
|
|
sqliteVdbeAddOp(v, op, 0, dest, 0, 0);
|
|
break;
|
|
}
|
|
case TK_ISNULL:
|
|
case TK_NOTNULL: {
|
|
sqliteExprCode(pParse, pExpr->pLeft);
|
|
sqliteVdbeAddOp(v, op, 0, dest, 0, 0);
|
|
break;
|
|
}
|
|
case TK_IN: {
|
|
sqliteExprCode(pParse, pExpr->pLeft);
|
|
if( pExpr->pSelect ){
|
|
sqliteVdbeAddOp(v, OP_Found, pExpr->iTable, dest, 0, 0);
|
|
}else{
|
|
sqliteVdbeAddOp(v, OP_SetFound, pExpr->iTable, dest, 0, 0);
|
|
}
|
|
break;
|
|
}
|
|
case TK_BETWEEN: {
|
|
int lbl = sqliteVdbeMakeLabel(v);
|
|
sqliteExprCode(pParse, pExpr->pLeft);
|
|
sqliteVdbeAddOp(v, OP_Dup, 0, 0, 0, 0);
|
|
sqliteExprCode(pParse, pExpr->pList->a[0].pExpr);
|
|
sqliteVdbeAddOp(v, OP_Lt, 0, lbl, 0, 0);
|
|
sqliteExprCode(pParse, pExpr->pList->a[1].pExpr);
|
|
sqliteVdbeAddOp(v, OP_Le, 0, dest, 0, 0);
|
|
sqliteVdbeAddOp(v, OP_Integer, 0, 0, 0, 0);
|
|
sqliteVdbeAddOp(v, OP_Pop, 1, 0, 0, lbl);
|
|
break;
|
|
}
|
|
default: {
|
|
sqliteExprCode(pParse, pExpr);
|
|
sqliteVdbeAddOp(v, OP_If, 0, dest, 0, 0);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Generate code for a boolean expression such that a jump is made
|
|
** to the label "dest" if the expression is false but execution
|
|
** continues straight thru if the expression is true.
|
|
*/
|
|
void sqliteExprIfFalse(Parse *pParse, Expr *pExpr, int dest){
|
|
Vdbe *v = pParse->pVdbe;
|
|
int op = 0;
|
|
if( v==0 || pExpr==0 ) return;
|
|
switch( pExpr->op ){
|
|
case TK_LT: op = OP_Ge; break;
|
|
case TK_LE: op = OP_Gt; break;
|
|
case TK_GT: op = OP_Le; break;
|
|
case TK_GE: op = OP_Lt; break;
|
|
case TK_NE: op = OP_Eq; break;
|
|
case TK_EQ: op = OP_Ne; break;
|
|
case TK_LIKE: op = OP_Like; break;
|
|
case TK_GLOB: op = OP_Glob; break;
|
|
case TK_ISNULL: op = OP_NotNull; break;
|
|
case TK_NOTNULL: op = OP_IsNull; break;
|
|
default: break;
|
|
}
|
|
switch( pExpr->op ){
|
|
case TK_AND: {
|
|
sqliteExprIfFalse(pParse, pExpr->pLeft, dest);
|
|
sqliteExprIfFalse(pParse, pExpr->pRight, dest);
|
|
break;
|
|
}
|
|
case TK_OR: {
|
|
int d2 = sqliteVdbeMakeLabel(v);
|
|
sqliteExprIfTrue(pParse, pExpr->pLeft, d2);
|
|
sqliteExprIfFalse(pParse, pExpr->pRight, dest);
|
|
sqliteVdbeResolveLabel(v, d2);
|
|
break;
|
|
}
|
|
case TK_NOT: {
|
|
sqliteExprIfTrue(pParse, pExpr->pLeft, dest);
|
|
break;
|
|
}
|
|
case TK_LT:
|
|
case TK_LE:
|
|
case TK_GT:
|
|
case TK_GE:
|
|
case TK_NE:
|
|
case TK_EQ: {
|
|
