1
0
mirror of https://github.com/sqlite/sqlite.git synced 2026-01-06 08:01:16 +03:00
Files
sqlite/src/vdbe.c
drh 2fc865c115 Add an experimental location(X) SQL function that attempt to return the
location of the payload within the database for the record that contains
column X.  location(X) returns NULL if X is not an ordinary table column or
if SQLite cannot figure out the location because it is using a covering index.

FossilOrigin-Name: 51be9558164301c5dd4df23ab8b3e67de0b522f8d36f79f3d84d45d3dc2a83a4
2017-12-16 20:20:37 +00:00

7262 lines
238 KiB
C

/*
** 2001 September 15
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** The code in this file implements the function that runs the
** bytecode of a prepared statement.
**
** Various scripts scan this source file in order to generate HTML
** documentation, headers files, or other derived files. The formatting
** of the code in this file is, therefore, important. See other comments
** in this file for details. If in doubt, do not deviate from existing
** commenting and indentation practices when changing or adding code.
*/
#include "sqliteInt.h"
#include "vdbeInt.h"
/*
** Invoke this macro on memory cells just prior to changing the
** value of the cell. This macro verifies that shallow copies are
** not misused. A shallow copy of a string or blob just copies a
** pointer to the string or blob, not the content. If the original
** is changed while the copy is still in use, the string or blob might
** be changed out from under the copy. This macro verifies that nothing
** like that ever happens.
*/
#ifdef SQLITE_DEBUG
# define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M)
#else
# define memAboutToChange(P,M)
#endif
/*
** The following global variable is incremented every time a cursor
** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test
** procedures use this information to make sure that indices are
** working correctly. This variable has no function other than to
** help verify the correct operation of the library.
*/
#ifdef SQLITE_TEST
int sqlite3_search_count = 0;
#endif
/*
** When this global variable is positive, it gets decremented once before
** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted
** field of the sqlite3 structure is set in order to simulate an interrupt.
**
** This facility is used for testing purposes only. It does not function
** in an ordinary build.
*/
#ifdef SQLITE_TEST
int sqlite3_interrupt_count = 0;
#endif
/*
** The next global variable is incremented each type the OP_Sort opcode
** is executed. The test procedures use this information to make sure that
** sorting is occurring or not occurring at appropriate times. This variable
** has no function other than to help verify the correct operation of the
** library.
*/
#ifdef SQLITE_TEST
int sqlite3_sort_count = 0;
#endif
/*
** The next global variable records the size of the largest MEM_Blob
** or MEM_Str that has been used by a VDBE opcode. The test procedures
** use this information to make sure that the zero-blob functionality
** is working correctly. This variable has no function other than to
** help verify the correct operation of the library.
*/
#ifdef SQLITE_TEST
int sqlite3_max_blobsize = 0;
static void updateMaxBlobsize(Mem *p){
if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
sqlite3_max_blobsize = p->n;
}
}
#endif
/*
** This macro evaluates to true if either the update hook or the preupdate
** hook are enabled for database connect DB.
*/
#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
# define HAS_UPDATE_HOOK(DB) ((DB)->xPreUpdateCallback||(DB)->xUpdateCallback)
#else
# define HAS_UPDATE_HOOK(DB) ((DB)->xUpdateCallback)
#endif
/*
** The next global variable is incremented each time the OP_Found opcode
** is executed. This is used to test whether or not the foreign key
** operation implemented using OP_FkIsZero is working. This variable
** has no function other than to help verify the correct operation of the
** library.
*/
#ifdef SQLITE_TEST
int sqlite3_found_count = 0;
#endif
/*
** Test a register to see if it exceeds the current maximum blob size.
** If it does, record the new maximum blob size.
*/
#if defined(SQLITE_TEST) && !defined(SQLITE_UNTESTABLE)
# define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P)
#else
# define UPDATE_MAX_BLOBSIZE(P)
#endif
/*
** Invoke the VDBE coverage callback, if that callback is defined. This
** feature is used for test suite validation only and does not appear an
** production builds.
**
** M is an integer, 2 or 3, that indices how many different ways the
** branch can go. It is usually 2. "I" is the direction the branch
** goes. 0 means falls through. 1 means branch is taken. 2 means the
** second alternative branch is taken.
**
** iSrcLine is the source code line (from the __LINE__ macro) that
** generated the VDBE instruction. This instrumentation assumes that all
** source code is in a single file (the amalgamation). Special values 1
** and 2 for the iSrcLine parameter mean that this particular branch is
** always taken or never taken, respectively.
*/
#if !defined(SQLITE_VDBE_COVERAGE)
# define VdbeBranchTaken(I,M)
#else
# define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M)
static void vdbeTakeBranch(int iSrcLine, u8 I, u8 M){
if( iSrcLine<=2 && ALWAYS(iSrcLine>0) ){
M = iSrcLine;
/* Assert the truth of VdbeCoverageAlwaysTaken() and
** VdbeCoverageNeverTaken() */
assert( (M & I)==I );
}else{
if( sqlite3GlobalConfig.xVdbeBranch==0 ) return; /*NO_TEST*/
sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg,
iSrcLine,I,M);
}
}
#endif
/*
** Convert the given register into a string if it isn't one
** already. Return non-zero if a malloc() fails.
*/
#define Stringify(P, enc) \
if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc,0)) \
{ goto no_mem; }
/*
** An ephemeral string value (signified by the MEM_Ephem flag) contains
** a pointer to a dynamically allocated string where some other entity
** is responsible for deallocating that string. Because the register
** does not control the string, it might be deleted without the register
** knowing it.
**
** This routine converts an ephemeral string into a dynamically allocated
** string that the register itself controls. In other words, it
** converts an MEM_Ephem string into a string with P.z==P.zMalloc.
*/
#define Deephemeralize(P) \
if( ((P)->flags&MEM_Ephem)!=0 \
&& sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
/* Return true if the cursor was opened using the OP_OpenSorter opcode. */
#define isSorter(x) ((x)->eCurType==CURTYPE_SORTER)
/*
** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL
** if we run out of memory.
*/
static VdbeCursor *allocateCursor(
Vdbe *p, /* The virtual machine */
int iCur, /* Index of the new VdbeCursor */
int nField, /* Number of fields in the table or index */
int iDb, /* Database the cursor belongs to, or -1 */
u8 eCurType /* Type of the new cursor */
){
/* Find the memory cell that will be used to store the blob of memory
** required for this VdbeCursor structure. It is convenient to use a
** vdbe memory cell to manage the memory allocation required for a
** VdbeCursor structure for the following reasons:
**
** * Sometimes cursor numbers are used for a couple of different
** purposes in a vdbe program. The different uses might require
** different sized allocations. Memory cells provide growable
** allocations.
**
** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
** be freed lazily via the sqlite3_release_memory() API. This
** minimizes the number of malloc calls made by the system.
**
** The memory cell for cursor 0 is aMem[0]. The rest are allocated from
** the top of the register space. Cursor 1 is at Mem[p->nMem-1].
** Cursor 2 is at Mem[p->nMem-2]. And so forth.
*/
Mem *pMem = iCur>0 ? &p->aMem[p->nMem-iCur] : p->aMem;
int nByte;
VdbeCursor *pCx = 0;
nByte =
ROUND8(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField +
(eCurType==CURTYPE_BTREE?sqlite3BtreeCursorSize():0);
assert( iCur>=0 && iCur<p->nCursor );
if( p->apCsr[iCur] ){ /*OPTIMIZATION-IF-FALSE*/
sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
p->apCsr[iCur] = 0;
}
if( SQLITE_OK==sqlite3VdbeMemClearAndResize(pMem, nByte) ){
p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z;
memset(pCx, 0, offsetof(VdbeCursor,pAltCursor));
pCx->eCurType = eCurType;
pCx->iDb = iDb;
pCx->nField = nField;
pCx->aOffset = &pCx->aType[nField];
if( eCurType==CURTYPE_BTREE ){
pCx->uc.pCursor = (BtCursor*)
&pMem->z[ROUND8(sizeof(VdbeCursor))+2*sizeof(u32)*nField];
sqlite3BtreeCursorZero(pCx->uc.pCursor);
}
}
return pCx;
}
/*
** Try to convert a value into a numeric representation if we can
** do so without loss of information. In other words, if the string
** looks like a number, convert it into a number. If it does not
** look like a number, leave it alone.
**
** If the bTryForInt flag is true, then extra effort is made to give
** an integer representation. Strings that look like floating point
** values but which have no fractional component (example: '48.00')
** will have a MEM_Int representation when bTryForInt is true.
**
** If bTryForInt is false, then if the input string contains a decimal
** point or exponential notation, the result is only MEM_Real, even
** if there is an exact integer representation of the quantity.
*/
static void applyNumericAffinity(Mem *pRec, int bTryForInt){
double rValue;
i64 iValue;
u8 enc = pRec->enc;
assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real))==MEM_Str );
if( sqlite3AtoF(pRec->z, &rValue, pRec->n, enc)==0 ) return;
if( 0==sqlite3Atoi64(pRec->z, &iValue, pRec->n, enc) ){
pRec->u.i = iValue;
pRec->flags |= MEM_Int;
}else{
pRec->u.r = rValue;
pRec->flags |= MEM_Real;
if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec);
}
}
/*
** Processing is determine by the affinity parameter:
**
** SQLITE_AFF_INTEGER:
** SQLITE_AFF_REAL:
** SQLITE_AFF_NUMERIC:
** Try to convert pRec to an integer representation or a
** floating-point representation if an integer representation
** is not possible. Note that the integer representation is
** always preferred, even if the affinity is REAL, because
** an integer representation is more space efficient on disk.
**
** SQLITE_AFF_TEXT:
** Convert pRec to a text representation.
**
** SQLITE_AFF_BLOB:
** No-op. pRec is unchanged.
*/
static void applyAffinity(
Mem *pRec, /* The value to apply affinity to */
char affinity, /* The affinity to be applied */
u8 enc /* Use this text encoding */
){
if( affinity>=SQLITE_AFF_NUMERIC ){
assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
|| affinity==SQLITE_AFF_NUMERIC );
if( (pRec->flags & MEM_Int)==0 ){ /*OPTIMIZATION-IF-FALSE*/
if( (pRec->flags & MEM_Real)==0 ){
if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1);
}else{
sqlite3VdbeIntegerAffinity(pRec);
}
}
}else if( affinity==SQLITE_AFF_TEXT ){
/* Only attempt the conversion to TEXT if there is an integer or real
** representation (blob and NULL do not get converted) but no string
** representation. It would be harmless to repeat the conversion if
** there is already a string rep, but it is pointless to waste those
** CPU cycles. */
if( 0==(pRec->flags&MEM_Str) ){ /*OPTIMIZATION-IF-FALSE*/
if( (pRec->flags&(MEM_Real|MEM_Int)) ){
sqlite3VdbeMemStringify(pRec, enc, 1);
}
}
pRec->flags &= ~(MEM_Real|MEM_Int);
}
}
/*
** Try to convert the type of a function argument or a result column
** into a numeric representation. Use either INTEGER or REAL whichever
** is appropriate. But only do the conversion if it is possible without
** loss of information and return the revised type of the argument.
*/
int sqlite3_value_numeric_type(sqlite3_value *pVal){
int eType = sqlite3_value_type(pVal);
if( eType==SQLITE_TEXT ){
Mem *pMem = (Mem*)pVal;
applyNumericAffinity(pMem, 0);
eType = sqlite3_value_type(pVal);
}
return eType;
}
/*
** Exported version of applyAffinity(). This one works on sqlite3_value*,
** not the internal Mem* type.
*/
void sqlite3ValueApplyAffinity(
sqlite3_value *pVal,
u8 affinity,
u8 enc
){
applyAffinity((Mem *)pVal, affinity, enc);
}
/*
** pMem currently only holds a string type (or maybe a BLOB that we can
** interpret as a string if we want to). Compute its corresponding
** numeric type, if has one. Set the pMem->u.r and pMem->u.i fields
** accordingly.
*/
static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){
assert( (pMem->flags & (MEM_Int|MEM_Real))==0 );
assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 );
if( sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc)==0 ){
return 0;
}
if( sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc)==0 ){
return MEM_Int;
}
return MEM_Real;
}
/*
** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or
** none.
**
** Unlike applyNumericAffinity(), this routine does not modify pMem->flags.
** But it does set pMem->u.r and pMem->u.i appropriately.
*/
static u16 numericType(Mem *pMem){
if( pMem->flags & (MEM_Int|MEM_Real) ){
return pMem->flags & (MEM_Int|MEM_Real);
}
if( pMem->flags & (MEM_Str|MEM_Blob) ){
return computeNumericType(pMem);
}
return 0;
}
#ifdef SQLITE_DEBUG
/*
** Write a nice string representation of the contents of cell pMem
** into buffer zBuf, length nBuf.
*/
void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){
char *zCsr = zBuf;
int f = pMem->flags;
static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
if( f&MEM_Blob ){
int i;
char c;
if( f & MEM_Dyn ){
c = 'z';
assert( (f & (MEM_Static|MEM_Ephem))==0 );
}else if( f & MEM_Static ){
c = 't';
assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
}else if( f & MEM_Ephem ){
c = 'e';
assert( (f & (MEM_Static|MEM_Dyn))==0 );
}else{
c = 's';
}
*(zCsr++) = c;
sqlite3_snprintf(100, zCsr, "%d[", pMem->n);
zCsr += sqlite3Strlen30(zCsr);
for(i=0; i<16 && i<pMem->n; i++){
sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF));
zCsr += sqlite3Strlen30(zCsr);
}
for(i=0; i<16 && i<pMem->n; i++){
char z = pMem->z[i];
if( z<32 || z>126 ) *zCsr++ = '.';
else *zCsr++ = z;
}
*(zCsr++) = ']';
if( f & MEM_Zero ){
sqlite3_snprintf(100, zCsr,"+%dz",pMem->u.nZero);
zCsr += sqlite3Strlen30(zCsr);
}
*zCsr = '\0';
}else if( f & MEM_Str ){
int j, k;
zBuf[0] = ' ';
if( f & MEM_Dyn ){
zBuf[1] = 'z';
assert( (f & (MEM_Static|MEM_Ephem))==0 );
}else if( f & MEM_Static ){
zBuf[1] = 't';
assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
}else if( f & MEM_Ephem ){
zBuf[1] = 'e';
assert( (f & (MEM_Static|MEM_Dyn))==0 );
}else{
zBuf[1] = 's';
}
k = 2;
sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n);
k += sqlite3Strlen30(&zBuf[k]);
zBuf[k++] = '[';
for(j=0; j<15 && j<pMem->n; j++){
u8 c = pMem->z[j];
if( c>=0x20 && c<0x7f ){
zBuf[k++] = c;
}else{
zBuf[k++] = '.';
}
}
zBuf[k++] = ']';
sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]);
k += sqlite3Strlen30(&zBuf[k]);
zBuf[k++] = 0;
}
}
#endif
#ifdef SQLITE_DEBUG
/*
** Print the value of a register for tracing purposes:
*/
static void memTracePrint(Mem *p){
if( p->flags & MEM_Undefined ){
printf(" undefined");
}else if( p->flags & MEM_Null ){
printf(" NULL");
}else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
printf(" si:%lld", p->u.i);
}else if( p->flags & MEM_Int ){
printf(" i:%lld", p->u.i);
#ifndef SQLITE_OMIT_FLOATING_POINT
}else if( p->flags & MEM_Real ){
printf(" r:%g", p->u.r);
#endif
}else if( p->flags & MEM_RowSet ){
printf(" (rowset)");
}else{
char zBuf[200];
sqlite3VdbeMemPrettyPrint(p, zBuf);
printf(" %s", zBuf);
}
if( p->flags & MEM_Subtype ) printf(" subtype=0x%02x", p->eSubtype);
}
static void registerTrace(int iReg, Mem *p){
printf("REG[%d] = ", iReg);
memTracePrint(p);
printf("\n");
sqlite3VdbeCheckMemInvariants(p);
