mirror of
https://github.com/sqlite/sqlite.git
synced 2025-11-02 05:54:29 +03:00
TEXT datatypes. Still need to turn on the new code and test it. (CVS 659) FossilOrigin-Name: b4737a16c997a6c139d616211fb6bc4b0fae181c
1147 lines
32 KiB
C
1147 lines
32 KiB
C
/*
|
|
** 2001 September 15
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** Utility functions used throughout sqlite.
|
|
**
|
|
** This file contains functions for allocating memory, comparing
|
|
** strings, and stuff like that.
|
|
**
|
|
** $Id: util.c,v 1.47 2002/07/05 21:42:37 drh Exp $
|
|
*/
|
|
#include "sqliteInt.h"
|
|
#include <stdarg.h>
|
|
#include <ctype.h>
|
|
|
|
/*
|
|
** If malloc() ever fails, this global variable gets set to 1.
|
|
** This causes the library to abort and never again function.
|
|
*/
|
|
int sqlite_malloc_failed = 0;
|
|
|
|
/*
|
|
** If MEMORY_DEBUG is defined, then use versions of malloc() and
|
|
** free() that track memory usage and check for buffer overruns.
|
|
*/
|
|
#ifdef MEMORY_DEBUG
|
|
|
|
/*
|
|
** For keeping track of the number of mallocs and frees. This
|
|
** is used to check for memory leaks.
|
|
*/
|
|
int sqlite_nMalloc; /* Number of sqliteMalloc() calls */
|
|
int sqlite_nFree; /* Number of sqliteFree() calls */
|
|
int sqlite_iMallocFail; /* Fail sqliteMalloc() after this many calls */
|
|
|
|
|
|
/*
|
|
** Allocate new memory and set it to zero. Return NULL if
|
|
** no memory is available.
|
|
*/
|
|
void *sqliteMalloc_(int n, char *zFile, int line){
|
|
void *p;
|
|
int *pi;
|
|
int k;
|
|
if( sqlite_iMallocFail>=0 ){
|
|
sqlite_iMallocFail--;
|
|
if( sqlite_iMallocFail==0 ){
|
|
sqlite_malloc_failed++;
|
|
#if MEMORY_DEBUG>1
|
|
fprintf(stderr,"**** failed to allocate %d bytes at %s:%d\n",
|
|
n, zFile,line);
|
|
#endif
|
|
sqlite_iMallocFail--;
|
|
return 0;
|
|
}
|
|
}
|
|
if( n==0 ) return 0;
|
|
k = (n+sizeof(int)-1)/sizeof(int);
|
|
pi = malloc( (3+k)*sizeof(int));
|
|
if( pi==0 ){
|
|
sqlite_malloc_failed++;
|
|
return 0;
|
|
}
|
|
sqlite_nMalloc++;
|
|
pi[0] = 0xdead1122;
|
|
pi[1] = n;
|
|
pi[k+2] = 0xdead3344;
|
|
p = &pi[2];
|
|
memset(p, 0, n);
|
|
#if MEMORY_DEBUG>1
|
|
fprintf(stderr,"malloc %d bytes at 0x%x from %s:%d\n", n, (int)p, zFile,line);
|
|
#endif
|
|
return p;
|
|
}
|
|
|
|
/*
|
|
** Free memory previously obtained from sqliteMalloc()
|
|
*/
|
|
void sqliteFree_(void *p, char *zFile, int line){
|
|
if( p ){
|
|
int *pi, k, n;
|
|
pi = p;
|
|
pi -= 2;
|
|
sqlite_nFree++;
|
|
if( pi[0]!=0xdead1122 ){
|
|
fprintf(stderr,"Low-end memory corruption at 0x%x\n", (int)p);
|
|
return;
|
|
}
|
|
n = pi[1];
|
|
k = (n+sizeof(int)-1)/sizeof(int);
|
|
if( pi[k+2]!=0xdead3344 ){
|
|
fprintf(stderr,"High-end memory corruption at 0x%x\n", (int)p);
|
|
return;
|
|
}
|
|
memset(pi, 0xff, (k+3)*sizeof(int));
|
|
#if MEMORY_DEBUG>1
|
|
fprintf(stderr,"free %d bytes at 0x%x from %s:%d\n", n, (int)p, zFile,line);
|
|
#endif
|
|
free(pi);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Resize a prior allocation. If p==0, then this routine