sqliteExprCode(pParse, pExpr->pLeft);
|
|
sqliteExprCode(pParse, pExpr->pRight);
|
|
sqliteVdbeAddOp(v, op, 0, dest, 0, 0);
|
|
break;
|
|
}
|
|
case TK_LIKE:
|
|
case TK_GLOB: {
|
|
sqliteExprCode(pParse, pExpr->pLeft);
|
|
sqliteExprCode(pParse, pExpr->pRight);
|
|
sqliteVdbeAddOp(v, op, 1, dest, 0, 0);
|
|
break;
|
|
}
|
|
case TK_ISNULL:
|
|
case TK_NOTNULL: {
|
|
sqliteExprCode(pParse, pExpr->pLeft);
|
|
sqliteVdbeAddOp(v, op, 0, dest, 0, 0);
|
|
break;
|
|
}
|
|
case TK_IN: {
|
|
sqliteExprCode(pParse, pExpr->pLeft);
|
|
if( pExpr->pSelect ){
|
|
sqliteVdbeAddOp(v, OP_NotFound, pExpr->iTable, dest, 0, 0);
|
|
}else{
|
|
sqliteVdbeAddOp(v, OP_SetNotFound, pExpr->iTable, dest, 0, 0);
|
|
}
|
|
break;
|
|
}
|
|
case TK_BETWEEN: {
|
|
int addr;
|
|
sqliteExprCode(pParse, pExpr->pLeft);
|
|
sqliteVdbeAddOp(v, OP_Dup, 0, 0, 0, 0);
|
|
sqliteExprCode(pParse, pExpr->pList->a[0].pExpr);
|
|
addr = sqliteVdbeCurrentAddr(v);
|
|
sqliteVdbeAddOp(v, OP_Ge, 0, addr+3, 0, 0);
|
|
sqliteVdbeAddOp(v, OP_Pop, 1, 0, 0, 0);
|
|
sqliteVdbeAddOp(v, OP_Goto, 0, dest, 0, 0);
|
|
sqliteExprCode(pParse, pExpr->pList->a[1].pExpr);
|
|
sqliteVdbeAddOp(v, OP_Gt, 0, dest, 0, 0);
|
|
break;
|
|
}
|
|
default: {
|
|
sqliteExprCode(pParse, pExpr);
|
|
sqliteVdbeAddOp(v, OP_Not, 0, 0, 0, 0);
|
|
sqliteVdbeAddOp(v, OP_If, 0, dest, 0, 0);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Do a deep comparison of two expression trees. Return TRUE (non-zero)
|
|
** if they are identical and return FALSE if they differ in any way.
|
|
*/
|
|
int sqliteExprCompare(Expr *pA, Expr *pB){
|
|
int i;
|
|
if( pA==0 ){
|
|
return pB==0;
|
|
}else if( pB==0 ){
|
|
return 0;
|
|
}
|
|
if( pA->op!=pB->op ) return 0;
|
|
if( !sqliteExprCompare(pA->pLeft, pB->pLeft) ) return 0;
|
|
if( !sqliteExprCompare(pA->pRight, pB->pRight) ) return 0;
|
|
if( pA->pList ){
|
|
if( pB->pList==0 ) return 0;
|
|
if( pA->pList->nExpr!=pB->pList->nExpr ) return 0;
|
|
for(i=0; i<pA->pList->nExpr; i++){
|
|
if( !sqliteExprCompare(pA->pList->a[i].pExpr, pB->pList->a[i].pExpr) ){
|
|
return 0;
|
|
}
|
|
}
|
|
}else if( pB->pList ){
|
|
return 0;
|
|
}
|
|
if( pA->pSelect || pB->pSelect ) return 0;
|
|
if( pA->token.z ){
|
|
if( pB->token.z==0 ) return 0;
|
|
if( pB->token.n!=pA->token.n ) return 0;
|
|
if( sqliteStrNICmp(pA->token.z, pB->token.z, pA->token.n)!=0 ) return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