}
#endif
#ifdef SQLITE_DEBUG
# define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M)
#else
# define REGISTER_TRACE(R,M)
#endif
#ifdef VDBE_PROFILE
/*
** hwtime.h contains inline assembler code for implementing
** high-performance timing routines.
*/
#include "hwtime.h"
#endif
#ifndef NDEBUG
/*
** This function is only called from within an assert() expression. It
** checks that the sqlite3.nTransaction variable is correctly set to
** the number of non-transaction savepoints currently in the
** linked list starting at sqlite3.pSavepoint.
**
** Usage:
**
** assert( checkSavepointCount(db) );
*/
static int checkSavepointCount(sqlite3 *db){
int n = 0;
Savepoint *p;
for(p=db->pSavepoint; p; p=p->pNext) n++;
assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
return 1;
}
#endif
/*
** Return the register of pOp->p2 after first preparing it to be
** overwritten with an integer value.
*/
static SQLITE_NOINLINE Mem *out2PrereleaseWithClear(Mem *pOut){
sqlite3VdbeMemSetNull(pOut);
pOut->flags = MEM_Int;
return pOut;
}
static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){
Mem *pOut;
assert( pOp->p2>0 );
assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
pOut = &p->aMem[pOp->p2];
memAboutToChange(p, pOut);
if( VdbeMemDynamic(pOut) ){ /*OPTIMIZATION-IF-FALSE*/
return out2PrereleaseWithClear(pOut);
}else{
pOut->flags = MEM_Int;
return pOut;
}
}
/*
** Execute as much of a VDBE program as we can.
** This is the core of sqlite3_step().
*/
int sqlite3VdbeExec(
Vdbe *p /* The VDBE */
){
Op *aOp = p->aOp; /* Copy of p->aOp */
Op *pOp = aOp; /* Current operation */
#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
Op *pOrigOp; /* Value of pOp at the top of the loop */
#endif
#ifdef SQLITE_DEBUG
int nExtraDelete = 0; /* Verifies FORDELETE and AUXDELETE flags */
#endif
int rc = SQLITE_OK; /* Value to return */
sqlite3 *db = p->db; /* The database */
u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
u8 encoding = ENC(db); /* The database encoding */
int iCompare = 0; /* Result of last comparison */
unsigned nVmStep = 0; /* Number of virtual machine steps */
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
unsigned nProgressLimit; /* Invoke xProgress() when nVmStep reaches this */
#endif
Mem *aMem = p->aMem; /* Copy of p->aMem */
Mem *pIn1 = 0; /* 1st input operand */
Mem *pIn2 = 0; /* 2nd input operand */
Mem *pIn3 = 0; /* 3rd input operand */
Mem *pOut = 0; /* Output operand */
#ifdef VDBE_PROFILE
u64 start; /* CPU clock count at start of opcode */
#endif
/*** INSERT STACK UNION HERE ***/
assert( p->magic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */
sqlite3VdbeEnter(p);
if( p->rc==SQLITE_NOMEM ){
/* This happens if a malloc() inside a call to sqlite3_column_text() or
** sqlite3_column_text16() failed. */
goto no_mem;
}
assert( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_BUSY );
assert( p->bIsReader || p->readOnly!=0 );
p->iCurrentTime = 0;
assert( p->explain==0 );
p->pResultSet = 0;
db->busyHandler.nBusy = 0;
if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
sqlite3VdbeIOTraceSql(p);
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
if( db->xProgress ){
u32 iPrior = p->aCounter[SQLITE_STMTSTATUS_VM_STEP];
assert( 0 < db->nProgressOps );
nProgressLimit = db->nProgressOps - (iPrior % db->nProgressOps);
}else{
nProgressLimit = 0xffffffff;
}
#endif
#ifdef SQLITE_DEBUG
sqlite3BeginBenignMalloc();
if( p->pc==0
&& (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0
){
int i;
int once = 1;
sqlite3VdbePrintSql(p);
if( p->db->flags & SQLITE_VdbeListing ){
printf("VDBE Program Listing:\n");
for(i=0; i<p->nOp; i++){
sqlite3VdbePrintOp(stdout, i, &aOp[i]);
}
}
if( p->db->flags & SQLITE_VdbeEQP ){
for(i=0; i<p->nOp; i++){
if( aOp[i].opcode==OP_Explain ){
if( once ) printf("VDBE Query Plan:\n");
printf("%s\n", aOp[i].p4.z);
once = 0;
}
}
}
if( p->db->flags & SQLITE_VdbeTrace ) printf("VDBE Trace:\n");
}
sqlite3EndBenignMalloc();
#endif
for(pOp=&aOp[p->pc]; 1; pOp++){
/* Errors are detected by individual opcodes, with an immediate
** jumps to abort_due_to_error. */
assert( rc==SQLITE_OK );
assert( pOp>=aOp && pOp<&aOp[p->nOp]);
#ifdef VDBE_PROFILE
start = sqlite3Hwtime();
#endif
nVmStep++;
#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
if( p->anExec ) p->anExec[(int)(pOp-aOp)]++;
#endif
/* Only allow tracing if SQLITE_DEBUG is defined.
*/
#ifdef SQLITE_DEBUG
if( db->flags & SQLITE_VdbeTrace ){
sqlite3VdbePrintOp(stdout, (int)(pOp - aOp), pOp);
}
#endif
/* Check to see if we need to simulate an interrupt. This only happens
** if we have a special test build.
*/
#ifdef SQLITE_TEST
if( sqlite3_interrupt_count>0 ){
sqlite3_interrupt_count--;
if( sqlite3_interrupt_count==0 ){
sqlite3_interrupt(db);
}
}
#endif
/* Sanity checking on other operands */
#ifdef SQLITE_DEBUG
{
u8 opProperty = sqlite3OpcodeProperty[pOp->opcode];
if( (opProperty & OPFLG_IN1)!=0 ){
assert( pOp->p1>0 );
assert( pOp->p1<=(p->nMem+1 - p->nCursor) );
assert( memIsValid(&aMem[pOp->p1]) );
assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) );
REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
}
if( (opProperty & OPFLG_IN2)!=0 ){
assert( pOp->p2>0 );
assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
assert( memIsValid(&aMem[pOp->p2]) );
assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) );
REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
}
if( (opProperty & OPFLG_IN3)!=0 ){
assert( pOp->p3>0 );
assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
assert( memIsValid(&aMem[pOp->p3]) );
assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) );
REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
}
if( (opProperty & OPFLG_OUT2)!=0 ){
assert( pOp->p2>0 );
assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
memAboutToChange(p, &aMem[pOp->p2]);
}
if( (opProperty & OPFLG_OUT3)!=0 ){
assert( pOp->p3>0 );
assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
memAboutToChange(p, &aMem[pOp->p3]);
}
}
#endif
#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
pOrigOp = pOp;
#endif
switch( pOp->opcode ){
/*****************************************************************************
** What follows is a massive switch statement where each case implements a
** separate instruction in the virtual machine. If we follow the usual
** indentation conventions, each case should be indented by 6 spaces. But
** that is a lot of wasted space on the left margin. So the code within
** the switch statement will break with convention and be flush-left. Another
** big comment (similar to this one) will mark the point in the code where
** we transition back to normal indentation.
**
** The formatting of each case is important. The makefile for SQLite
** generates two C files "opcodes.h" and "opcodes.c" by scanning this
** file looking for lines that begin with "case OP_". The opcodes.h files
** will be filled with #defines that give unique integer values to each
** opcode and the opcodes.c file is filled with an array of strings where
** each string is the symbolic name for the corresponding opcode. If the
** case statement is followed by a comment of the form "/# same as ... #/"
** that comment is used to determine the particular value of the opcode.
**
** Other keywords in the comment that follows each case are used to
** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
** Keywords include: in1, in2, in3, out2, out3. See
** the mkopcodeh.awk script for additional information.
**
** Documentation about VDBE opcodes is generated by scanning this file
** for lines of that contain "Opcode:". That line and all subsequent
** comment lines are used in the generation of the opcode.html documentation
** file.
**
** SUMMARY:
**
** Formatting is important to scripts that scan this file.
** Do not deviate from the formatting style currently in use.
**
*****************************************************************************/
/* Opcode: Goto * P2 * * *
**
** An unconditional jump to address P2.
** The next instruction executed will be
** the one at index P2 from the beginning of
** the program.
**
** The P1 parameter is not actually used by this opcode. However, it
** is sometimes set to 1 instead of 0 as a hint to the command-line shell
** that this Goto is the bottom of a loop and that the lines from P2 down
** to the current line should be indented for EXPLAIN output.
*/
case OP_Goto: { /* jump */
jump_to_p2_and_check_for_interrupt:
pOp = &aOp[pOp->p2 - 1];
/* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev,
** OP_VNext, or OP_SorterNext) all jump here upon
** completion. Check to see if sqlite3_interrupt() has been called
** or if the progress callback needs to be invoked.
**
** This code uses unstructured "goto" statements and does not look clean.
** But that is not due to sloppy coding habits. The code is written this
** way for performance, to avoid having to run the interrupt and progress
** checks on every opcode. This helps sqlite3_step() to run about 1.5%
** faster according to "valgrind --tool=cachegrind" */
check_for_interrupt:
if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
/* Call the progress callback if it is configured and the required number
** of VDBE ops have been executed (either since this invocation of
** sqlite3VdbeExec() or since last time the progress callback was called).
** If the progress callback returns non-zero, exit the virtual machine with
** a return code SQLITE_ABORT.
*/
if( nVmStep>=nProgressLimit && db->xProgress!=0 ){
assert( db->nProgressOps!=0 );
nProgressLimit = nVmStep + db->nProgressOps - (nVmStep%db->nProgressOps);
if( db->xProgress(db->pProgressArg) ){
rc = SQLITE_INTERRUPT;
goto abort_due_to_error;
}
}
#endif
break;
}
/* Opcode: Gosub P1 P2 * * *
**
** Write the current address onto register P1
** and then jump to address P2.
*/
case OP_Gosub: { /* jump */
assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
pIn1 = &aMem[pOp->p1];
assert( VdbeMemDynamic(pIn1)==0 );
memAboutToChange(p, pIn1);
pIn1->flags = MEM_Int;
pIn1->u.i = (int)(pOp-aOp);
REGISTER_TRACE(pOp->p1, pIn1);
/* Most jump operations do a goto to this spot in order to update
** the pOp pointer. */
jump_to_p2:
pOp = &aOp[pOp->p2 - 1];
break;
}
/* Opcode: Return P1 * * * *
**
** Jump to the next instruction after the address in register P1. After
** the jump, register P1 becomes undefined.
*/
case OP_Return: { /* in1 */
pIn1 = &aMem[pOp->p1];
assert( pIn1->flags==MEM_Int );
pOp = &aOp[pIn1->u.i];
pIn1->flags = MEM_Undefined;
break;
}
/* Opcode: InitCoroutine P1 P2 P3 * *
**
** Set up register P1 so that it will Yield to the coroutine
** located at address P3.
**
** If P2!=0 then the coroutine implementation immediately follows
** this opcode. So jump over the coroutine implementation to
** address P2.
**
** See also: EndCoroutine
*/
case OP_InitCoroutine: { /* jump */
assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
assert( pOp->p2>=0 && pOp->p2<p->nOp );
assert( pOp->p3>=0 && pOp->p3<p->nOp );
pOut = &aMem[pOp->p1];
assert( !VdbeMemDynamic(pOut) );
pOut->u.i = pOp->p3 - 1;
pOut->flags = MEM_Int;
if( pOp->p2 ) goto jump_to_p2;
break;
}
/* Opcode: EndCoroutine P1 * * * *
**
** The instruction at the address in register P1 is a Yield.
** Jump to the P2 parameter of that Yield.
** After the jump, register P1 becomes undefined.
**
** See also: InitCoroutine
*/
case OP_EndCoroutine: { /* in1 */
VdbeOp *pCaller;
pIn1 = &aMem[pOp->p1];
assert( pIn1->flags==MEM_Int );
assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp );
pCaller = &aOp[pIn1->u.i];
assert( pCaller->opcode==OP_Yield );
assert( pCaller->p2>=0 && pCaller->p2<p->nOp );
pOp = &aOp[pCaller->p2 - 1];
pIn1->flags = MEM_Undefined;
break;
}
/* Opcode: Yield P1 P2 * * *
**
** Swap the program counter with the value in register P1. This
** has the effect of yielding to a coroutine.
**
** If the coroutine that is launched by this instruction ends with
** Yield or Return then continue to the next instruction. But if
** the coroutine launched by this instruction ends with
** EndCoroutine, then jump to P2 rather than continuing with the
** next instruction.
**
** See also: InitCoroutine
*/
case OP_Yield: { /* in1, jump */
int pcDest;
pIn1 = &aMem[pOp->p1];
assert( VdbeMemDynamic(pIn1)==0 );
pIn1->flags = MEM_Int;
pcDest = (int)pIn1->u.i;
pIn1->u.i = (int)(pOp - aOp);
REGISTER_TRACE(pOp->p1, pIn1);
pOp = &aOp[pcDest];
break;
}
/* Opcode: HaltIfNull P1 P2 P3 P4 P5
** Synopsis: if r[P3]=null halt
**
** Check the value in register P3. If it is NULL then Halt using
** parameter P1, P2, and P4 as if this were a Halt instruction. If the
** value in register P3 is not NULL, then this routine is a no-op.
** The P5 parameter should be 1.
*/
case OP_HaltIfNull: { /* in3 */
pIn3 = &aMem[pOp->p3];
if( (pIn3->flags & MEM_Null)==0 ) break;