|
|
** works just like sqliteMalloc(). If n==0, then this routine
|
|
** works just like sqliteFree().
|
|
*/
|
|
void *sqliteRealloc_(void *oldP, int n, char *zFile, int line){
|
|
int *oldPi, *pi, k, oldN, oldK;
|
|
void *p;
|
|
if( oldP==0 ){
|
|
return sqliteMalloc_(n,zFile,line);
|
|
}
|
|
if( n==0 ){
|
|
sqliteFree_(oldP,zFile,line);
|
|
return 0;
|
|
}
|
|
oldPi = oldP;
|
|
oldPi -= 2;
|
|
if( oldPi[0]!=0xdead1122 ){
|
|
fprintf(stderr,"Low-end memory corruption in realloc at 0x%x\n", (int)p);
|
|
return 0;
|
|
}
|
|
oldN = oldPi[1];
|
|
oldK = (oldN+sizeof(int)-1)/sizeof(int);
|
|
if( oldPi[oldK+2]!=0xdead3344 ){
|
|
fprintf(stderr,"High-end memory corruption in realloc at 0x%x\n", (int)p);
|
|
return 0;
|
|
}
|
|
k = (n + sizeof(int) - 1)/sizeof(int);
|
|
pi = malloc( (k+3)*sizeof(int) );
|
|
if( pi==0 ){
|
|
sqlite_malloc_failed++;
|
|
return 0;
|
|
}
|
|
pi[0] = 0xdead1122;
|
|
pi[1] = n;
|
|
pi[k+2] = 0xdead3344;
|
|
p = &pi[2];
|
|
memcpy(p, oldP, n>oldN ? oldN : n);
|
|
if( n>oldN ){
|
|
memset(&((char*)p)[oldN], 0, n-oldN);
|
|
}
|
|
memset(oldPi, 0, (oldK+3)*sizeof(int));
|
|
free(oldPi);
|
|
#if MEMORY_DEBUG>1
|
|
fprintf(stderr,"realloc %d to %d bytes at 0x%x to 0x%x at %s:%d\n", oldN, n,
|
|
(int)oldP, (int)p, zFile, line);
|
|
#endif
|
|
return p;
|
|
}
|
|
|
|
/*
|
|
** Make a duplicate of a string into memory obtained from malloc()
|
|
** Free the original string using sqliteFree().
|
|
**
|
|
** This routine is called on all strings that are passed outside of
|
|
** the SQLite library. That way clients can free the string using free()
|
|
** rather than having to call sqliteFree().
|
|
*/
|
|
void sqliteStrRealloc(char **pz){
|
|
char *zNew;
|
|
if( pz==0 || *pz==0 ) return;
|
|
zNew = malloc( strlen(*pz) + 1 );
|
|
if( zNew==0 ){
|
|
sqlite_malloc_failed++;
|
|
sqliteFree(*pz);
|
|
*pz = 0;
|
|
}
|
|
strcpy(zNew, *pz);
|
|
sqliteFree(*pz);
|
|
*pz = zNew;
|
|
}
|
|
|
|
/*
|
|
** Make a copy of a string in memory obtained from sqliteMalloc()
|
|
*/
|
|
char *sqliteStrDup_(const char *z, char *zFile, int line){
|
|
char *zNew;
|
|
if( z==0 ) return 0;
|
|
zNew = sqliteMalloc_(strlen(z)+1, zFile, line);
|
|
if( zNew ) strcpy(zNew, z);
|
|
return zNew;
|
|
}
|
|
char *sqliteStrNDup_(const char *z, int n, char *zFile, int line){
|
|
char *zNew;
|
|
if( z==0 ) return 0;
|
|
zNew = sqliteMalloc_(n+1, zFile, line);
|
|
if( zNew ){
|
|
memcpy(zNew, z, n);
|
|
zNew[n] = 0;
|
|
}
|
|
return zNew;
|
|
}
|
|
#endif /* MEMORY_DEBUG */
|
|
|
|
/*
|
|
** The following versions of malloc() and free() are for use in a
|
|
** normal build.
|
|
*/
|
|
#if !defined(MEMORY_DEBUG)
|
|
|
|
/*
|
|
** Allocate new memory and set it to zero. Return NULL if
|
|
** no memory is available.
|
|
*/
|
|
void *sqliteMalloc(int n){
|
|
void *p = malloc(n);
|
|
if( p==0 ){
|
|
sqlite_malloc_failed++;
|
|
return 0;
|
|
}
|
|
memset(p, 0, n);
|
|
return p;
|
|
}
|
|
|
|
/*
|
|
** Free memory previously obtained from sqliteMalloc()
|
|
*/
|
|
void sqliteFree(void *p){
|
|
if( p ){
|
|
free(p);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Resize a prior allocation. If p==0, then this routine
|
|
** works just like sqliteMalloc(). If n==0, then this routine
|
|
** works just like sqliteFree().
|
|
*/
|
|
void *sqliteRealloc(void *p, int n){
|
|
void *p2;
|
|
if( p==0 ){
|
|
return sqliteMalloc(n);
|
|
}
|
|
if( n==0 ){
|
|
sqliteFree(p);
|
|
return 0;
|
|
}
|
|
p2 = realloc(p, n);
|
|
if( p2==0 ){
|
|
sqlite_malloc_failed++;
|
|
}
|
|
return p2;
|
|
}
|
|
|
|
/*
|
|
** Make a copy of a string in memory obtained from sqliteMalloc()
|
|
*/
|
|
char *sqliteStrDup(const char *z){
|
|
char *zNew;
|
|
if( z==0 ) return 0;
|
|
zNew = sqliteMalloc(strlen(z)+1);
|
|
if( zNew ) strcpy(zNew, z);
|
|
return zNew;
|
|
}
|
|
char *sqliteStrNDup(const char *z, int n){
|
|
char *zNew;
|
|
if( z==0 ) return 0;
|
|
zNew = sqliteMalloc(n+1);
|
|
if( zNew ){
|
|
memcpy(zNew, z, n);
|
|
zNew[n] = 0;
|
|
}
|
|
return zNew;