** Add a new element to the pParse->aAgg[] array and return its index.
|
|
*/
|
|
static int appendAggInfo(Parse *pParse){
|
|
if( (pParse->nAgg & 0x7)==0 ){
|
|
int amt = pParse->nAgg + 8;
|
|
pParse->aAgg = sqliteRealloc(pParse->aAgg, amt*sizeof(pParse->aAgg[0]));
|
|
if( pParse->aAgg==0 ){
|
|
pParse->nAgg = 0;
|
|
return -1;
|
|
}
|
|
}
|
|
memset(&pParse->aAgg[pParse->nAgg], 0, sizeof(pParse->aAgg[0]));
|
|
return pParse->nAgg++;
|
|
}
|
|
|
|
/*
|
|
** Analyze the given expression looking for aggregate functions and
|
|
** for variables that need to be added to the pParse->aAgg[] array.
|
|
** Make additional entries to the pParse->aAgg[] array as necessary.
|
|
**
|
|
** This routine should only be called after the expression has been
|
|
** analyzed by sqliteExprResolveIds() and sqliteExprCheck().
|
|
**
|
|
** If errors are seen, leave an error message in zErrMsg and return
|
|
** the number of errors.
|
|
*/
|
|
int sqliteExprAnalyzeAggregates(Parse *pParse, Expr *pExpr){
|
|
int i;
|
|
AggExpr *aAgg;
|
|
int nErr = 0;
|
|
|
|
if( pExpr==0 ) return 0;
|
|
switch( pExpr->op ){
|
|
case TK_COLUMN: {
|
|
aAgg = pParse->aAgg;
|
|
for(i=0; i<pParse->nAgg; i++){
|
|
if( aAgg[i].isAgg ) continue;
|
|
if( aAgg[i].pExpr->iTable==pExpr->iTable
|
|
&& aAgg[i].pExpr->iColumn==pExpr->iColumn ){
|
|
break;
|
|
}
|
|
}
|
|
if( i>=pParse->nAgg ){
|
|
i = appendAggInfo(pParse);
|
|
if( i<0 ) return 1;
|
|
pParse->aAgg[i].isAgg = 0;
|
|
pParse->aAgg[i].pExpr = pExpr;
|
|
}
|
|
pExpr->iAgg = i;
|
|
break;
|
|
}
|
|
case TK_AGG_FUNCTION: {
|
|
if( pExpr->iColumn==FN_Count || pExpr->iColumn==FN_Avg ){
|
|
if( pParse->iAggCount>=0 ){
|
|
i = pParse->iAggCount;
|
|
}else{
|
|
i = appendAggInfo(pParse);
|
|
if( i<0 ) return 1;
|
|
pParse->aAgg[i].isAgg = 1;
|
|
pParse->aAgg[i].pExpr = 0;
|
|
pParse->iAggCount = i;
|
|
}
|
|
if( pExpr->iColumn==FN_Count ){
|
|
pExpr->iAgg = i;
|
|
break;
|
|
}
|
|
}
|
|
aAgg = pParse->aAgg;
|
|
for(i=0; i<pParse->nAgg; i++){
|
|
if( !aAgg[i].isAgg ) continue;
|
|
if( sqliteExprCompare(aAgg[i].pExpr, pExpr) ){
|
|
break;
|
|
}
|
|
}
|
|
if( i>=pParse->nAgg ){
|
|
i = appendAggInfo(pParse);
|
|
if( i<0 ) return 1;
|
|
pParse->aAgg[i].isAgg = 1;
|
|
pParse->aAgg[i].pExpr = pExpr;
|
|
}
|
|
pExpr->iAgg = i;
|
|
break;
|
|
}
|
|
default: {
|
|
if( pExpr->pLeft ){
|
|
nErr = sqliteExprAnalyzeAggregates(pParse, pExpr->pLeft);
|
|
}
|
|
if( nErr==0 && pExpr->pRight ){
|
|
nErr = sqliteExprAnalyzeAggregates(pParse, pExpr->pRight);
|
|
}
|
|
if( nErr==0 && pExpr->pList ){
|
|
int n = pExpr->pList->nExpr;
|
|
int i;
|
|
for(i=0; nErr==0 && i<n; i++){
|
|
nErr = sqliteExprAnalyzeAggregates(pParse, pExpr->pList->a[i].pExpr);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
return nErr;
|
|
}
|