/* Fall through into OP_Halt */
}
/* Opcode: Halt P1 P2 * P4 P5
**
** Exit immediately. All open cursors, etc are closed
** automatically.
**
** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0).
** For errors, it can be some other value. If P1!=0 then P2 will determine
** whether or not to rollback the current transaction. Do not rollback
** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort,
** then back out all changes that have occurred during this execution of the
** VDBE, but do not rollback the transaction.
**
** If P4 is not null then it is an error message string.
**
** P5 is a value between 0 and 4, inclusive, that modifies the P4 string.
**
** 0: (no change)
** 1: NOT NULL contraint failed: P4
** 2: UNIQUE constraint failed: P4
** 3: CHECK constraint failed: P4
** 4: FOREIGN KEY constraint failed: P4
**
** If P5 is not zero and P4 is NULL, then everything after the ":" is
** omitted.
**
** There is an implied "Halt 0 0 0" instruction inserted at the very end of
** every program. So a jump past the last instruction of the program
** is the same as executing Halt.
*/
case OP_Halt: {
VdbeFrame *pFrame;
int pcx;
pcx = (int)(pOp - aOp);
if( pOp->p1==SQLITE_OK && p->pFrame ){
/* Halt the sub-program. Return control to the parent frame. */
pFrame = p->pFrame;
p->pFrame = pFrame->pParent;
p->nFrame--;
sqlite3VdbeSetChanges(db, p->nChange);
pcx = sqlite3VdbeFrameRestore(pFrame);
if( pOp->p2==OE_Ignore ){
/* Instruction pcx is the OP_Program that invoked the sub-program
** currently being halted. If the p2 instruction of this OP_Halt
** instruction is set to OE_Ignore, then the sub-program is throwing
** an IGNORE exception. In this case jump to the address specified
** as the p2 of the calling OP_Program. */
pcx = p->aOp[pcx].p2-1;
}
aOp = p->aOp;
aMem = p->aMem;
pOp = &aOp[pcx];
break;
}
p->rc = pOp->p1;
p->errorAction = (u8)pOp->p2;
p->pc = pcx;
assert( pOp->p5<=4 );
if( p->rc ){
if( pOp->p5 ){
static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK",
"FOREIGN KEY" };
testcase( pOp->p5==1 );
testcase( pOp->p5==2 );
testcase( pOp->p5==3 );
testcase( pOp->p5==4 );
sqlite3VdbeError(p, "%s constraint failed", azType[pOp->p5-1]);
if( pOp->p4.z ){
p->zErrMsg = sqlite3MPrintf(db, "%z: %s", p->zErrMsg, pOp->p4.z);
}
}else{
sqlite3VdbeError(p, "%s", pOp->p4.z);
}
sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pcx, p->zSql, p->zErrMsg);
}
rc = sqlite3VdbeHalt(p);
assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
if( rc==SQLITE_BUSY ){
p->rc = SQLITE_BUSY;
}else{
assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT );
assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 );
rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
}
goto vdbe_return;
}
/* Opcode: Integer P1 P2 * * *
** Synopsis: r[P2]=P1
**
** The 32-bit integer value P1 is written into register P2.
*/
case OP_Integer: { /* out2 */
pOut = out2Prerelease(p, pOp);
pOut->u.i = pOp->p1;
break;
}
/* Opcode: Int64 * P2 * P4 *
** Synopsis: r[P2]=P4
**
** P4 is a pointer to a 64-bit integer value.
** Write that value into register P2.
*/
case OP_Int64: { /* out2 */
pOut = out2Prerelease(p, pOp);
assert( pOp->p4.pI64!=0 );
pOut->u.i = *pOp->p4.pI64;
break;
}
#ifndef SQLITE_OMIT_FLOATING_POINT
/* Opcode: Real * P2 * P4 *
** Synopsis: r[P2]=P4
**
** P4 is a pointer to a 64-bit floating point value.
** Write that value into register P2.
*/
case OP_Real: { /* same as TK_FLOAT, out2 */
pOut = out2Prerelease(p, pOp);
pOut->flags = MEM_Real;
assert( !sqlite3IsNaN(*pOp->p4.pReal) );
pOut->u.r = *pOp->p4.pReal;
break;
}
#endif
/* Opcode: String8 * P2 * P4 *
** Synopsis: r[P2]='P4'
**
** P4 points to a nul terminated UTF-8 string. This opcode is transformed
** into a String opcode before it is executed for the first time. During
** this transformation, the length of string P4 is computed and stored
** as the P1 parameter.
*/
case OP_String8: { /* same as TK_STRING, out2 */
assert( pOp->p4.z!=0 );
pOut = out2Prerelease(p, pOp);
pOp->opcode = OP_String;
pOp->p1 = sqlite3Strlen30(pOp->p4.z);
#ifndef SQLITE_OMIT_UTF16
if( encoding!=SQLITE_UTF8 ){
rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
assert( rc==SQLITE_OK || rc==SQLITE_TOOBIG );
if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z );
assert( VdbeMemDynamic(pOut)==0 );
pOut->szMalloc = 0;
pOut->flags |= MEM_Static;
if( pOp->p4type==P4_DYNAMIC ){
sqlite3DbFree(db, pOp->p4.z);
}
pOp->p4type = P4_DYNAMIC;
pOp->p4.z = pOut->z;
pOp->p1 = pOut->n;
}
testcase( rc==SQLITE_TOOBIG );
#endif
if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
goto too_big;
}
assert( rc==SQLITE_OK );
/* Fall through to the next case, OP_String */
}
/* Opcode: String P1 P2 P3 P4 P5
** Synopsis: r[P2]='P4' (len=P1)
**
** The string value P4 of length P1 (bytes) is stored in register P2.
**
** If P3 is not zero and the content of register P3 is equal to P5, then
** the datatype of the register P2 is converted to BLOB. The content is
** the same sequence of bytes, it is merely interpreted as a BLOB instead
** of a string, as if it had been CAST. In other words:
**
** if( P3!=0 and reg[P3]==P5 ) reg[P2] := CAST(reg[P2] as BLOB)
*/
case OP_String: { /* out2 */
assert( pOp->p4.z!=0 );
pOut = out2Prerelease(p, pOp);
pOut->flags = MEM_Str|MEM_Static|MEM_Term;
pOut->z = pOp->p4.z;
pOut->n = pOp->p1;
pOut->enc = encoding;
UPDATE_MAX_BLOBSIZE(pOut);
#ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
if( pOp->p3>0 ){
assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
pIn3 = &aMem[pOp->p3];
assert( pIn3->flags & MEM_Int );
if( pIn3->u.i==pOp->p5 ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term;
}
#endif
break;
}
/* Opcode: Null P1 P2 P3 * *
** Synopsis: r[P2..P3]=NULL
**
** Write a NULL into registers P2. If P3 greater than P2, then also write
** NULL into register P3 and every register in between P2 and P3. If P3
** is less than P2 (typically P3 is zero) then only register P2 is
** set to NULL.
**
** If the P1 value is non-zero, then also set the MEM_Cleared flag so that
** NULL values will not compare equal even if SQLITE_NULLEQ is set on
** OP_Ne or OP_Eq.
*/
case OP_Null: { /* out2 */
int cnt;
u16 nullFlag;
pOut = out2Prerelease(p, pOp);
cnt = pOp->p3-pOp->p2;
assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null;
pOut->n = 0;
while( cnt>0 ){
pOut++;
memAboutToChange(p, pOut);
sqlite3VdbeMemSetNull(pOut);
pOut->flags = nullFlag;
pOut->n = 0;
cnt--;
}
break;
}
/* Opcode: SoftNull P1 * * * *
** Synopsis: r[P1]=NULL
**
** Set register P1 to have the value NULL as seen by the OP_MakeRecord
** instruction, but do not free any string or blob memory associated with
** the register, so that if the value was a string or blob that was
** previously copied using OP_SCopy, the copies will continue to be valid.
*/
case OP_SoftNull: {
assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
pOut = &aMem[pOp->p1];
pOut->flags = (pOut->flags&~(MEM_Undefined|MEM_AffMask))|MEM_Null;
break;
}
/* Opcode: Blob P1 P2 * P4 *
** Synopsis: r[P2]=P4 (len=P1)
**
** P4 points to a blob of data P1 bytes long. Store this
** blob in register P2.
*/
case OP_Blob: { /* out2 */
assert( pOp->p1 <= SQLITE_MAX_LENGTH );
pOut = out2Prerelease(p, pOp);
sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
pOut->enc = encoding;
UPDATE_MAX_BLOBSIZE(pOut);
break;
}
/* Opcode: Variable P1 P2 * P4 *
** Synopsis: r[P2]=parameter(P1,P4)
**
** Transfer the values of bound parameter P1 into register P2
**
** If the parameter is named, then its name appears in P4.
** The P4 value is used by sqlite3_bind_parameter_name().
*/
case OP_Variable: { /* out2 */
Mem *pVar; /* Value being transferred */
assert( pOp->p1>0 && pOp->p1<=p->nVar );
assert( pOp->p4.z==0 || pOp->p4.z==sqlite3VListNumToName(p->pVList,pOp->p1) );
pVar = &p->aVar[pOp->p1 - 1];
if( sqlite3VdbeMemTooBig(pVar) ){
goto too_big;
}
pOut = &aMem[pOp->p2];
sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static);
UPDATE_MAX_BLOBSIZE(pOut);
break;
}
/* Opcode: Move P1 P2 P3 * *
** Synopsis: r[P2@P3]=r[P1@P3]
**
** Move the P3 values in register P1..P1+P3-1 over into
** registers P2..P2+P3-1. Registers P1..P1+P3-1 are
** left holding a NULL. It is an error for register ranges
** P1..P1+P3-1 and P2..P2+P3-1 to overlap. It is an error
** for P3 to be less than 1.
*/
case OP_Move: {
int n; /* Number of registers left to copy */
int p1; /* Register to copy from */
int p2; /* Register to copy to */
n = pOp->p3;
p1 = pOp->p1;
p2 = pOp->p2;
assert( n>0 && p1>0 && p2>0 );
assert( p1+n<=p2 || p2+n<=p1 );
pIn1 = &aMem[p1];
pOut = &aMem[p2];
do{
assert( pOut<=&aMem[(p->nMem+1 - p->nCursor)] );
assert( pIn1<=&aMem[(p->nMem+1 - p->nCursor)] );
assert( memIsValid(pIn1) );
memAboutToChange(p, pOut);
sqlite3VdbeMemMove(pOut, pIn1);
#ifdef SQLITE_DEBUG
if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<pOut ){
pOut->pScopyFrom += pOp->p2 - p1;
}
#endif
Deephemeralize(pOut);
REGISTER_TRACE(p2++, pOut);
pIn1++;
pOut++;
}while( --n );
break;
}
/* Opcode: Copy P1 P2 P3 * *
** Synopsis: r[P2@P3+1]=r[P1@P3+1]
**
** Make a copy of registers P1..P1+P3 into registers P2..P2+P3.
**
** This instruction makes a deep copy of the value. A duplicate
** is made of any string or blob constant. See also OP_SCopy.
*/
case OP_Copy: {
int n;
n = pOp->p3;
pIn1 = &aMem[pOp->p1];
pOut = &aMem[pOp->p2];
assert( pOut!=pIn1 );
while( 1 ){
sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
Deephemeralize(pOut);
#ifdef SQLITE_DEBUG
pOut->pScopyFrom = 0;
#endif
REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut);
if( (n--)==0 ) break;
pOut++;
pIn1++;
}
break;
}
/* Opcode: SCopy P1 P2 * * *
** Synopsis: r[P2]=r[P1]
**
** Make a shallow copy of register P1 into register P2.
**
** This instruction makes a shallow copy of the value. If the value
** is a string or blob, then the copy is only a pointer to the
** original and hence if the original changes so will the copy.
** Worse, if the original is deallocated, the copy becomes invalid.
** Thus the program must guarantee that the original will not change
** during the lifetime of the copy. Use OP_Copy to make a complete
** copy.
*/
case OP_SCopy: { /* out2 */
pIn1 = &aMem[pOp->p1];
pOut = &aMem[pOp->p2];
assert( pOut!=pIn1 );
sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
#ifdef SQLITE_DEBUG
if( pOut->pScopyFrom==0 ) pOut->pScopyFrom = pIn1;
#endif
break;
}
/* Opcode: IntCopy P1 P2 * * *
** Synopsis: r[P2]=r[P1]
**
** Transfer the integer value held in register P1 into register P2.
**
** This is an optimized version of SCopy that works only for integer
** values.
*/
case OP_IntCopy: { /* out2 */
pIn1 = &aMem[pOp->p1];
assert( (pIn1->flags & MEM_Int)!=0 );
pOut = &aMem[pOp->p2];
sqlite3VdbeMemSetInt64(pOut, pIn1->u.i);
break;
}
/* Opcode: ResultRow P1 P2 * * *
** Synopsis: output=r[P1@P2]
**
** The registers P1 through P1+P2-1 contain a single row of
** results. This opcode causes the sqlite3_step() call to terminate
** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
** structure to provide access to the r(P1)..r(P1+P2-1) values as
** the result row.
*/
case OP_ResultRow: {
Mem *pMem;
int i;
assert( p->nResColumn==pOp->p2 );
assert( pOp->p1>0 );
assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 );
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
/* Run the progress counter just before returning.
*/
if( db->xProgress!=0
&& nVmStep>=nProgressLimit
&& db->xProgress(db->pProgressArg)!=0
){
rc = SQLITE_INTERRUPT;
goto abort_due_to_error;
}
#endif
/* If this statement has violated immediate foreign key constraints, do
** not return the number of rows modified. And do not RELEASE the statement
** transaction. It needs to be rolled back. */
if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){
assert( db->flags&SQLITE_CountRows );
assert( p->usesStmtJournal );
goto abort_due_to_error;
}
/* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then
** DML statements invoke this opcode to return the number of rows
** modified to the user. This is the only way that a VM that
** opens a statement transaction may invoke this opcode.
**
** In case this is such a statement, close any statement transaction
** opened by this VM before returning control to the user. This is to
** ensure that statement-transactions are always nested, not overlapping.
** If the open statement-transaction is not closed here, then the user
** may step another VM that opens its own statement transaction. This
** may lead to overlapping statement transactions.
**
** The statement transaction is never a top-level transaction. Hence
** the RELEASE call below can never fail.
*/
assert( p->iStatement==0 || db->flags&SQLITE_CountRows );
rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE);
assert( rc==SQLITE_OK );
/* Invalidate all ephemeral cursor row caches */
p->cacheCtr = (p->cacheCtr + 2)|1;
/* Make sure the results of the current row are \000 terminated
** and have an assigned type. The results are de-ephemeralized as
** a side effect.
*/
pMem = p->pResultSet = &aMem[pOp->p1];
for(i=0; i<pOp->p2; i++){
assert( memIsValid(&pMem[i]) );
Deephemeralize(&pMem[i]);
assert( (pMem[i].flags & MEM_Ephem)==0
|| (pMem[i].flags & (MEM_Str|MEM_Blob))==0 );
sqlite3VdbeMemNulTerminate(&pMem[i]);
REGISTER_TRACE(pOp->p1+i, &pMem[i]);
}
if( db->mallocFailed ) goto no_mem;
if( db->mTrace & SQLITE_TRACE_ROW ){
db->xTrace(SQLITE_TRACE_ROW, db->pTraceArg, p, 0);
}
/* Return SQLITE_ROW
*/
p->pc = (int)(pOp - aOp) + 1;
rc = SQLITE_ROW;
goto vdbe_return;
}
/* Opcode: Concat P1 P2 P3 * *
** Synopsis: r[P3]=r[P2]+r[P1]
**
** Add the text in register P1 onto the end of the text in
** register P2 and store the result in register P3.
** If either the P1 or P2 text are NULL then store NULL in P3.
**
** P3 = P2 || P1
**
** It is illegal for P1 and P3 to be the same register. Sometimes,
** if P3 is the same register as P2, the implementation is able
** to avoid a memcpy().
*/
case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */
i64 nByte;
pIn1 = &aMem[pOp->p1];
pIn2 = &aMem[pOp->p2];
pOut = &aMem[pOp->p3];
assert( pIn1!=pOut );
if( (pIn1->flags | pIn2->flags) & MEM_Null ){
sqlite3VdbeMemSetNull(pOut);
break;
}
if( ExpandBlob(pIn1) || ExpandBlob(pIn2) ) goto no_mem;
Stringify(pIn1, encoding);
Stringify(pIn2, encoding);
nByte = pIn1->n + pIn2->n;
if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
goto too_big;
}
if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){
goto no_mem;
}
MemSetTypeFlag(pOut, MEM_Str);
if( pOut!=pIn2 ){
memcpy(pOut->z, pIn2->z, pIn2->n);
}
memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
pOut->z[nByte]=0;
pOut->z[nByte+1] = 0;
pOut->flags |= MEM_Term;
pOut->n = (int)nByte;
pOut->enc = encoding;
UPDATE_MAX_BLOBSIZE(pOut);
break;