|
|
}
|
|
#endif /* !defined(MEMORY_DEBUG) */
|
|
|
|
/*
|
|
** Create a string from the 2nd and subsequent arguments (up to the
|
|
** first NULL argument), store the string in memory obtained from
|
|
** sqliteMalloc() and make the pointer indicated by the 1st argument
|
|
** point to that string.
|
|
*/
|
|
void sqliteSetString(char **pz, const char *zFirst, ...){
|
|
va_list ap;
|
|
int nByte;
|
|
const char *z;
|
|
char *zResult;
|
|
|
|
if( pz==0 ) return;
|
|
nByte = strlen(zFirst) + 1;
|
|
va_start(ap, zFirst);
|
|
while( (z = va_arg(ap, const char*))!=0 ){
|
|
nByte += strlen(z);
|
|
}
|
|
va_end(ap);
|
|
sqliteFree(*pz);
|
|
*pz = zResult = sqliteMalloc( nByte );
|
|
if( zResult==0 ){
|
|
return;
|
|
}
|
|
strcpy(zResult, zFirst);
|
|
zResult += strlen(zResult);
|
|
va_start(ap, zFirst);
|
|
while( (z = va_arg(ap, const char*))!=0 ){
|
|
strcpy(zResult, z);
|
|
zResult += strlen(zResult);
|
|
}
|
|
va_end(ap);
|
|
#ifdef MEMORY_DEBUG
|
|
#if MEMORY_DEBUG>1
|
|
fprintf(stderr,"string at 0x%x is %s\n", (int)*pz, *pz);
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
** Works like sqliteSetString, but each string is now followed by
|
|
** a length integer which specifies how much of the source string
|
|
** to copy (in bytes). -1 means use the whole string.
|
|
*/
|
|
void sqliteSetNString(char **pz, ...){
|
|
va_list ap;
|
|
int nByte;
|
|
const char *z;
|
|
char *zResult;
|
|
int n;
|
|
|
|
if( pz==0 ) return;
|
|
nByte = 0;
|
|
va_start(ap, pz);
|
|
while( (z = va_arg(ap, const char*))!=0 ){
|
|
n = va_arg(ap, int);
|
|
if( n<=0 ) n = strlen(z);
|
|
nByte += n;
|
|
}
|
|
va_end(ap);
|
|
sqliteFree(*pz);
|
|
*pz = zResult = sqliteMalloc( nByte + 1 );
|
|
if( zResult==0 ) return;
|
|
va_start(ap, pz);
|
|
while( (z = va_arg(ap, const char*))!=0 ){
|
|
n = va_arg(ap, int);
|
|
if( n<=0 ) n = strlen(z);
|
|
strncpy(zResult, z, n);
|
|
zResult += n;
|
|
}
|
|
*zResult = 0;
|
|
#ifdef MEMORY_DEBUG
|
|
#if MEMORY_DEBUG>1
|
|
fprintf(stderr,"string at 0x%x is %s\n", (int)*pz, *pz);
|
|
#endif
|
|
#endif
|
|
va_end(ap);
|
|
}
|
|
|
|
/*
|
|
** Convert an SQL-style quoted string into a normal string by removing
|
|
** the quote characters. The conversion is done in-place. If the
|
|
** input does not begin with a quote character, then this routine
|
|
** is a no-op.
|
|
**
|
|
** 2002-Feb-14: This routine is extended to remove MS-Access style
|
|
** brackets from around identifers. For example: "[a-b-c]" becomes
|
|
** "a-b-c".
|
|
*/
|
|
void sqliteDequote(char *z){
|
|
int quote;
|
|
int i, j;
|
|
if( z==0 ) return;
|
|
quote = z[0];
|
|
switch( quote ){
|
|
case '\'': break;
|
|
case '"': break;
|
|
case '[': quote = ']'; break;
|
|
default: return;
|
|
}
|
|
for(i=1, j=0; z[i]; i++){
|
|
if( z[i]==quote ){
|
|
if( z[i+1]==quote ){
|
|
z[j++] = quote;
|
|
i++;
|
|
}else{
|
|
z[j++] = 0;
|
|
break;
|
|
}
|
|
}else{
|
|
z[j++] = z[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
/* An array to map all upper-case characters into their corresponding
|
|
** lower-case character.
|
|
*/
|
|
static unsigned char UpperToLower[] = {
|
|
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
|
|
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
|
|
36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
|
|
54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 97, 98, 99,100,101,102,103,
|
|
104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,
|
|
122, 91, 92, 93, 94, 95, 96, 97, 98, 99,100,101,102,103,104,105,106,107,
|
|
108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,
|
|
126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,
|
|
144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,
|
|
162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,
|
|
180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,
|
|
198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,
|
|
216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,
|
|
234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,
|
|
252,253,254,255
|
|
};
|
|
|
|
/*
|
|
** This function computes a hash on the name of a keyword.
|
|
** Case is not significant.
|
|
*/
|
|
int sqliteHashNoCase(const char *z, int n){
|
|
int h = 0;
|
|
if( n<=0 ) n = strlen(z);
|
|
while( n > 0 ){
|
|
h = (h<<3) ^ h ^ UpperToLower[(unsigned char)*z++];
|
|
n--;
|
|
}
|
|
if( h<0 ) h = -h;
|
|
return h;