}
/* Opcode: Add P1 P2 P3 * *
** Synopsis: r[P3]=r[P1]+r[P2]
**
** Add the value in register P1 to the value in register P2
** and store the result in register P3.
** If either input is NULL, the result is NULL.
*/
/* Opcode: Multiply P1 P2 P3 * *
** Synopsis: r[P3]=r[P1]*r[P2]
**
**
** Multiply the value in register P1 by the value in register P2
** and store the result in register P3.
** If either input is NULL, the result is NULL.
*/
/* Opcode: Subtract P1 P2 P3 * *
** Synopsis: r[P3]=r[P2]-r[P1]
**
** Subtract the value in register P1 from the value in register P2
** and store the result in register P3.
** If either input is NULL, the result is NULL.
*/
/* Opcode: Divide P1 P2 P3 * *
** Synopsis: r[P3]=r[P2]/r[P1]
**
** Divide the value in register P1 by the value in register P2
** and store the result in register P3 (P3=P2/P1). If the value in
** register P1 is zero, then the result is NULL. If either input is
** NULL, the result is NULL.
*/
/* Opcode: Remainder P1 P2 P3 * *
** Synopsis: r[P3]=r[P2]%r[P1]
**
** Compute the remainder after integer register P2 is divided by
** register P1 and store the result in register P3.
** If the value in register P1 is zero the result is NULL.
** If either operand is NULL, the result is NULL.
*/
case OP_Add: /* same as TK_PLUS, in1, in2, out3 */
case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */
case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */
case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */
case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */
char bIntint; /* Started out as two integer operands */
u16 flags; /* Combined MEM_* flags from both inputs */
u16 type1; /* Numeric type of left operand */
u16 type2; /* Numeric type of right operand */
i64 iA; /* Integer value of left operand */
i64 iB; /* Integer value of right operand */
double rA; /* Real value of left operand */
double rB; /* Real value of right operand */
pIn1 = &aMem[pOp->p1];
type1 = numericType(pIn1);
pIn2 = &aMem[pOp->p2];
type2 = numericType(pIn2);
pOut = &aMem[pOp->p3];
flags = pIn1->flags | pIn2->flags;
if( (type1 & type2 & MEM_Int)!=0 ){
iA = pIn1->u.i;
iB = pIn2->u.i;
bIntint = 1;
switch( pOp->opcode ){
case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break;
case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break;
case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break;
case OP_Divide: {
if( iA==0 ) goto arithmetic_result_is_null;
if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math;
iB /= iA;
break;
}
default: {
if( iA==0 ) goto arithmetic_result_is_null;
if( iA==-1 ) iA = 1;
iB %= iA;
break;
}
}
pOut->u.i = iB;
MemSetTypeFlag(pOut, MEM_Int);
}else if( (flags & MEM_Null)!=0 ){
goto arithmetic_result_is_null;
}else{
bIntint = 0;
fp_math:
rA = sqlite3VdbeRealValue(pIn1);
rB = sqlite3VdbeRealValue(pIn2);
switch( pOp->opcode ){
case OP_Add: rB += rA; break;
case OP_Subtract: rB -= rA; break;
case OP_Multiply: rB *= rA; break;
case OP_Divide: {
/* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
if( rA==(double)0 ) goto arithmetic_result_is_null;
rB /= rA;
break;
}
default: {
iA = (i64)rA;
iB = (i64)rB;
if( iA==0 ) goto arithmetic_result_is_null;
if( iA==-1 ) iA = 1;
rB = (double)(iB % iA);
break;
}
}
#ifdef SQLITE_OMIT_FLOATING_POINT
pOut->u.i = rB;
MemSetTypeFlag(pOut, MEM_Int);
#else
if( sqlite3IsNaN(rB) ){
goto arithmetic_result_is_null;
}
pOut->u.r = rB;
MemSetTypeFlag(pOut, MEM_Real);
if( ((type1|type2)&MEM_Real)==0 && !bIntint ){
sqlite3VdbeIntegerAffinity(pOut);
}
#endif
}
break;
arithmetic_result_is_null:
sqlite3VdbeMemSetNull(pOut);
break;
}
/* Opcode: CollSeq P1 * * P4
**
** P4 is a pointer to a CollSeq object. If the next call to a user function
** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
** be returned. This is used by the built-in min(), max() and nullif()
** functions.
**
** If P1 is not zero, then it is a register that a subsequent min() or
** max() aggregate will set to 1 if the current row is not the minimum or
** maximum. The P1 register is initialized to 0 by this instruction.
**
** The interface used by the implementation of the aforementioned functions
** to retrieve the collation sequence set by this opcode is not available
** publicly. Only built-in functions have access to this feature.
*/
case OP_CollSeq: {
assert( pOp->p4type==P4_COLLSEQ );
if( pOp->p1 ){
sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0);
}
break;
}
/* Opcode: BitAnd P1 P2 P3 * *
** Synopsis: r[P3]=r[P1]&r[P2]
**
** Take the bit-wise AND of the values in register P1 and P2 and
** store the result in register P3.
** If either input is NULL, the result is NULL.
*/
/* Opcode: BitOr P1 P2 P3 * *
** Synopsis: r[P3]=r[P1]|r[P2]
**
** Take the bit-wise OR of the values in register P1 and P2 and
** store the result in register P3.
** If either input is NULL, the result is NULL.
*/
/* Opcode: ShiftLeft P1 P2 P3 * *
** Synopsis: r[P3]=r[P2]<<r[P1]
**
** Shift the integer value in register P2 to the left by the
** number of bits specified by the integer in register P1.
** Store the result in register P3.
** If either input is NULL, the result is NULL.
*/
/* Opcode: ShiftRight P1 P2 P3 * *
** Synopsis: r[P3]=r[P2]>>r[P1]
**
** Shift the integer value in register P2 to the right by the
** number of bits specified by the integer in register P1.
** Store the result in register P3.
** If either input is NULL, the result is NULL.
*/
case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */
case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */
case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */
case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */
i64 iA;
u64 uA;
i64 iB;
u8 op;
pIn1 = &aMem[pOp->p1];
pIn2 = &aMem[pOp->p2];
pOut = &aMem[pOp->p3];
if( (pIn1->flags | pIn2->flags) & MEM_Null ){
sqlite3VdbeMemSetNull(pOut);
break;
}
iA = sqlite3VdbeIntValue(pIn2);
iB = sqlite3VdbeIntValue(pIn1);
op = pOp->opcode;
if( op==OP_BitAnd ){
iA &= iB;
}else if( op==OP_BitOr ){
iA |= iB;
}else if( iB!=0 ){
assert( op==OP_ShiftRight || op==OP_ShiftLeft );
/* If shifting by a negative amount, shift in the other direction */
if( iB<0 ){
assert( OP_ShiftRight==OP_ShiftLeft+1 );
op = 2*OP_ShiftLeft + 1 - op;
iB = iB>(-64) ? -iB : 64;
}
if( iB>=64 ){
iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1;
}else{
memcpy(&uA, &iA, sizeof(uA));
if( op==OP_ShiftLeft ){
uA <<= iB;
}else{
uA >>= iB;
/* Sign-extend on a right shift of a negative number */
if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB);
}
memcpy(&iA, &uA, sizeof(iA));
}
}
pOut->u.i = iA;
MemSetTypeFlag(pOut, MEM_Int);
break;
}
/* Opcode: AddImm P1 P2 * * *
** Synopsis: r[P1]=r[P1]+P2
**
** Add the constant P2 to the value in register P1.
** The result is always an integer.
**
** To force any register to be an integer, just add 0.
*/
case OP_AddImm: { /* in1 */
pIn1 = &aMem[pOp->p1];
memAboutToChange(p, pIn1);
sqlite3VdbeMemIntegerify(pIn1);
pIn1->u.i += pOp->p2;
break;
}
/* Opcode: MustBeInt P1 P2 * * *
**
** Force the value in register P1 to be an integer. If the value
** in P1 is not an integer and cannot be converted into an integer
** without data loss, then jump immediately to P2, or if P2==0
** raise an SQLITE_MISMATCH exception.
*/
case OP_MustBeInt: { /* jump, in1 */
pIn1 = &aMem[pOp->p1];
if( (pIn1->flags & MEM_Int)==0 ){
applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
VdbeBranchTaken((pIn1->flags&MEM_Int)==0, 2);
if( (pIn1->flags & MEM_Int)==0 ){
if( pOp->p2==0 ){
rc = SQLITE_MISMATCH;
goto abort_due_to_error;
}else{
goto jump_to_p2;
}
}
}
MemSetTypeFlag(pIn1, MEM_Int);
break;
}
#ifndef SQLITE_OMIT_FLOATING_POINT
/* Opcode: RealAffinity P1 * * * *
**
** If register P1 holds an integer convert it to a real value.
**
** This opcode is used when extracting information from a column that
** has REAL affinity. Such column values may still be stored as
** integers, for space efficiency, but after extraction we want them
** to have only a real value.
*/
case OP_RealAffinity: { /* in1 */
pIn1 = &aMem[pOp->p1];
if( pIn1->flags & MEM_Int ){
sqlite3VdbeMemRealify(pIn1);
}
break;
}
#endif
#ifndef SQLITE_OMIT_CAST
/* Opcode: Cast P1 P2 * * *
** Synopsis: affinity(r[P1])
**
** Force the value in register P1 to be the type defined by P2.
**
** <ul>
** <li> P2=='A' &rarr; BLOB
** <li> P2=='B' &rarr; TEXT
** <li> P2=='C' &rarr; NUMERIC
** <li> P2=='D' &rarr; INTEGER
** <li> P2=='E' &rarr; REAL
** </ul>
**
** A NULL value is not changed by this routine. It remains NULL.
*/
case OP_Cast: { /* in1 */
assert( pOp->p2>=SQLITE_AFF_BLOB && pOp->p2<=SQLITE_AFF_REAL );
testcase( pOp->p2==SQLITE_AFF_TEXT );
testcase( pOp->p2==SQLITE_AFF_BLOB );
testcase( pOp->p2==SQLITE_AFF_NUMERIC );
testcase( pOp->p2==SQLITE_AFF_INTEGER );
testcase( pOp->p2==SQLITE_AFF_REAL );
pIn1 = &aMem[pOp->p1];
memAboutToChange(p, pIn1);
rc = ExpandBlob(pIn1);
sqlite3VdbeMemCast(pIn1, pOp->p2, encoding);
UPDATE_MAX_BLOBSIZE(pIn1);
if( rc ) goto abort_due_to_error;
break;
}
#endif /* SQLITE_OMIT_CAST */
/* Opcode: Eq P1 P2 P3 P4 P5
** Synopsis: IF r[P3]==r[P1]
**
** Compare the values in register P1 and P3. If reg(P3)==reg(P1) then
** jump to address P2. Or if the SQLITE_STOREP2 flag is set in P5, then
** store the result of comparison in register P2.
**
** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
** to coerce both inputs according to this affinity before the
** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
** affinity is used. Note that the affinity conversions are stored
** back into the input registers P1 and P3. So this opcode can cause
** persistent changes to registers P1 and P3.
**
** Once any conversions have taken place, and neither value is NULL,
** the values are compared. If both values are blobs then memcmp() is
** used to determine the results of the comparison. If both values
** are text, then the appropriate collating function specified in
** P4 is used to do the comparison. If P4 is not specified then
** memcmp() is used to compare text string. If both values are
** numeric, then a numeric comparison is used. If the two values
** are of different types, then numbers are considered less than
** strings and strings are considered less than blobs.
**
** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
** true or false and is never NULL. If both operands are NULL then the result
** of comparison is true. If either operand is NULL then the result is false.
** If neither operand is NULL the result is the same as it would be if
** the SQLITE_NULLEQ flag were omitted from P5.
**
** If both SQLITE_STOREP2 and SQLITE_KEEPNULL flags are set then the
** content of r[P2] is only changed if the new value is NULL or 0 (false).
** In other words, a prior r[P2] value will not be overwritten by 1 (true).
*/
/* Opcode: Ne P1 P2 P3 P4 P5
** Synopsis: IF r[P3]!=r[P1]
**
** This works just like the Eq opcode except that the jump is taken if
** the operands in registers P1 and P3 are not equal. See the Eq opcode for
** additional information.
**
** If both SQLITE_STOREP2 and SQLITE_KEEPNULL flags are set then the
** content of r[P2] is only changed if the new value is NULL or 1 (true).
** In other words, a prior r[P2] value will not be overwritten by 0 (false).
*/
/* Opcode: Lt P1 P2 P3 P4 P5
** Synopsis: IF r[P3]<r[P1]
**
** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then
** jump to address P2. Or if the SQLITE_STOREP2 flag is set in P5 store
** the result of comparison (0 or 1 or NULL) into register P2.
**
** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
** reg(P3) is NULL then the take the jump. If the SQLITE_JUMPIFNULL
** bit is clear then fall through if either operand is NULL.
**
** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
** to coerce both inputs according to this affinity before the
** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
** affinity is used. Note that the affinity conversions are stored
** back into the input registers P1 and P3. So this opcode can cause
** persistent changes to registers P1 and P3.
**
** Once any conversions have taken place, and neither value is NULL,
** the values are compared. If both values are blobs then memcmp() is
** used to determine the results of the comparison. If both values
** are text, then the appropriate collating function specified in
** P4 is used to do the comparison. If P4 is not specified then
** memcmp() is used to compare text string. If both values are
** numeric, then a numeric comparison is used. If the two values
** are of different types, then numbers are considered less than
** strings and strings are considered less than blobs.
*/
/* Opcode: Le P1 P2 P3 P4 P5
** Synopsis: IF r[P3]<=r[P1]
**
** This works just like the Lt opcode except that the jump is taken if
** the content of register P3 is less than or equal to the content of
** register P1. See the Lt opcode for additional information.
*/
/* Opcode: Gt P1 P2 P3 P4 P5
** Synopsis: IF r[P3]>r[P1]
**
** This works just like the Lt opcode except that the jump is taken if
** the content of register P3 is greater than the content of
** register P1. See the Lt opcode for additional information.
*/
/* Opcode: Ge P1 P2 P3 P4 P5
** Synopsis: IF r[P3]>=r[P1]
**
** This works just like the Lt opcode except that the jump is taken if
** the content of register P3 is greater than or equal to the content of
** register P1. See the Lt opcode for additional information.
*/
case OP_Eq: /* same as TK_EQ, jump, in1, in3 */
case OP_Ne: /* same as TK_NE, jump, in1, in3 */
case OP_Lt: /* same as TK_LT, jump, in1, in3 */
case OP_Le: /* same as TK_LE, jump, in1, in3 */
case OP_Gt: /* same as TK_GT, jump, in1, in3 */
case OP_Ge: { /* same as TK_GE, jump, in1, in3 */
int res, res2; /* Result of the comparison of pIn1 against pIn3 */
char affinity; /* Affinity to use for comparison */
u16 flags1; /* Copy of initial value of pIn1->flags */
u16 flags3; /* Copy of initial value of pIn3->flags */
pIn1 = &aMem[pOp->p1];
pIn3 = &aMem[pOp->p3];
flags1 = pIn1->flags;
flags3 = pIn3->flags;