|
|
}
|
|
|
|
/*
|
|
** Some systems have stricmp(). Others have strcasecmp(). Because
|
|
** there is no consistency, we will define our own.
|
|
*/
|
|
int sqliteStrICmp(const char *zLeft, const char *zRight){
|
|
register unsigned char *a, *b;
|
|
a = (unsigned char *)zLeft;
|
|
b = (unsigned char *)zRight;
|
|
while( *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
|
|
return *a - *b;
|
|
}
|
|
int sqliteStrNICmp(const char *zLeft, const char *zRight, int N){
|
|
register unsigned char *a, *b;
|
|
a = (unsigned char *)zLeft;
|
|
b = (unsigned char *)zRight;
|
|
while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
|
|
return N<0 ? 0 : *a - *b;
|
|
}
|
|
|
|
/*
|
|
** The sortStrCmp() function below is used to order elements according
|
|
** to the ORDER BY clause of a SELECT. The sort order is a little different
|
|
** from what one might expect. This note attempts to describe what is
|
|
** going on.
|
|
**
|
|
** We want the main string comparision function used for sorting to
|
|
** sort both numbers and alphanumeric words into the correct sequence.
|
|
** The same routine should do both without prior knowledge of which
|
|
** type of text the input represents. It should even work for strings
|
|
** which are a mixture of text and numbers. (It does not work for
|
|
** numeric substrings in exponential notation, however.)
|
|
**
|
|
** To accomplish this, we keep track of a state number while scanning
|
|
** the two strings. The states are as follows:
|
|
**
|
|
** 1 Beginning of word
|
|
** 2 Arbitrary text
|
|
** 3 Integer
|
|
** 4 Negative integer
|
|
** 5 Real number
|
|
** 6 Negative real
|
|
**
|
|
** The scan begins in state 1, beginning of word. Transitions to other
|
|
** states are determined by characters seen, as shown in the following
|
|
** chart:
|
|
**
|
|
** Current State Character Seen New State
|
|
** -------------------- -------------- -------------------
|
|
** 0 Beginning of word "-" 3 Negative integer
|
|
** digit 2 Integer
|
|
** space 0 Beginning of word
|
|
** otherwise 1 Arbitrary text
|
|
**
|
|
** 1 Arbitrary text space 0 Beginning of word
|
|
** digit 2 Integer
|
|
** otherwise 1 Arbitrary text
|
|
**
|
|
** 2 Integer space 0 Beginning of word
|
|
** "." 4 Real number
|
|
** digit 2 Integer
|
|
** otherwise 1 Arbitrary text
|
|
**
|
|
** 3 Negative integer space 0 Beginning of word
|
|
** "." 5 Negative Real num
|
|
** digit 3 Negative integer
|
|
** otherwise 1 Arbitrary text
|
|
**
|
|
** 4 Real number space 0 Beginning of word
|
|
** digit 4 Real number
|
|
** otherwise 1 Arbitrary text
|
|
**
|
|
** 5 Negative real num space 0 Beginning of word
|
|
** digit 5 Negative real num
|
|
** otherwise 1 Arbitrary text
|
|
**
|
|
** To implement this state machine, we first classify each character
|
|
** into on of the following categories:
|
|
**
|
|
** 0 Text
|
|
** 1 Space
|
|
** 2 Digit
|
|
** 3 "-"
|
|
** 4 "."
|
|
**
|
|
** Given an arbitrary character, the array charClass[] maps that character
|
|
** into one of the atove categories.
|
|
*/
|
|
static const unsigned char charClass[] = {
|
|
/* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */
|
|
/* 0x */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0,
|
|
/* 1x */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
/* 2x */ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 4, 0,
|
|
/* 3x */ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0,
|
|
/* 4x */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
/* 5x */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
/* 6x */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
/* 7x */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
/* 8x */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
/* 9x */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
/* Ax */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
/* Bx */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
/* Cx */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
/* Dx */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
/* Ex */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
/* Fx */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
};
|
|
#define N_CHAR_CLASS 5
|
|
|
|
/*
|
|
** Given the current state number (0 thru 5), this array figures
|
|
** the new state number given the character class.
|
|
*/
|
|
static const unsigned char stateMachine[] = {
|
|
/* Text, Space, Digit, "-", "." */
|
|
1, 0, 2, 3, 1, /* State 0: Beginning of word */
|
|
1, 0, 2, 1, 1, /* State 1: Arbitrary text */
|
|
1, 0, 2, 1, 4, /* State 2: Integer */
|
|
1, 0, 3, 1, 5, /* State 3: Negative integer */
|
|
1, 0, 4, 1, 1, /* State 4: Real number */
|
|
1, 0, 5, 1, 1, /* State 5: Negative real num */
|
|
};
|
|
|
|
/* This routine does a comparison of two strings. Case is used only
|
|
** if useCase!=0. Numeric substrings compare in numerical order for the
|
|
** most part but this routine does not understand exponential notation.
|
|
*/
|
|
static int sortStrCmp(const char *atext, const char *btext, int useCase){
|
|
register unsigned char *a, *b, *map, ca, cb;
|
|
int result;
|
|
register int cclass = 0;
|
|
|
|
a = (unsigned char *)atext;
|
|
b = (unsigned char *)btext;
|
|
if( useCase ){
|
|
do{
|
|
if( (ca= *a++)!=(cb= *b++) ) break;
|
|
cclass = stateMachine[cclass*N_CHAR_CLASS + charClass[ca]];
|
|
}while( ca!=0 );
|
|
}else{
|
|
map = UpperToLower;
|
|
do{
|
|
if( (ca=map[*a++])!=(cb=map[*b++]) ) break;
|
|
cclass = stateMachine[cclass*N_CHAR_CLASS + charClass[ca]];
|
|
}while( ca!=0 );
|
|
if( ca>='[' && ca<='`' ) cb = b[-1];
|
|
if( cb>='[' && cb<='`' ) ca = a[-1];
|
|
}
|
|
switch( cclass ){
|
|
case 0:
|
|
case 1: {
|
|
if( isdigit(ca) && isdigit(cb) ){
|
|
cclass = 2;
|
|
}
|
|
break;
|
|
}
|
|
default: {
|
|
break;
|
|
}
|
|
}
|
|
switch( cclass ){
|
|
case 2:
|
|
case 3: {
|
|
if( isdigit(ca) ){
|
|
if( isdigit(cb) ){
|
|
int acnt, bcnt;
|
|
acnt = bcnt = 0;
|
|
while( isdigit(*a++) ) acnt++;
|
|
while( isdigit(*b++) ) bcnt++;
|
|
result = acnt - bcnt;
|
|
if( result==0 ) result = ca-cb;
|
|
}else{
|
|
result = 1;
|
|
}
|
|
}else if( isdigit(cb) ){
|
|
result = -1;
|
|
}else if( ca=='.' ){
|
|
result = 1;
|
|
}else if( cb=='.' ){
|
|
result = -1;
|
|
}else{
|
|
result = ca - cb;
|
|
cclass = 2;
|
|
}
|
|
if( cclass==3 ) result = -result;
|
|
break;
|
|
}
|
|
case 0:
|
|
case 1:
|
|
case 4: {
|
|
result = ca - cb;
|
|
break;
|
|
}
|
|
case 5: {
|
|
result = cb - ca;
|
|
};
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
** Return TRUE if z is a pure numeric string. Return FALSE if the
|
|
** string contains any character which is not part of a number.
|
|
**
|
|
** Am empty string is considered numeric.
|
|
*/
|
|
static int sqliteIsNumber(const char *z){
|
|
if( *z=='-' || *z=='+' ) z++;
|
|
if( !isdigit(*z) ){
|
|
return *z==0;
|
|
}
|
|
z++;
|
|
while( isdigit(*z) ){ z++; }
|
|
if( *z=='.' ){
|
|
z++;
|
|
if( !isdigit(*z) ) return 0;
|
|
while( isdigit(*z) ){ z++; }
|
|
if( *z=='e' || *z=='E' ){
|
|
z++;
|
|
if( *z=='+' || *z=='-' ) z++;
|
|
if( !isdigit(*z) ) return 0;
|
|
while( isdigit(*z) ){ z++; }
|
|
}
|
|
}
|
|
return *z==0;
|
|
}
|
|
|
|
/* This comparison routine is what we use for comparison operations
|
|
** in an SQL expression. (Ex: name<'Hello' or value<5).
|
|
**
|
|
** Numerical strings compare in numerical order. Numerical strings
|
|
** are always less than non-numeric strings. Non-numeric strings
|
|
** compare in lexigraphical order (the same order as strcmp()).
|
|
**
|
|
** This is NOT the comparison function used for sorting. The sort
|
|
** order is a little bit different. See sqliteSortCompare below
|
|
** for additional information.
|
|
*/
|
|
int sqliteCompare(const char *atext, const char *btext){
|
|
int result;
|
|
int isNumA, isNumB;
|
|
if( atext==0 ){
|
|
return -1;
|
|
}else if( btext==0 ){
|
|
return 1;
|
|
}
|
|
isNumA = sqliteIsNumber(atext);
|
|
isNumB = sqliteIsNumber(btext);
|
|
if( isNumA ){
|
|
if( !isNumB ){
|
|
result = -1;
|
|
}else{
|
|
double rA, rB;
|
|
rA = atof(atext);
|
|
rB = atof(btext);
|
|
if( rA<rB ){
|
|
result = -1;
|
|
}else if( rA>rB ){
|
|
result = +1;
|
|
}else{
|
|
result = 0;
|
|
}
|
|
}
|
|
}else if( isNumB ){
|
|
result = +1;
|
|
}else {
|
|
result = strcmp(atext, btext);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