if( (flags1 | flags3)&MEM_Null ){
/* One or both operands are NULL */
if( pOp->p5 & SQLITE_NULLEQ ){
/* If SQLITE_NULLEQ is set (which will only happen if the operator is
** OP_Eq or OP_Ne) then take the jump or not depending on whether
** or not both operands are null.
*/
assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne );
assert( (flags1 & MEM_Cleared)==0 );
assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 );
if( (flags1&flags3&MEM_Null)!=0
&& (flags3&MEM_Cleared)==0
){
res = 0; /* Operands are equal */
}else{
res = 1; /* Operands are not equal */
}
}else{
/* SQLITE_NULLEQ is clear and at least one operand is NULL,
** then the result is always NULL.
** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
*/
if( pOp->p5 & SQLITE_STOREP2 ){
pOut = &aMem[pOp->p2];
iCompare = 1; /* Operands are not equal */
memAboutToChange(p, pOut);
MemSetTypeFlag(pOut, MEM_Null);
REGISTER_TRACE(pOp->p2, pOut);
}else{
VdbeBranchTaken(2,3);
if( pOp->p5 & SQLITE_JUMPIFNULL ){
goto jump_to_p2;
}
}
break;
}
}else{
/* Neither operand is NULL. Do a comparison. */
affinity = pOp->p5 & SQLITE_AFF_MASK;
if( affinity>=SQLITE_AFF_NUMERIC ){
if( (flags1 | flags3)&MEM_Str ){
if( (flags1 & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
applyNumericAffinity(pIn1,0);
testcase( flags3!=pIn3->flags ); /* Possible if pIn1==pIn3 */
flags3 = pIn3->flags;
}
if( (flags3 & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
applyNumericAffinity(pIn3,0);
}
}
/* Handle the common case of integer comparison here, as an
** optimization, to avoid a call to sqlite3MemCompare() */
if( (pIn1->flags & pIn3->flags & MEM_Int)!=0 ){
if( pIn3->u.i > pIn1->u.i ){ res = +1; goto compare_op; }
if( pIn3->u.i < pIn1->u.i ){ res = -1; goto compare_op; }
res = 0;
goto compare_op;
}
}else if( affinity==SQLITE_AFF_TEXT ){
if( (flags1 & MEM_Str)==0 && (flags1 & (MEM_Int|MEM_Real))!=0 ){
testcase( pIn1->flags & MEM_Int );
testcase( pIn1->flags & MEM_Real );
sqlite3VdbeMemStringify(pIn1, encoding, 1);
testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) );
flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask);
assert( pIn1!=pIn3 );
}
if( (flags3 & MEM_Str)==0 && (flags3 & (MEM_Int|MEM_Real))!=0 ){
testcase( pIn3->flags & MEM_Int );
testcase( pIn3->flags & MEM_Real );
sqlite3VdbeMemStringify(pIn3, encoding, 1);
testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) );
flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask);
}
}
assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
}
compare_op:
/* At this point, res is negative, zero, or positive if reg[P1] is
** less than, equal to, or greater than reg[P3], respectively. Compute
** the answer to this operator in res2, depending on what the comparison
** operator actually is. The next block of code depends on the fact
** that the 6 comparison operators are consecutive integers in this
** order: NE, EQ, GT, LE, LT, GE */
assert( OP_Eq==OP_Ne+1 ); assert( OP_Gt==OP_Ne+2 ); assert( OP_Le==OP_Ne+3 );
assert( OP_Lt==OP_Ne+4 ); assert( OP_Ge==OP_Ne+5 );
if( res<0 ){ /* ne, eq, gt, le, lt, ge */
static const unsigned char aLTb[] = { 1, 0, 0, 1, 1, 0 };
res2 = aLTb[pOp->opcode - OP_Ne];
}else if( res==0 ){
static const unsigned char aEQb[] = { 0, 1, 0, 1, 0, 1 };
res2 = aEQb[pOp->opcode - OP_Ne];
}else{
static const unsigned char aGTb[] = { 1, 0, 1, 0, 0, 1 };
res2 = aGTb[pOp->opcode - OP_Ne];
}
/* Undo any changes made by applyAffinity() to the input registers. */
assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) );
pIn1->flags = flags1;
assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) );
pIn3->flags = flags3;
if( pOp->p5 & SQLITE_STOREP2 ){
pOut = &aMem[pOp->p2];
iCompare = res;
if( (pOp->p5 & SQLITE_KEEPNULL)!=0 ){
/* The KEEPNULL flag prevents OP_Eq from overwriting a NULL with 1
** and prevents OP_Ne from overwriting NULL with 0. This flag
** is only used in contexts where either:
** (1) op==OP_Eq && (r[P2]==NULL || r[P2]==0)
** (2) op==OP_Ne && (r[P2]==NULL || r[P2]==1)
** Therefore it is not necessary to check the content of r[P2] for
** NULL. */
assert( pOp->opcode==OP_Ne || pOp->opcode==OP_Eq );
assert( res2==0 || res2==1 );
testcase( res2==0 && pOp->opcode==OP_Eq );
testcase( res2==1 && pOp->opcode==OP_Eq );
testcase( res2==0 && pOp->opcode==OP_Ne );
testcase( res2==1 && pOp->opcode==OP_Ne );
if( (pOp->opcode==OP_Eq)==res2 ) break;
}
memAboutToChange(p, pOut);
MemSetTypeFlag(pOut, MEM_Int);
pOut->u.i = res2;
REGISTER_TRACE(pOp->p2, pOut);
}else{
VdbeBranchTaken(res!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3);
if( res2 ){
goto jump_to_p2;
}
}
break;
}
/* Opcode: ElseNotEq * P2 * * *
**
** This opcode must immediately follow an OP_Lt or OP_Gt comparison operator.
** If result of an OP_Eq comparison on the same two operands
** would have be NULL or false (0), then then jump to P2.
** If the result of an OP_Eq comparison on the two previous operands
** would have been true (1), then fall through.
*/
case OP_ElseNotEq: { /* same as TK_ESCAPE, jump */
assert( pOp>aOp );
assert( pOp[-1].opcode==OP_Lt || pOp[-1].opcode==OP_Gt );
assert( pOp[-1].p5 & SQLITE_STOREP2 );
VdbeBranchTaken(iCompare!=0, 2);
if( iCompare!=0 ) goto jump_to_p2;
break;
}
/* Opcode: Permutation * * * P4 *
**
** Set the permutation used by the OP_Compare operator in the next
** instruction. The permutation is stored in the P4 operand.
**
** The permutation is only valid until the next OP_Compare that has
** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should
** occur immediately prior to the OP_Compare.
**
** The first integer in the P4 integer array is the length of the array
** and does not become part of the permutation.
*/
case OP_Permutation: {
assert( pOp->p4type==P4_INTARRAY );
assert( pOp->p4.ai );
assert( pOp[1].opcode==OP_Compare );
assert( pOp[1].p5 & OPFLAG_PERMUTE );
break;
}
/* Opcode: Compare P1 P2 P3 P4 P5
** Synopsis: r[P1@P3] <-> r[P2@P3]
**
** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of
** the comparison for use by the next OP_Jump instruct.
**
** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is
** determined by the most recent OP_Permutation operator. If the
** OPFLAG_PERMUTE bit is clear, then register are compared in sequential
** order.
**
** P4 is a KeyInfo structure that defines collating sequences and sort
** orders for the comparison. The permutation applies to registers
** only. The KeyInfo elements are used sequentially.
**
** The comparison is a sort comparison, so NULLs compare equal,
** NULLs are less than numbers, numbers are less than strings,
** and strings are less than blobs.
*/
case OP_Compare: {
int n;
int i;
int p1;
int p2;
const KeyInfo *pKeyInfo;
int idx;
CollSeq *pColl; /* Collating sequence to use on this term */
int bRev; /* True for DESCENDING sort order */
int *aPermute; /* The permutation */
if( (pOp->p5 & OPFLAG_PERMUTE)==0 ){
aPermute = 0;
}else{
assert( pOp>aOp );
assert( pOp[-1].opcode==OP_Permutation );
assert( pOp[-1].p4type==P4_INTARRAY );
aPermute = pOp[-1].p4.ai + 1;
assert( aPermute!=0 );
}
n = pOp->p3;
pKeyInfo = pOp->p4.pKeyInfo;
assert( n>0 );
assert( pKeyInfo!=0 );
p1 = pOp->p1;
p2 = pOp->p2;
#ifdef SQLITE_DEBUG
if( aPermute ){
int k, mx = 0;
for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k];
assert( p1>0 && p1+mx<=(p->nMem+1 - p->nCursor)+1 );
assert( p2>0 && p2+mx<=(p->nMem+1 - p->nCursor)+1 );
}else{
assert( p1>0 && p1+n<=(p->nMem+1 - p->nCursor)+1 );
assert( p2>0 && p2+n<=(p->nMem+1 - p->nCursor)+1 );
}
#endif /* SQLITE_DEBUG */
for(i=0; i<n; i++){
idx = aPermute ? aPermute[i] : i;
assert( memIsValid(&aMem[p1+idx]) );
assert( memIsValid(&aMem[p2+idx]) );
REGISTER_TRACE(p1+idx, &aMem[p1+idx]);
REGISTER_TRACE(p2+idx, &aMem[p2+idx]);
assert( i<pKeyInfo->nKeyField );
pColl = pKeyInfo->aColl[i];
bRev = pKeyInfo->aSortOrder[i];
iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl);
if( iCompare ){
if( bRev ) iCompare = -iCompare;
break;
}
}
break;
}
/* Opcode: Jump P1 P2 P3 * *
**
** Jump to the instruction at address P1, P2, or P3 depending on whether
** in the most recent OP_Compare instruction the P1 vector was less than
** equal to, or greater than the P2 vector, respectively.
*/
case OP_Jump: { /* jump */
if( iCompare<0 ){
VdbeBranchTaken(0,3); pOp = &aOp[pOp->p1 - 1];
}else if( iCompare==0 ){
VdbeBranchTaken(1,3); pOp = &aOp[pOp->p2 - 1];
}else{
VdbeBranchTaken(2,3); pOp = &aOp[pOp->p3 - 1];
}
break;
}
/* Opcode: And P1 P2 P3 * *
** Synopsis: r[P3]=(r[P1] && r[P2])
**
** Take the logical AND of the values in registers P1 and P2 and
** write the result into register P3.
**
** If either P1 or P2 is 0 (false) then the result is 0 even if
** the other input is NULL. A NULL and true or two NULLs give
** a NULL output.
*/
/* Opcode: Or P1 P2 P3 * *
** Synopsis: r[P3]=(r[P1] || r[P2])
**
** Take the logical OR of the values in register P1 and P2 and
** store the answer in register P3.
**
** If either P1 or P2 is nonzero (true) then the result is 1 (true)
** even if the other input is NULL. A NULL and false or two NULLs
** give a NULL output.
*/
case OP_And: /* same as TK_AND, in1, in2, out3 */
case OP_Or: { /* same as TK_OR, in1, in2, out3 */
int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
pIn1 = &aMem[pOp->p1];
if( pIn1->flags & MEM_Null ){
v1 = 2;
}else{
v1 = sqlite3VdbeIntValue(pIn1)!=0;
}
pIn2 = &aMem[pOp->p2];
if( pIn2->flags & MEM_Null ){
v2 = 2;
}else{
v2 = sqlite3VdbeIntValue(pIn2)!=0;
}
if( pOp->opcode==OP_And ){
static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
v1 = and_logic[v1*3+v2];
}else{
static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
v1 = or_logic[v1*3+v2];
}
pOut = &aMem[pOp->p3];
if( v1==2 ){
MemSetTypeFlag(pOut, MEM_Null);
}else{
pOut->u.i = v1;
MemSetTypeFlag(pOut, MEM_Int);
}
break;
}
/* Opcode: Not P1 P2 * * *
** Synopsis: r[P2]= !r[P1]
**
** Interpret the value in register P1 as a boolean value. Store the
** boolean complement in register P2. If the value in register P1 is
** NULL, then a NULL is stored in P2.
*/
case OP_Not: { /* same as TK_NOT, in1, out2 */
pIn1 = &aMem[pOp->p1];
pOut = &aMem[pOp->p2];
sqlite3VdbeMemSetNull(pOut);
if( (pIn1->flags & MEM_Null)==0 ){
pOut->flags = MEM_Int;
pOut->u.i = !sqlite3VdbeIntValue(pIn1);
}
break;
}
/* Opcode: BitNot P1 P2 * * *
** Synopsis: r[P1]= ~r[P1]
**
** Interpret the content of register P1 as an integer. Store the
** ones-complement of the P1 value into register P2. If P1 holds
** a NULL then store a NULL in P2.
*/
case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */
pIn1 = &aMem[pOp->p1];
pOut = &aMem[pOp->p2];
sqlite3VdbeMemSetNull(pOut);
if( (pIn1->flags & MEM_Null)==0 ){
pOut->flags = MEM_Int;
pOut->u.i = ~sqlite3VdbeIntValue(pIn1);
}
break;
}
/* Opcode: Once P1 P2 * * *
**
** Fall through to the next instruction the first time this opcode is
** encountered on each invocation of the byte-code program. Jump to P2
** on the second and all subsequent encounters during the same invocation.
**
** Top-level programs determine first invocation by comparing the P1
** operand against the P1 operand on the OP_Init opcode at the beginning
** of the program. If the P1 values differ, then fall through and make
** the P1 of this opcode equal to the P1 of OP_Init. If P1 values are
** the same then take the jump.
**
** For subprograms, there is a bitmask in the VdbeFrame that determines
** whether or not the jump should be taken. The bitmask is necessary
** because the self-altering code trick does not work for recursive
** triggers.
*/
case OP_Once: { /* jump */
u32 iAddr; /* Address of this instruction */
assert( p->aOp[0].opcode==OP_Init );
if( p->pFrame ){
iAddr = (int)(pOp - p->aOp);
if( (p->pFrame->aOnce[iAddr/8] & (1<<(iAddr & 7)))!=0 ){
VdbeBranchTaken(1, 2);
goto jump_to_p2;
}
p->pFrame->aOnce[iAddr/8] |= 1<<(iAddr & 7);
}else{
if( p->aOp[0].p1==pOp->p1 ){
VdbeBranchTaken(1, 2);
goto jump_to_p2;
}
}
VdbeBranchTaken(0, 2);
pOp->p1 = p->aOp[0].p1;
break;
}
/* Opcode: If P1 P2 P3 * *
**
** Jump to P2 if the value in register P1 is true. The value
** is considered true if it is numeric and non-zero. If the value
** in P1 is NULL then take the jump if and only if P3 is non-zero.
*/
/* Opcode: IfNot P1 P2 P3 * *
**
** Jump to P2 if the value in register P1 is False. The value
** is considered false if it has a numeric value of zero. If the value
** in P1 is NULL then take the jump if and only if P3 is non-zero.
*/
case OP_If: /* jump, in1 */
case OP_IfNot: { /* jump, in1 */
int c;
pIn1 = &aMem[pOp->p1];
if( pIn1->flags & MEM_Null ){
c = pOp->p3;
}else{
#ifdef SQLITE_OMIT_FLOATING_POINT
c = sqlite3VdbeIntValue(pIn1)!=0;
#else
c = sqlite3VdbeRealValue(pIn1)!=0.0;
#endif
if( pOp->opcode==OP_IfNot ) c = !c;
}
VdbeBranchTaken(c!=0, 2);
if( c ){
goto jump_to_p2;
}
break;
}
/* Opcode: IsNull P1 P2 * * *
** Synopsis: if r[P1]==NULL goto P2
**
** Jump to P2 if the value in register P1 is NULL.
*/
case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */
pIn1 = &aMem[pOp->p1];
VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2);
if( (pIn1->flags & MEM_Null)!=0 ){
goto jump_to_p2;
}
break;