** This routine is used for sorting. Each key is a list of one or more
|
|
** null-terminated strings. The list is terminated by two nulls in
|
|
** a row. For example, the following text is key with three strings:
|
|
**
|
|
** +one\000-two\000+three\000\000
|
|
**
|
|
** Both arguments will have the same number of strings. This routine
|
|
** returns negative, zero, or positive if the first argument is less
|
|
** than, equal to, or greater than the first. (Result is a-b).
|
|
**
|
|
** Each string begins with one of the characters "+", "-", "A", "D".
|
|
** This character determines the sort order and collating sequence:
|
|
**
|
|
** + Sort numerically in ascending order
|
|
** - Sort numerically in descending order
|
|
** A Sort as strings in ascending order
|
|
** D Sort as strings in descending order.
|
|
**
|
|
** For the "+" and "-" sorting, pure numeric strings (strings for which the
|
|
** isNum() function above returns TRUE) always compare less than strings
|
|
** that are not pure numerics. Within non-numeric strings, substrings
|
|
** of digits compare in numerical order. Finally, case is used only
|
|
** to break a tie.
|
|
**
|
|
** Note that the sort order imposed by the rules above is different
|
|
** from the ordering defined by the "<", "<=", ">", and ">=" operators
|
|
** of expressions. The operators compare non-numeric strings in
|
|
** lexigraphical order. This routine does the additional processing
|
|
** to sort substrings of digits into numerical order and to use case
|
|
** only as a tie-breaker.
|
|
**
|
|
** The special rules above apply only to numeric sorting, when the
|
|
** prefix is "+" or "-". If the prefix is "A" or "D" then plain old
|
|
** "strcmp()" is used for the comparison.
|
|
*/
|
|
int sqliteSortCompare(const char *a, const char *b){
|
|
int len;
|
|
int res = 0;
|
|
int isNumA, isNumB;
|
|
|
|
while( res==0 && *a && *b ){
|
|
assert( a[0]==b[0] );
|
|
if( a[1]==0 ){
|
|
res = -1;
|
|
break;
|
|
}else if( b[1]==0 ){
|
|
res = +1;
|
|
break;
|
|
}
|
|
if( a[0]=='A' || a[0]=='D' ){
|
|
res = strcmp(&a[1],&b[1]);
|
|
if( res ) break;
|
|
}else{
|
|
isNumA = sqliteIsNumber(&a[1]);
|
|
isNumB = sqliteIsNumber(&b[1]);
|
|
if( isNumA ){
|
|
double rA, rB;
|
|
if( !isNumB ){
|
|
res = -1;
|
|
break;
|
|
}
|
|
rA = atof(&a[1]);
|
|
rB = atof(&b[1]);
|
|
if( rA<rB ){
|
|
res = -1;
|
|
break;
|
|
}
|
|
if( rA>rB ){
|
|
res = +1;
|
|
break;
|
|
}
|
|
}else if( isNumB ){
|
|
res = +1;
|
|
break;
|
|
}else{
|
|
res = sortStrCmp(&a[1],&b[1],0);
|
|
if( res==0 ){
|
|
res = sortStrCmp(&a[1],&b[1],1);
|
|
}
|
|
if( res!=0 ){
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
len = strlen(&a[1]) + 2;
|
|
a += len;
|
|
b += len;
|
|
}
|
|
if( *a=='-' || *a=='D' ) res = -res;
|
|
return res;
|
|
}
|
|
|
|
/*
|
|
** Some powers of 64. These constants are needed in the
|
|
** sqliteRealToSortable() routine below.
|
|
*/
|
|
#define _64e3 (64.0 * 64.0 * 64.0)
|
|
#define _64e4 (64.0 * 64.0 * 64.0 * 64.0)
|
|
#define _64e15 (_64e3 * _64e4 * _64e4 * _64e4)
|
|
#define _64e16 (_64e4 * _64e4 * _64e4 * _64e4)
|
|
#define _64e63 (_64e15 * _64e16 * _64e16 * _64e16)
|
|
#define _64e64 (_64e16 * _64e16 * _64e16 * _64e16)
|
|
|
|
/*
|
|
** The following procedure converts a double-precision floating point
|
|
** number into a string. The resulting string has the property that
|
|
** two such strings comparied using strcmp() or memcmp() will give the
|
|
** same results as a numeric comparison of the original floating point
|
|
** numbers.
|
|
**
|
|
** This routine is used to generate database keys from floating point
|
|
** numbers such that the keys sort in the same order as the original
|
|
** floating point numbers even though the keys are compared using
|
|
** memcmp().
|
|
**
|
|
** The calling function should have allocated at least 14 characters
|
|
** of space for the buffer z[].
|
|
*/
|
|
void sqliteRealToSortable(double r, char *z){
|
|
int neg;
|
|
int exp;
|
|
int cnt = 0;
|
|
|
|
/* This array maps integers between 0 and 63 into base-64 digits.
|
|
** The digits must be chosen such at their ASCII codes are increasing.
|
|
** This means we can not use the traditional base-64 digit set. */
|
|
static const char zDigit[] =
|
|
"0123456789"
|
|
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
|
|
"abcdefghijklmnopqrstuvwxyz"
|
|
"|~";
|
|
if( r<0.0 ){
|
|
neg = 1;
|
|
r = -r;
|
|
*z++ = '-';
|
|
} else {
|
|
neg = 0;
|
|
*z++ = '0';
|
|
}
|
|
exp = 0;
|
|
|
|
if( r==0.0 ){
|
|
exp = -1024;
|
|
}else if( r<(0.5/64.0) ){
|
|
while( r < 0.5/_64e64 && exp > -961 ){ r *= _64e64; exp -= 64; }
|
|
while( r < 0.5/_64e16 && exp > -1009 ){ r *= _64e16; exp -= 16; }
|
|
while( r < 0.5/_64e4 && exp > -1021 ){ r *= _64e4; exp -= 4; }
|
|
while( r < 0.5/64.0 && exp > -1024 ){ r *= 64.0; exp -= 1; }
|
|
}else if( r>=0.5 ){
|
|
while( r >= 0.5*_64e63 && exp < 960 ){ r *= 1.0/_64e64; exp += 64; }
|
|
while( r >= 0.5*_64e15 && exp < 1008 ){ r *= 1.0/_64e16; exp += 16; }
|
|
while( r >= 0.5*_64e3 && exp < 1020 ){ r *= 1.0/_64e4; exp += 4; }
|
|
while( r >= 0.5 && exp < 1023 ){ r *= 1.0/64.0; exp += 1; }
|
|
}
|
|
if( neg ){
|
|
exp = -exp;
|
|
r = -r;
|
|
}
|
|
exp += 1024;
|
|
r += 0.5;
|
|
if( exp<0 ) return;
|
|
if( exp>=2048 || r>=1.0 ){
|
|
strcpy(z, "~~~~~~~~~~~~");
|
|
return;
|
|
}
|
|
*z++ = zDigit[(exp>>6)&0x3f];
|
|
*z++ = zDigit[exp & 0x3f];
|
|
while( r>0.0 && cnt<10 ){
|
|
int digit;
|
|
r *= 64.0;
|
|
digit = (int)r;
|
|
assert( digit>=0 && digit<64 );
|
|
*z++ = zDigit[digit & 0x3f];
|
|
r -= digit;
|
|
cnt++;
|
|
}
|
|
*z = 0;