}
/* Opcode: NotNull P1 P2 * * *
** Synopsis: if r[P1]!=NULL goto P2
**
** Jump to P2 if the value in register P1 is not NULL.
*/
case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */
pIn1 = &aMem[pOp->p1];
VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2);
if( (pIn1->flags & MEM_Null)==0 ){
goto jump_to_p2;
}
break;
}
/* Opcode: IfNullRow P1 P2 P3 * *
** Synopsis: if P1.nullRow then r[P3]=NULL, goto P2
**
** Check the cursor P1 to see if it is currently pointing at a NULL row.
** If it is, then set register P3 to NULL and jump immediately to P2.
** If P1 is not on a NULL row, then fall through without making any
** changes.
*/
case OP_IfNullRow: { /* jump */
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
assert( p->apCsr[pOp->p1]!=0 );
if( p->apCsr[pOp->p1]->nullRow ){
sqlite3VdbeMemSetNull(aMem + pOp->p3);
goto jump_to_p2;
}
break;
}
/* Opcode: Location P1 P2 * * *
** Synopsis: r[P2] = location(P1)
**
** Store in register r[P2] the location in the database file that is the
** start of the payload for the record at which that cursor P1 is currently
** pointing.
*/
case OP_Location: { /* out2 */
VdbeCursor *pC; /* The VDBE cursor */
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
pC = p->apCsr[pOp->p1];
pOut = out2Prerelease(p, pOp);
if( pC==0 || pC->eCurType!=CURTYPE_BTREE ){
pOut->flags = MEM_Null;
}else{
pOut->u.i = sqlite3BtreeLocation(pC->uc.pCursor);
}
break;
}
/* Opcode: Column P1 P2 P3 P4 P5
** Synopsis: r[P3]=PX
**
** Interpret the data that cursor P1 points to as a structure built using
** the MakeRecord instruction. (See the MakeRecord opcode for additional
** information about the format of the data.) Extract the P2-th column
** from this record. If there are less that (P2+1)
** values in the record, extract a NULL.
**
** The value extracted is stored in register P3.
**
** If the record contains fewer than P2 fields, then extract a NULL. Or,
** if the P4 argument is a P4_MEM use the value of the P4 argument as
** the result.
**
** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor,
** then the cache of the cursor is reset prior to extracting the column.
** The first OP_Column against a pseudo-table after the value of the content
** register has changed should have this bit set.
**
** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 then
** the result is guaranteed to only be used as the argument of a length()
** or typeof() function, respectively. The loading of large blobs can be
** skipped for length() and all content loading can be skipped for typeof().
*/
case OP_Column: {
int p2; /* column number to retrieve */
VdbeCursor *pC; /* The VDBE cursor */
BtCursor *pCrsr; /* The BTree cursor */
u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */
int len; /* The length of the serialized data for the column */
int i; /* Loop counter */
Mem *pDest; /* Where to write the extracted value */
Mem sMem; /* For storing the record being decoded */
const u8 *zData; /* Part of the record being decoded */
const u8 *zHdr; /* Next unparsed byte of the header */
const u8 *zEndHdr; /* Pointer to first byte after the header */
u64 offset64; /* 64-bit offset */
u32 t; /* A type code from the record header */
Mem *pReg; /* PseudoTable input register */
pC = p->apCsr[pOp->p1];
p2 = pOp->p2;
/* If the cursor cache is stale (meaning it is not currently point at
** the correct row) then bring it up-to-date by doing the necessary
** B-Tree seek. */
rc = sqlite3VdbeCursorMoveto(&pC, &p2);
if( rc ) goto abort_due_to_error;
assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
pDest = &aMem[pOp->p3];
memAboutToChange(p, pDest);
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
assert( pC!=0 );
assert( p2<pC->nField );
aOffset = pC->aOffset;
assert( pC->eCurType!=CURTYPE_VTAB );
assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
assert( pC->eCurType!=CURTYPE_SORTER );
if( pC->cacheStatus!=p->cacheCtr ){ /*OPTIMIZATION-IF-FALSE*/
if( pC->nullRow ){
if( pC->eCurType==CURTYPE_PSEUDO ){
/* For the special case of as pseudo-cursor, the seekResult field
** identifies the register that holds the record */
assert( pC->seekResult>0 );
pReg = &aMem[pC->seekResult];
assert( pReg->flags & MEM_Blob );
assert( memIsValid(pReg) );
pC->payloadSize = pC->szRow = pReg->n;
pC->aRow = (u8*)pReg->z;
}else{
sqlite3VdbeMemSetNull(pDest);
goto op_column_out;
}
}else{
pCrsr = pC->uc.pCursor;
assert( pC->eCurType==CURTYPE_BTREE );
assert( pCrsr );
assert( sqlite3BtreeCursorIsValid(pCrsr) );
pC->payloadSize = sqlite3BtreePayloadSize(pCrsr);
pC->aRow = sqlite3BtreePayloadFetch(pCrsr, &pC->szRow);
assert( pC->szRow<=pC->payloadSize );
assert( pC->szRow<=65536 ); /* Maximum page size is 64KiB */
if( pC->payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
goto too_big;
}
}
pC->cacheStatus = p->cacheCtr;
pC->iHdrOffset = getVarint32(pC->aRow, aOffset[0]);
pC->nHdrParsed = 0;
if( pC->szRow<aOffset[0] ){ /*OPTIMIZATION-IF-FALSE*/
/* pC->aRow does not have to hold the entire row, but it does at least
** need to cover the header of the record. If pC->aRow does not contain
** the complete header, then set it to zero, forcing the header to be
** dynamically allocated. */
pC->aRow = 0;
pC->szRow = 0;
/* Make sure a corrupt database has not given us an oversize header.
** Do this now to avoid an oversize memory allocation.
**
** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte
** types use so much data space that there can only be 4096 and 32 of
** them, respectively. So the maximum header length results from a
** 3-byte type for each of the maximum of 32768 columns plus three
** extra bytes for the header length itself. 32768*3 + 3 = 98307.
*/
if( aOffset[0] > 98307 || aOffset[0] > pC->payloadSize ){
goto op_column_corrupt;
}
}else{
/* This is an optimization. By skipping over the first few tests
** (ex: pC->nHdrParsed<=p2) in the next section, we achieve a
** measurable performance gain.
**
** This branch is taken even if aOffset[0]==0. Such a record is never
** generated by SQLite, and could be considered corruption, but we
** accept it for historical reasons. When aOffset[0]==0, the code this
** branch jumps to reads past the end of the record, but never more
** than a few bytes. Even if the record occurs at the end of the page
** content area, the "page header" comes after the page content and so
** this overread is harmless. Similar overreads can occur for a corrupt
** database file.
*/
zData = pC->aRow;
assert( pC->nHdrParsed<=p2 ); /* Conditional skipped */
testcase( aOffset[0]==0 );
goto op_column_read_header;
}
}
/* Make sure at least the first p2+1 entries of the header have been
** parsed and valid information is in aOffset[] and pC->aType[].
*/
if( pC->nHdrParsed<=p2 ){
/* If there is more header available for parsing in the record, try
** to extract additional fields up through the p2+1-th field
*/
if( pC->iHdrOffset<aOffset[0] ){
/* Make sure zData points to enough of the record to cover the header. */
if( pC->aRow==0 ){
memset(&sMem, 0, sizeof(sMem));
rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, 0, aOffset[0], &sMem);
if( rc!=SQLITE_OK ) goto abort_due_to_error;
zData = (u8*)sMem.z;
}else{
zData = pC->aRow;
}
/* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */
op_column_read_header:
i = pC->nHdrParsed;
offset64 = aOffset[i];
zHdr = zData + pC->iHdrOffset;
zEndHdr = zData + aOffset[0];
testcase( zHdr>=zEndHdr );
do{
if( (t = zHdr[0])<0x80 ){
zHdr++;
offset64 += sqlite3VdbeOneByteSerialTypeLen(t);
}else{
zHdr += sqlite3GetVarint32(zHdr, &t);
offset64 += sqlite3VdbeSerialTypeLen(t);
}
pC->aType[i++] = t;
aOffset[i] = (u32)(offset64 & 0xffffffff);
}while( i<=p2 && zHdr<zEndHdr );
/* The record is corrupt if any of the following are true:
** (1) the bytes of the header extend past the declared header size
** (2) the entire header was used but not all data was used
** (3) the end of the data extends beyond the end of the record.
*/
if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset64!=pC->payloadSize))
|| (offset64 > pC->payloadSize)
){
if( aOffset[0]==0 ){
i = 0;
zHdr = zEndHdr;
}else{
if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);
goto op_column_corrupt;
}
}
pC->nHdrParsed = i;
pC->iHdrOffset = (u32)(zHdr - zData);
if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);
}else{
t = 0;
}
/* If after trying to extract new entries from the header, nHdrParsed is
** still not up to p2, that means that the record has fewer than p2
** columns. So the result will be either the default value or a NULL.
*/
if( pC->nHdrParsed<=p2 ){
if( pOp->p4type==P4_MEM ){
sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
}else{
sqlite3VdbeMemSetNull(pDest);
}
goto op_column_out;
}
}else{
t = pC->aType[p2];
}
/* Extract the content for the p2+1-th column. Control can only
** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are
** all valid.
*/
assert( p2<pC->nHdrParsed );
assert( rc==SQLITE_OK );
assert( sqlite3VdbeCheckMemInvariants(pDest) );
if( VdbeMemDynamic(pDest) ){
sqlite3VdbeMemSetNull(pDest);
}
assert( t==pC->aType[p2] );
if( pC->szRow>=aOffset[p2+1] ){
/* This is the common case where the desired content fits on the original
** page - where the content is not on an overflow page */
zData = pC->aRow + aOffset[p2];
if( t<12 ){
sqlite3VdbeSerialGet(zData, t, pDest);
}else{
/* If the column value is a string, we need a persistent value, not
** a MEM_Ephem value. This branch is a fast short-cut that is equivalent
** to calling sqlite3VdbeSerialGet() and sqlite3VdbeDeephemeralize().
*/
static const u16 aFlag[] = { MEM_Blob, MEM_Str|MEM_Term };
pDest->n = len = (t-12)/2;
pDest->enc = encoding;
if( pDest->szMalloc < len+2 ){
pDest->flags = MEM_Null;
if( sqlite3VdbeMemGrow(pDest, len+2, 0) ) goto no_mem;
}else{
pDest->z = pDest->zMalloc;
}
memcpy(pDest->z, zData, len);
pDest->z[len] = 0;
pDest->z[len+1] = 0;
pDest->flags = aFlag[t&1];
}
}else{
pDest->enc = encoding;
/* This branch happens only when content is on overflow pages */
if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0
&& ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0))
|| (len = sqlite3VdbeSerialTypeLen(t))==0
){
/* Content is irrelevant for
** 1. the typeof() function,
** 2. the length(X) function if X is a blob, and
** 3. if the content length is zero.
** So we might as well use bogus content rather than reading
** content from disk.
**
** Although sqlite3VdbeSerialGet() may read at most 8 bytes from the
** buffer passed to it, debugging function VdbeMemPrettyPrint() may
** read up to 16. So 16 bytes of bogus content is supplied.
*/
static u8 aZero[16]; /* This is the bogus content */
sqlite3VdbeSerialGet(aZero, t, pDest);
}else{
rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, aOffset[p2], len, pDest);
if( rc!=SQLITE_OK ) goto abort_due_to_error;
sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest);
pDest->flags &= ~MEM_Ephem;
}
}
op_column_out:
UPDATE_MAX_BLOBSIZE(pDest);
REGISTER_TRACE(pOp->p3, pDest);
break;
op_column_corrupt:
if( aOp[0].p3>0 ){
pOp = &aOp[aOp[0].p3-1];
break;
}else{
rc = SQLITE_CORRUPT_BKPT;
goto abort_due_to_error;
}
}
/* Opcode: Affinity P1 P2 * P4 *
** Synopsis: affinity(r[P1@P2])
**
** Apply affinities to a range of P2 registers starting with P1.
**
** P4 is a string that is P2 characters long. The N-th character of the
** string indicates the column affinity that should be used for the N-th
** memory cell in the range.
*/
case OP_Affinity: {
const char *zAffinity; /* The affinity to be applied */
zAffinity = pOp->p4.z;
assert( zAffinity!=0 );
assert( pOp->p2>0 );
assert( zAffinity[pOp->p2]==0 );
pIn1 = &aMem[pOp->p1];
do{
assert( pIn1 <= &p->aMem[(p->nMem+1 - p->nCursor)] );
assert( memIsValid(pIn1) );
applyAffinity(pIn1, *(zAffinity++), encoding);
pIn1++;
}while( zAffinity[0] );
break;
}
/* Opcode: MakeRecord P1 P2 P3 P4 *
** Synopsis: r[P3]=mkrec(r[P1@P2])
**
** Convert P2 registers beginning with P1 into the [record format]
** use as a data record in a database table or as a key
** in an index. The OP_Column opcode can decode the record later.
**
** P4 may be a string that is P2 characters long. The N-th character of the
** string indicates the column affinity that should be used for the N-th
** field of the index key.
**
** The mapping from character to affinity is given by the SQLITE_AFF_
** macros defined in sqliteInt.h.
**
** If P4 is NULL then all index fields have the affinity BLOB.
*/
case OP_MakeRecord: {
u8 *zNewRecord; /* A buffer to hold the data for the new record */
Mem *pRec; /* The new record */
u64 nData; /* Number of bytes of data space */
int nHdr; /* Number of bytes of header space */
i64 nByte; /* Data space required for this record */
i64 nZero; /* Number of zero bytes at the end of the record */
int nVarint; /* Number of bytes in a varint */
u32 serial_type; /* Type field */
Mem *pData0; /* First field to be combined into the record */
Mem *pLast; /* Last field of the record */
int nField; /* Number of fields in the record */
char *zAffinity; /* The affinity string for the record */
int file_format; /* File format to use for encoding */
int i; /* Space used in zNewRecord[] header */
int j; /* Space used in zNewRecord[] content */
u32 len; /* Length of a field */
/* Assuming the record contains N fields, the record format looks
** like this:
**
** ------------------------------------------------------------------------
** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
** ------------------------------------------------------------------------
**
** Data(0) is taken from register P1. Data(1) comes from register P1+1
** and so forth.
**
** Each type field is a varint representing the serial type of the
** corresponding data element (see sqlite3VdbeSerialType()). The
** hdr-size field is also a varint which is the offset from the beginning
** of the record to data0.
*/
nData = 0; /* Number of bytes of data space */
nHdr = 0; /* Number of bytes of header space */
nZero = 0; /* Number of zero bytes at the end of the record */
nField = pOp->p1;
zAffinity = pOp->p4.z;
assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem+1 - p->nCursor)+1 );
pData0 = &aMem[nField];
nField = pOp->p2;
pLast = &pData0[nField-1];
file_format = p->minWriteFileFormat;
/* Identify the output register */
assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
pOut = &aMem[pOp->p3];
memAboutToChange(p, pOut);
/* Apply the requested affinity to all inputs
*/
assert( pData0<=pLast );
if( zAffinity ){
pRec = pData0;
do{
applyAffinity(pRec++, *(zAffinity++), encoding);
assert( zAffinity[0]==0 || pRec<=pLast );
}while( zAffinity[0] );
}
#ifdef SQLITE_ENABLE_NULL_TRIM
/* NULLs can be safely trimmed from the end of the record, as long as
** as the schema format is 2 or more and none of the omitted columns
** have a non-NULL default value. Also, the record must be left with
** at least one field. If P5>0 then it will be one more than the
** index of the right-most column with a non-NULL default value */
if( pOp->p5 ){
while( (pLast->flags & MEM_Null)!=0 && nField>pOp->p5 ){
pLast--;
nField--;
}
}
#endif
/* Loop through the elements that will make up the record to figure
** out how much space is required for the new record.
*/
pRec = pLast;
do{
assert( memIsValid(pRec) );
pRec->uTemp = serial_type = sqlite3VdbeSerialType(pRec, file_format, &len);
if( pRec->flags & MEM_Zero ){
if( nData ){
if( sqlite3VdbeMemExpandBlob(pRec) ) goto no_mem;
}else{
nZero += pRec->u.nZero;
len -= pRec->u.nZero;
}
}
nData += len;
testcase( serial_type==127 );
testcase( serial_type==128 );
nHdr += serial_type<=127 ? 1 : sqlite3VarintLen(serial_type);
if( pRec==pData0 ) break;
pRec--;
}while(1);
/* EVIDENCE-OF: R-22564-11647 The header begins with a single varint
** which determines the total number of bytes in the header. The varint
** value is the size of the header in bytes including the size varint
** itself. */
testcase( nHdr==126 );
testcase( nHdr==127 );
if( nHdr<=126 ){
/* The common case */
nHdr += 1;
}else{
/* Rare case of a really large header */
nVarint = sqlite3VarintLen(nHdr);
nHdr += nVarint;
if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++;
}
nByte = nHdr+nData;
if( nByte+nZero>db->aLimit[SQLITE_LIMIT_LENGTH] ){
goto too_big;
}
/* Make sure the output register has a buffer large enough to store
** the new record. The output register (pOp->p3) is not allowed to
** be one of the input registers (because the following call to
** sqlite3VdbeMemClearAndResize() could clobber the value before it is used).
*/
if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){
goto no_mem;
}
zNewRecord = (u8 *)pOut->z;
/* Write the record */
i = putVarint32(zNewRecord, nHdr);
j = nHdr;
assert( pData0<=pLast );
pRec = pData0;
do{
serial_type = pRec->uTemp;
/* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more
** additional varints, one per column. */
i += putVarint32(&zNewRecord[i], serial_type); /* serial type */
/* EVIDENCE-OF: R-64536-51728 The values for each column in the record
** immediately follow the header. */
j += sqlite3VdbeSerialPut(&zNewRecord[j], pRec, serial_type); /* content */
}while( (++pRec)<=pLast );
assert( i==nHdr );
assert( j==nByte );
assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
pOut->n = (int)nByte;
pOut->flags = MEM_Blob;
if( nZero ){
pOut->u.nZero = nZero;
pOut->flags |= MEM_Zero;
}
REGISTER_TRACE(pOp->p3, pOut);
UPDATE_MAX_BLOBSIZE(pOut);
break;
}
/* Opcode: Count P1 P2 * * *
** Synopsis: r[P2]=count()
**
** Store the number of entries (an integer value) in the table or index
** opened by cursor P1 in register P2
*/
#ifndef SQLITE_OMIT_BTREECOUNT
case OP_Count: { /* out2 */
i64 nEntry;
BtCursor *pCrsr;
assert( p->apCsr[pOp->p1]->eCurType==CURTYPE_BTREE );
pCrsr = p->apCsr[pOp->p1]->uc.pCursor;
assert( pCrsr );
nEntry = 0; /* Not needed. Only used to silence a warning. */
rc = sqlite3BtreeCount(pCrsr, &nEntry);
if( rc ) goto abort_due_to_error;
pOut = out2Prerelease(p, pOp);
pOut->u.i = nEntry;
break;
}
#endif
/* Opcode: Savepoint P1 * * P4 *
**
** Open, release or rollback the savepoint named by parameter P4, depending
** on the value of P1. To open a new savepoint, P1==0. To release (commit) an
** existing savepoint, P1==1, or to rollback an existing savepoint P1==2.
*/
case OP_Savepoint: {
int p1; /* Value of P1 operand */
char *zName; /* Name of savepoint */
int nName;
Savepoint *pNew;
Savepoint *pSavepoint;
Savepoint *pTmp;
int iSavepoint;
int ii;
p1 = pOp->p1;
zName = pOp->p4.z;
/* Assert that the p1 parameter is valid. Also that if there is no open
** transaction, then there cannot be any savepoints.
*/
assert( db->pSavepoint==0 || db->autoCommit==0 );
assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK );
assert( db->pSavepoint || db->isTransactionSavepoint==0 );
assert( checkSavepointCount(db) );
assert( p->bIsReader );
if( p1==SAVEPOINT_BEGIN ){
if( db->nVdbeWrite>0 ){
/* A new savepoint cannot be created if there are active write
** statements (i.e. open read/write incremental blob handles).
*/
sqlite3VdbeError(p, "cannot open savepoint - SQL statements in progress");
rc = SQLITE_BUSY;
}else{
nName = sqlite3Strlen30(zName);
#ifndef SQLITE_OMIT_VIRTUALTABLE
/* This call is Ok even if this savepoint is actually a transaction
** savepoint (and therefore should not prompt xSavepoint()) callbacks.
** If this is a transaction savepoint being opened, it is guaranteed
** that the db->aVTrans[] array is empty. */
assert( db->autoCommit==0 || db->nVTrans==0 );
rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN,
db->nStatement+db->nSavepoint);
if( rc!=SQLITE_OK ) goto abort_due_to_error;
#endif
/* Create a new savepoint structure. */
pNew = sqlite3DbMallocRawNN(db, sizeof(Savepoint)+nName+1);
if( pNew ){
pNew->zName = (char *)&pNew[1];
memcpy(pNew->zName, zName, nName+1);
/* If there is no open transaction, then mark this as a special
** "transaction savepoint". */
if( db->autoCommit ){
db->autoCommit = 0;
db->isTransactionSavepoint = 1;
}else{
db->nSavepoint++;
}
/* Link the new savepoint into the database handle's list. */
pNew->pNext = db->pSavepoint;
db->pSavepoint = pNew;
pNew->nDeferredCons = db->nDeferredCons;
pNew->nDeferredImmCons = db->nDeferredImmCons;
}
}
}else{
iSavepoint = 0;
/* Find the named savepoint. If there is no such savepoint, then an
** an error is returned to the user. */
for(
pSavepoint = db->pSavepoint;
pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName);
pSavepoint = pSavepoint->pNext
){
iSavepoint++;
}
if( !pSavepoint ){
sqlite3VdbeError(p, "no such savepoint: %s", zName);
rc = SQLITE_ERROR;
}else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){
/* It is not possible to release (commit) a savepoint if there are
** active write statements.
*/
sqlite3VdbeError(p, "cannot release savepoint - "
"SQL statements in progress");
rc = SQLITE_BUSY;
}else{
/* Determine whether or not this is a transaction savepoint. If so,
** and this is a RELEASE command, then the current transaction
** is committed.
*/
int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint;
if( isTransaction && p1==SAVEPOINT_RELEASE ){
if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
goto vdbe_return;
}
db->autoCommit = 1;
if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
p->pc = (int)(pOp - aOp);
db->autoCommit = 0;
p->rc = rc = SQLITE_BUSY;
goto vdbe_return;
}
db->isTransactionSavepoint = 0;
rc = p->rc;
}else{
int isSchemaChange;
iSavepoint = db->nSavepoint - iSavepoint - 1;
if( p1==SAVEPOINT_ROLLBACK ){
isSchemaChange = (db->mDbFlags & DBFLAG_SchemaChange)!=0;
for(ii=0; ii<db->nDb; ii++){
rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt,
SQLITE_ABORT_ROLLBACK,
isSchemaChange==0);
if( rc!=SQLITE_OK ) goto abort_due_to_error;
}
}else{
isSchemaChange = 0;
}
for(ii=0; ii<db->nDb; ii++){
rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint);
if( rc!=SQLITE_OK ){
goto abort_due_to_error;
}
}
if( isSchemaChange ){
sqlite3ExpirePreparedStatements(db);
sqlite3ResetAllSchemasOfConnection(db);
db->mDbFlags |= DBFLAG_SchemaChange;
}
}
/* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
** savepoints nested inside of the savepoint being operated on. */
while( db->pSavepoint!=pSavepoint ){
pTmp = db->pSavepoint;
db->pSavepoint = pTmp->pNext;
sqlite3DbFree(db, pTmp);
db->nSavepoint--;
}
/* If it is a RELEASE, then destroy the savepoint being operated on
** too. If it is a ROLLBACK TO, then set the number of deferred
** constraint violations present in the database to the value stored
** when the savepoint was created. */
if( p1==SAVEPOINT_RELEASE ){
assert( pSavepoint==db->pSavepoint );
db->pSavepoint = pSavepoint->pNext;
sqlite3DbFree(db, pSavepoint);
if( !isTransaction ){
db->nSavepoint--;
}
}else{
db->nDeferredCons = pSavepoint->nDeferredCons;
db->nDeferredImmCons = pSavepoint->nDeferredImmCons;
}
if( !isTransaction || p1==SAVEPOINT_ROLLBACK ){
rc = sqlite3VtabSavepoint(db, p1, iSavepoint);
if( rc!=SQLITE_OK ) goto abort_due_to_error;
}
}
}
if( rc ) goto abort_due_to_error;
break;
}
/* Opcode: AutoCommit P1 P2 * * *
**
** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
** back any currently active btree transactions. If there are any active
** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if
** there are active writing VMs or active VMs that use shared cache.
**
** This instruction causes the VM to halt.
*/
case OP_AutoCommit: {
int desiredAutoCommit;
int iRollback;
desiredAutoCommit = pOp->p1;
iRollback = pOp->p2;
assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
assert( desiredAutoCommit==1 || iRollback==0 );
assert( db->nVdbeActive>0 ); /* At least this one VM is active */
assert( p->bIsReader );
if( desiredAutoCommit!=db->autoCommit ){
if( iRollback ){
assert( desiredAutoCommit==1 );
sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
db->autoCommit = 1;
}else if( desiredAutoCommit && db->nVdbeWrite>0 ){
/* If this instruction implements a COMMIT and other VMs are writing
** return an error indicating that the other VMs must complete first.
*/
sqlite3VdbeError(p, "cannot commit transaction - "
"SQL statements in progress");
rc = SQLITE_BUSY;
goto abort_due_to_error;
}else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
goto vdbe_return;
}else{
db->autoCommit = (u8)desiredAutoCommit;
}
if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
p->pc = (int)(pOp - aOp);
db->autoCommit = (u8)(1-desiredAutoCommit);
p->rc = rc = SQLITE_BUSY;
goto vdbe_return;
}
assert( db->nStatement==0 );
sqlite3CloseSavepoints(db);
if( p->rc==SQLITE_OK ){
rc = SQLITE_DONE;
}else{
rc = SQLITE_ERROR;
}
goto vdbe_return;
}else{
sqlite3VdbeError(p,
(!desiredAutoCommit)?"cannot start a transaction within a transaction":(
(iRollback)?"cannot rollback - no transaction is active":
"cannot commit - no transaction is active"));
rc = SQLITE_ERROR;
goto abort_due_to_error;
}
break;
}
/* Opcode: Transaction P1 P2 P3 P4 P5
**
** Begin a transaction on database P1 if a transaction is not already
** active.
** If P2 is non-zero, then a write-transaction is started, or if a
** read-transaction is already active, it is upgraded to a write-transaction.
** If P2 is zero, then a read-transaction is started.
**
** P1 is the index of the database file on which the transaction is
** started. Index 0 is the main database file and index 1 is the
** file used for temporary tables. Indices of 2 or more are used for
** attached databases.
**
** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
** true (this flag is set if the Vdbe may modify more than one row and may
** throw an ABORT exception), a statement transaction may also be opened.
** More specifically, a statement transaction is opened iff the database
** connection is currently not in autocommit mode, or if there are other
** active statements. A statement transaction allows the changes made by this
** VDBE to be rolled back after an error without having to roll back the
** entire transaction. If no error is encountered, the statement transaction
** will automatically commit when the VDBE halts.
**
** If P5!=0 then this opcode also checks the schema cookie against P3
** and the schema generation counter against P4.
** The cookie changes its value whenever the database schema changes.
** This operation is used to detect when that the cookie has changed
** and that the current process needs to reread the schema. If the schema
** cookie in P3 differs from the schema cookie in the database header or
** if the schema generation counter in P4 differs from the current
** generation counter, then an SQLITE_SCHEMA error is raised and execution
** halts. The sqlite3_step() wrapper function might then reprepare the
** statement and rerun it from the beginning.
*/
case OP_Transaction: {
Btree *pBt;
int iMeta;
int iGen;
assert( p->bIsReader );
assert( p->readOnly==0 || pOp->p2==0 );
assert( pOp->p1>=0 && pOp->p1<db->nDb );
assert( DbMaskTest(p->btreeMask, pOp->p1) );
if( pOp->p2 && (db->flags & SQLITE_QueryOnly)!=0 ){
rc = SQLITE_READONLY;
goto abort_due_to_error;
}
pBt = db->aDb[pOp->p1].pBt;
if( pBt ){
rc = sqlite3BtreeBeginTrans(pBt, pOp->p2);
testcase( rc==SQLITE_BUSY_SNAPSHOT );
testcase( rc==SQLITE_BUSY_RECOVERY );
if( rc!=SQLITE_OK ){
if( (rc&0xff)==SQLITE_BUSY ){
p->pc = (int)(pOp - aOp);
p->rc = rc;
goto vdbe_return;
}
goto abort_due_to_error;
}
if( pOp->p2 && p->usesStmtJournal
&& (db->autoCommit==0 || db->nVdbeRead>1)
){
assert( sqlite3BtreeIsInTrans(pBt) );
if( p->iStatement==0 ){
assert( db->nStatement>=0 && db->nSavepoint>=0 );
db->nStatement++;
p->iStatement = db->nSavepoint + db->nStatement;
}
rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1);
if( rc==SQLITE_OK ){
rc = sqlite3BtreeBeginStmt(pBt, p->iStatement);
}
/* Store the current value of the database handles deferred constraint
** counter. If the statement transaction needs to be rolled back,
** the value of this counter needs to be restored too. */
p->nStmtDefCons = db->nDeferredCons;
p->nStmtDefImmCons = db->nDeferredImmCons;
}
/* Gather the schema version number for checking:
** IMPLEMENTATION-OF: R-03189-51135 As each SQL statement runs, the schema
** version is checked to ensure that the schema has not changed since the
** SQL statement was prepared.
*/
sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta);
iGen = db->aDb[pOp->p1].pSchema->iGeneration;
}else{
iGen = iMeta = 0;
}
assert( pOp->p5==0 || pOp->p4type==P4_INT32 );
if( pOp->p5 && (iMeta!=pOp->p3 || iGen!=pOp->p4.i) ){
sqlite3DbFree(db, p->zErrMsg);
p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
/* If the schema-cookie from the database file matches the cookie
** stored with the in-memory representation of the schema, do
** not reload the schema from the database file.
**
** If virtual-tables are in use, this is not just an optimization.
** Often, v-tables store their data in other SQLite tables, which
** are queried from within xNext() and other v-table methods using
** prepared queries. If such a query is out-of-date, we do not want to
** discard the database schema, as the user code implementing the
** v-table would have to be ready for the sqlite3_vtab structure itself
** to be invalidated whenever sqlite3_step() is called from within
** a v-table method.
*/
if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
sqlite3ResetOneSchema(db, pOp->p1);
}
p->expired = 1;
rc = SQLITE_SCHEMA;
}
if( rc ) goto abort_due_to_error;
break;