|
|
}
|
|
|
|
#ifdef SQLITE_UTF8
|
|
/*
|
|
** X is a pointer to the first byte of a UTF-8 character. Increment
|
|
** X so that it points to the next character. This only works right
|
|
** if X points to a well-formed UTF-8 string.
|
|
*/
|
|
#define sqliteNextChar(X) while( (0xc0&*++(X))==0x80 ){}
|
|
#define sqliteCharVal(X) sqlite_utf8_to_int(X)
|
|
|
|
#else /* !defined(SQLITE_UTF8) */
|
|
/*
|
|
** For iso8859 encoding, the next character is just the next byte.
|
|
*/
|
|
#define sqliteNextChar(X) (++(X));
|
|
#define sqliteCharVal(X) ((int)*(X))
|
|
|
|
#endif /* defined(SQLITE_UTF8) */
|
|
|
|
|
|
#ifdef SQLITE_UTF8
|
|
/*
|
|
** Convert the UTF-8 character to which z points into a 31-bit
|
|
** UCS character. This only works right if z points to a well-formed
|
|
** UTF-8 string.
|
|
*/
|
|
static int sqlite_utf8_to_int(const unsigned char *z){
|
|
int c;
|
|
static const int initVal[] = {
|
|
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
|
|
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
|
|
30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44,
|
|
45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
|
|
60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74,
|
|
75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89,
|
|
90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104,
|
|
105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119,
|
|
120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134,
|
|
135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149,
|
|
150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,
|
|
165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179,
|
|
180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 0, 1, 2,
|
|
3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
|
|
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 0,
|
|
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
|
|
0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 0, 1, 254,
|
|
255,
|
|
};
|
|
c = initVal[*(z++)];
|
|
while( (0xc0&*z)==0x80 ){
|
|
c = (c<<6) | (0x3f&*(z++));
|
|
}
|
|
return c;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** Compare two UTF-8 strings for equality where the first string can
|
|
** potentially be a "glob" expression. Return true (1) if they
|
|
** are the same and false (0) if they are different.
|
|
**
|
|
** Globbing rules:
|
|
**
|
|
** '*' Matches any sequence of zero or more characters.
|
|
**
|
|
** '?' Matches exactly one character.
|
|
**
|
|
** [...] Matches one character from the enclosed list of
|
|
** characters.
|
|
**
|
|
** [^...] Matches one character not in the enclosed list.
|
|
**
|
|
** With the [...] and [^...] matching, a ']' character can be included
|
|
** in the list by making it the first character after '[' or '^'. A
|
|
** range of characters can be specified using '-'. Example:
|
|
** "[a-z]" matches any single lower-case letter. To match a '-', make
|
|
** it the last character in the list.
|
|
**
|
|
** This routine is usually quick, but can be N**2 in the worst case.
|
|
**
|
|
** Hints: to match '*' or '?', put them in "[]". Like this:
|
|
**
|
|
** abc[*]xyz Matches "abc*xyz" only
|
|
*/
|
|
int
|
|
sqliteGlobCompare(const unsigned char *zPattern, const unsigned char *zString){
|
|
register int c;
|
|
int invert;
|
|
int seen;
|
|
int c2;
|
|
|
|
while( (c = *zPattern)!=0 ){
|
|
switch( c ){
|
|
case '*':
|
|
while( (c=zPattern[1]) == '*' || c == '?' ){
|
|
if( c=='?' ){
|
|
if( *zString==0 ) return 0;
|
|
sqliteNextChar(zString);
|
|
}
|
|
zPattern++;
|
|
}
|
|
if( c==0 ) return 1;
|
|
c = UpperToLower[c];
|
|
if( c=='[' ){
|
|
while( *zString && sqliteGlobCompare(&zPattern[1],zString)==0 ){
|
|
sqliteNextChar(zString);
|
|
}
|
|
return *zString!=0;
|
|
}else{
|
|
while( (c2 = *zString)!=0 ){
|
|
while( c2 != 0 && c2 != c ){ c2 = *++zString; }
|
|
if( c2==0 ) return 0;
|
|
if( sqliteGlobCompare(&zPattern[1],zString) ) return 1;
|
|
sqliteNextChar(zString);
|
|
}
|
|
return 0;
|
|
}
|
|
case '?': {
|
|
if( *zString==0 ) return 0;
|
|
sqliteNextChar(zString);
|
|
zPattern++;
|
|
break;
|
|
}
|
|
case '[': {
|
|
int prior_c = 0;
|
|
seen = 0;
|
|
invert = 0;
|
|
c = sqliteCharVal(zString);
|
|
if( c==0 ) return 0;
|
|
c2 = *++zPattern;
|
|
if( c2=='^' ){ invert = 1; c2 = *++zPattern; }
|
|
if( c2==']' ){
|
|
if( c==']' ) seen = 1;
|
|
c2 = *++zPattern;
|
|
}
|
|
while( (c2 = sqliteCharVal(zPattern))!=0 && c2!=']' ){
|
|
if( c2=='-' && zPattern[1]!=']' && zPattern[1]!=0 && prior_c>0 ){
|
|
zPattern++;
|
|
c2 = sqliteCharVal(zPattern);
|
|
if( c>=prior_c && c<=c2 ) seen = 1;
|
|
prior_c = 0;
|
|
}else if( c==c2 ){
|
|
seen = 1;
|
|
prior_c = c2;
|
|
}else{
|
|
prior_c = c2;
|
|
}
|
|
sqliteNextChar(zPattern);
|
|
}
|
|
if( c2==0 || (seen ^ invert)==0 ) return 0;
|
|
sqliteNextChar(zString);
|
|
zPattern++;
|
|
break;
|
|
}
|
|
default: {
|
|
if( c != *zString ) return 0;
|
|
zPattern++;
|
|
zString++;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return *zString==0;
|
|
}
|
|
|
|
/*
|
|
** Compare two UTF-8 strings for equality using the "LIKE" operator of
|
|
** SQL. The '%' character matches any sequence of 0 or more
|
|
** characters and '_' matches any single character. Case is
|
|
** not significant.
|
|
**
|
|
** This routine is just an adaptation of the sqliteGlobCompare()
|
|
** routine above.
|
|
*/
|
|
int
|
|
sqliteLikeCompare(const unsigned char *zPattern, const unsigned char *zString){
|
|
register int c;
|
|
int c2;
|
|
|
|
while( (c = UpperToLower[*zPattern])!=0 ){
|
|
switch( c ){
|
|
case '%': {
|
|
while( (c=zPattern[1]) == '%' || c == '_' ){
|
|
if( c=='_' ){
|
|
if( *zString==0 ) return 0;
|
|
sqliteNextChar(zString);
|
|
}
|
|
zPattern++;
|
|
}
|
|
if( c==0 ) return 1;
|
|
c = UpperToLower[c];
|
|
while( (c2=UpperToLower[*zString])!=0 ){
|
|
while( c2 != 0 && c2 != c ){ c2 = UpperToLower[*++zString]; }
|
|
if( c2==0 ) return 0;
|
|
if( sqliteLikeCompare(&zPattern[1],zString) ) return 1;
|
|
sqliteNextChar(zString);
|
|
}
|
|
return 0;
|
|
}
|
|
case '_': {
|
|
if( *zString==0 ) return 0;
|
|
sqliteNextChar(zString);
|
|
zPattern++;
|
|
break;
|
|
}
|
|
default: {
|
|
if( c != UpperToLower[*zString] ) return 0;
|
|
zPattern++;
|
|
zString++;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return *zString==0;
|
|
}
|
|
|
|
/*
|
|
** Change the sqlite.magic from SQLITE_MAGIC_OPEN to SQLITE_MAGIC_BUSY.
|
|
** Return an error (non-zero) if the magic was not SQLITE_MAGIC_OPEN
|
|
** when this routine is called.
|
|
**
|
|
** This routine is a attempt to detect if two threads use the
|
|
** same sqlite* pointer at the same time. There is a race
|
|
** condition so it is possible that the error is not detected.
|
|
** But usually the problem will be seen. The result will be an
|
|
** error which can be used to debug the application that is
|
|
** using SQLite incorrectly.
|
|
*/
|
|
int sqliteSafetyOn(sqlite *db){
|
|
if( db->magic==SQLITE_MAGIC_OPEN ){
|
|
db->magic = SQLITE_MAGIC_BUSY;
|
|
return 0;
|
|
}else{
|
|
db->magic = SQLITE_MAGIC_ERROR;
|
|
db->flags |= SQLITE_Interrupt;
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Change the magic from SQLITE_MAGIC_BUSY to SQLITE_MAGIC_OPEN.
|
|
** Return an error (non-zero) if the magic was not SQLITE_MAGIC_BUSY
|
|
** when this routine is called.
|
|
*/
|
|
int sqliteSafetyOff(sqlite *db){
|
|
if( db->magic==SQLITE_MAGIC_BUSY ){
|
|
db->magic = SQLITE_MAGIC_OPEN;
|
|
return 0;
|
|
}else{
|
|
db->magic = SQLITE_MAGIC_ERROR;
|
|
db->flags |= SQLITE_Interrupt;
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Check to make sure we are not currently executing an sqlite_exec().
|
|
** If we are currently in an sqlite_exec(), return true and set
|
|
** sqlite.magic to SQLITE_MAGIC_ERROR. This will cause a complete
|
|
** shutdown of the database.
|
|
**
|
|
** This routine is used to try to detect when API routines are called
|
|
** at the wrong time or in the wrong sequence.
|
|
*/
|
|
int sqliteSafetyCheck(sqlite *db){
|
|
if( db->recursionDepth ){
|
|
db->magic = SQLITE_MAGIC_ERROR;
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|