}
/* Opcode: ReadCookie P1 P2 P3 * *
**
** Read cookie number P3 from database P1 and write it into register P2.
** P3==1 is the schema version. P3==2 is the database format.
** P3==3 is the recommended pager cache size, and so forth. P1==0 is
** the main database file and P1==1 is the database file used to store
** temporary tables.
**
** There must be a read-lock on the database (either a transaction
** must be started or there must be an open cursor) before
** executing this instruction.
*/
case OP_ReadCookie: { /* out2 */
int iMeta;
int iDb;
int iCookie;
assert( p->bIsReader );
iDb = pOp->p1;
iCookie = pOp->p3;
assert( pOp->p3<SQLITE_N_BTREE_META );
assert( iDb>=0 && iDb<db->nDb );
assert( db->aDb[iDb].pBt!=0 );
assert( DbMaskTest(p->btreeMask, iDb) );
sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta);
pOut = out2Prerelease(p, pOp);
pOut->u.i = iMeta;
break;
}
/* Opcode: SetCookie P1 P2 P3 * *
**
** Write the integer value P3 into cookie number P2 of database P1.
** P2==1 is the schema version. P2==2 is the database format.
** P2==3 is the recommended pager cache
** size, and so forth. P1==0 is the main database file and P1==1 is the
** database file used to store temporary tables.
**
** A transaction must be started before executing this opcode.
*/
case OP_SetCookie: {
Db *pDb;
assert( pOp->p2<SQLITE_N_BTREE_META );
assert( pOp->p1>=0 && pOp->p1<db->nDb );
assert( DbMaskTest(p->btreeMask, pOp->p1) );
assert( p->readOnly==0 );
pDb = &db->aDb[pOp->p1];
assert( pDb->pBt!=0 );
assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
/* See note about index shifting on OP_ReadCookie */
rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, pOp->p3);
if( pOp->p2==BTREE_SCHEMA_VERSION ){
/* When the schema cookie changes, record the new cookie internally */
pDb->pSchema->schema_cookie = pOp->p3;
db->mDbFlags |= DBFLAG_SchemaChange;
}else if( pOp->p2==BTREE_FILE_FORMAT ){
/* Record changes in the file format */
pDb->pSchema->file_format = pOp->p3;
}
if( pOp->p1==1 ){
/* Invalidate all prepared statements whenever the TEMP database
** schema is changed. Ticket #1644 */
sqlite3ExpirePreparedStatements(db);
p->expired = 0;
}
if( rc ) goto abort_due_to_error;
break;
}
/* Opcode: OpenRead P1 P2 P3 P4 P5
** Synopsis: root=P2 iDb=P3
**
** Open a read-only cursor for the database table whose root page is
** P2 in a database file. The database file is determined by P3.
** P3==0 means the main database, P3==1 means the database used for
** temporary tables, and P3>1 means used the corresponding attached
** database. Give the new cursor an identifier of P1. The P1
** values need not be contiguous but all P1 values should be small integers.
** It is an error for P1 to be negative.
**
** If P5!=0 then use the content of register P2 as the root page, not
** the value of P2 itself.
**
** There will be a read lock on the database whenever there is an
** open cursor. If the database was unlocked prior to this instruction
** then a read lock is acquired as part of this instruction. A read
** lock allows other processes to read the database but prohibits
** any other process from modifying the database. The read lock is
** released when all cursors are closed. If this instruction attempts
** to get a read lock but fails, the script terminates with an
** SQLITE_BUSY error code.
**
** The P4 value may be either an integer (P4_INT32) or a pointer to
** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
** structure, then said structure defines the content and collating
** sequence of the index being opened. Otherwise, if P4 is an integer
** value, it is set to the number of columns in the table.
**
** See also: OpenWrite, ReopenIdx
*/
/* Opcode: ReopenIdx P1 P2 P3 P4 P5
** Synopsis: root=P2 iDb=P3
**
** The ReopenIdx opcode works exactly like ReadOpen except that it first
** checks to see if the cursor on P1 is already open with a root page
** number of P2 and if it is this opcode becomes a no-op. In other words,
** if the cursor is already open, do not reopen it.
**
** The ReopenIdx opcode may only be used with P5==0 and with P4 being
** a P4_KEYINFO object. Furthermore, the P3 value must be the same as
** every other ReopenIdx or OpenRead for the same cursor number.
**
** See the OpenRead opcode documentation for additional information.
*/
/* Opcode: OpenWrite P1 P2 P3 P4 P5
** Synopsis: root=P2 iDb=P3
**
** Open a read/write cursor named P1 on the table or index whose root
** page is P2. Or if P5!=0 use the content of register P2 to find the
** root page.
**
** The P4 value may be either an integer (P4_INT32) or a pointer to
** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
** structure, then said structure defines the content and collating
** sequence of the index being opened. Otherwise, if P4 is an integer
** value, it is set to the number of columns in the table, or to the
** largest index of any column of the table that is actually used.
**
** This instruction works just like OpenRead except that it opens the cursor
** in read/write mode. For a given table, there can be one or more read-only
** cursors or a single read/write cursor but not both.
**
** See also OpenRead.
*/
case OP_ReopenIdx: {
int nField;
KeyInfo *pKeyInfo;
int p2;
int iDb;
int wrFlag;
Btree *pX;
VdbeCursor *pCur;
Db *pDb;
assert( pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
assert( pOp->p4type==P4_KEYINFO );
pCur = p->apCsr[pOp->p1];
if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){
assert( pCur->iDb==pOp->p3 ); /* Guaranteed by the code generator */
goto open_cursor_set_hints;
}
/* If the cursor is not currently open or is open on a different
** index, then fall through into OP_OpenRead to force a reopen */
case OP_OpenRead:
case OP_OpenWrite:
assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
assert( p->bIsReader );
assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx
|| p->readOnly==0 );
if( p->expired ){
rc = SQLITE_ABORT_ROLLBACK;
goto abort_due_to_error;
}
nField = 0;
pKeyInfo = 0;
p2 = pOp->p2;
iDb = pOp->p3;
assert( iDb>=0 && iDb<db->nDb );
assert( DbMaskTest(p->btreeMask, iDb) );
pDb = &db->aDb[iDb];
pX = pDb->pBt;
assert( pX!=0 );
if( pOp->opcode==OP_OpenWrite ){
assert( OPFLAG_FORDELETE==BTREE_FORDELETE );
wrFlag = BTREE_WRCSR | (pOp->p5 & OPFLAG_FORDELETE);
assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
if( pDb->pSchema->file_format < p->minWriteFileFormat ){
p->minWriteFileFormat = pDb->pSchema->file_format;
}
}else{
wrFlag = 0;
}
if( pOp->p5 & OPFLAG_P2ISREG ){
assert( p2>0 );
assert( p2<=(p->nMem+1 - p->nCursor) );
pIn2 = &aMem[p2];
assert( memIsValid(pIn2) );
assert( (pIn2->flags & MEM_Int)!=0 );
sqlite3VdbeMemIntegerify(pIn2);
p2 = (int)pIn2->u.i;
/* The p2 value always comes from a prior OP_CreateBtree opcode and
** that opcode will always set the p2 value to 2 or more or else fail.
** If there were a failure, the prepared statement would have halted
** before reaching this instruction. */
assert( p2>=2 );
}
if( pOp->p4type==P4_KEYINFO ){
pKeyInfo = pOp->p4.pKeyInfo;
assert( pKeyInfo->enc==ENC(db) );
assert( pKeyInfo->db==db );
nField = pKeyInfo->nAllField;
}else if( pOp->p4type==P4_INT32 ){
nField = pOp->p4.i;
}
assert( pOp->p1>=0 );
assert( nField>=0 );
testcase( nField==0 ); /* Table with INTEGER PRIMARY KEY and nothing else */
pCur = allocateCursor(p, pOp->p1, nField, iDb, CURTYPE_BTREE);
if( pCur==0 ) goto no_mem;
pCur->nullRow = 1;
pCur->isOrdered = 1;
pCur->pgnoRoot = p2;
#ifdef SQLITE_DEBUG
pCur->wrFlag = wrFlag;
#endif
rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->uc.pCursor);
pCur->pKeyInfo = pKeyInfo;
/* Set the VdbeCursor.isTable variable. Previous versions of
** SQLite used to check if the root-page flags were sane at this point
** and report database corruption if they were not, but this check has
** since moved into the btree layer. */
pCur->isTable = pOp->p4type!=P4_KEYINFO;
open_cursor_set_hints:
assert( OPFLAG_BULKCSR==BTREE_BULKLOAD );
assert( OPFLAG_SEEKEQ==BTREE_SEEK_EQ );
testcase( pOp->p5 & OPFLAG_BULKCSR );
#ifdef SQLITE_ENABLE_CURSOR_HINTS
testcase( pOp->p2 & OPFLAG_SEEKEQ );
#endif
sqlite3BtreeCursorHintFlags(pCur->uc.pCursor,
(pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ)));
if( rc ) goto abort_due_to_error;
break;
}
/* Opcode: OpenDup P1 P2 * * *
**
** Open a new cursor P1 that points to the same ephemeral table as
** cursor P2. The P2 cursor must have been opened by a prior OP_OpenEphemeral
** opcode. Only ephemeral cursors may be duplicated.
**
** Duplicate ephemeral cursors are used for self-joins of materialized views.
*/
case OP_OpenDup: {
VdbeCursor *pOrig; /* The original cursor to be duplicated */
VdbeCursor *pCx; /* The new cursor */
pOrig = p->apCsr[pOp->p2];
assert( pOrig->pBtx!=0 ); /* Only ephemeral cursors can be duplicated */
pCx = allocateCursor(p, pOp->p1, pOrig->nField, -1, CURTYPE_BTREE);
if( pCx==0 ) goto no_mem;
pCx->nullRow = 1;
pCx->isEphemeral = 1;
pCx->pKeyInfo = pOrig->pKeyInfo;
pCx->isTable = pOrig->isTable;
rc = sqlite3BtreeCursor(pOrig->pBtx, MASTER_ROOT, BTREE_WRCSR,
pCx->pKeyInfo, pCx->uc.pCursor);
/* The sqlite3BtreeCursor() routine can only fail for the first cursor
** opened for a database. Since there is already an open cursor when this
** opcode is run, the sqlite3BtreeCursor() cannot fail */
assert( rc==SQLITE_OK );
break;
}
/* Opcode: OpenEphemeral P1 P2 * P4 P5
** Synopsis: nColumn=P2
**
** Open a new cursor P1 to a transient table.
** The cursor is always opened read/write even if
** the main database is read-only. The ephemeral
** table is deleted automatically when the cursor is closed.
**
** P2 is the number of columns in the ephemeral table.
** The cursor points to a BTree table if P4==0 and to a BTree index
** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure
** that defines the format of keys in the index.
**
** The P5 parameter can be a mask of the BTREE_* flags defined
** in btree.h. These flags control aspects of the operation of
** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are
** added automatically.
*/
/* Opcode: OpenAutoindex P1 P2 * P4 *
** Synopsis: nColumn=P2
**
** This opcode works the same as OP_OpenEphemeral. It has a
** different name to distinguish its use. Tables created using
** by this opcode will be used for automatically created transient
** indices in joins.
*/
case OP_OpenAutoindex:
case OP_OpenEphemeral: {
VdbeCursor *pCx;
KeyInfo *pKeyInfo;
static const int vfsFlags =
SQLITE_OPEN_READWRITE |
SQLITE_OPEN_CREATE |
SQLITE_OPEN_EXCLUSIVE |
SQLITE_OPEN_DELETEONCLOSE |
SQLITE_OPEN_TRANSIENT_DB;
assert( pOp->p1>=0 );
assert( pOp->p2>=0 );
pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_BTREE);
if( pCx==0 ) goto no_mem;
pCx->nullRow = 1;
pCx->isEphemeral = 1;
rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBtx,
BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags);
if( rc==SQLITE_OK ){
rc = sqlite3BtreeBeginTrans(pCx->pBtx, 1);
}
if( rc==SQLITE_OK ){
/* If a transient index is required, create it by calling
** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
** opening it. If a transient table is required, just use the
** automatically created table with root-page 1 (an BLOB_INTKEY table).
*/
if( (pCx->pKeyInfo = pKeyInfo = pOp->p4.pKeyInfo)!=0 ){
int pgno;
assert( pOp->p4type==P4_KEYINFO );
rc = sqlite3BtreeCreateTable(pCx->pBtx, &pgno, BTREE_BLOBKEY | pOp->p5);
if( rc==SQLITE_OK ){
assert( pgno==MASTER_ROOT+1 );
assert( pKeyInfo->db==db );
assert( pKeyInfo->enc==ENC(db) );
rc = sqlite3BtreeCursor(pCx->pBtx, pgno, BTREE_WRCSR,
pKeyInfo, pCx->uc.pCursor);
}
pCx->isTable = 0;
}else{
rc = sqlite3BtreeCursor(pCx->pBtx, MASTER_ROOT, BTREE_WRCSR,
0, pCx->uc.pCursor);
pCx->isTable = 1;
}
}
if( rc ) goto abort_due_to_error;
pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
break;
}
/* Opcode: SorterOpen P1 P2 P3 P4 *
**
** This opcode works like OP_OpenEphemeral except that it opens
** a transient index that is specifically designed to sort large
** tables using an external merge-sort algorithm.
**
** If argument P3 is non-zero, then it indicates that the sorter may
** assume that a stable sort considering the first P3 fields of each
** key is sufficient to produce the required results.
*/
case OP_SorterOpen: {
VdbeCursor *pCx;
assert( pOp->p1>=0 );
assert( pOp->p2>=0 );
pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_SORTER);
if( pCx==0 ) goto no_mem;
pCx->pKeyInfo = pOp->p4.pKeyInfo;
assert( pCx->pKeyInfo->db==db );
assert( pCx->pKeyInfo->enc==ENC(db) );
rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx);
if( rc ) goto abort_due_to_error;
break;
}
/* Opcode: SequenceTest P1 P2 * * *
** Synopsis: if( cursor[P1].ctr++ ) pc = P2
**
** P1 is a sorter cursor. If the sequence counter is currently zero, jump
** to P2. Regardless of whether or not the jump is taken, increment the
** the sequence value.
*/
case OP_SequenceTest: {
VdbeCursor *pC;
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
pC = p->apCsr[pOp->p1];
assert( isSorter(pC) );
if( (pC->seqCount++)==0 ){
goto jump_to_p2;
}
break;
}
/* Opcode: OpenPseudo P1 P2 P3 * *
** Synopsis: P3 columns in r[P2]
**
** Open a new cursor that points to a fake table that contains a single
** row of data. The content of that one row is the content of memory
** register P2. In other words, cursor P1 becomes an alias for the
** MEM_Blob content contained in register P2.
**
** A pseudo-table created by this opcode is used to hold a single
** row output from the sorter so that the row can be decomposed into
** individual columns using the OP_Column opcode. The OP_Column opcode
** is the only cursor opcode that works with a pseudo-table.
**
** P3 is the number of fields in the records that will be stored by
** the pseudo-table.
*/
case OP_OpenPseudo: {
VdbeCursor *pCx;
assert( pOp->p1>=0 );
assert( pOp->p3>=0 );
pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, CURTYPE_PSEUDO);
if( pCx==0 ) goto no_mem;
pCx->nullRow = 1;
pCx->seekResult = pOp->p2;
pCx->isTable = 1;
/* Give this pseudo-cursor a fake BtCursor pointer so that pCx
** can be safely passed to sqlite3VdbeCursorMoveto(). This avoids a test
** for pCx->eCurType==CURTYPE_BTREE inside of sqlite3VdbeCursorMoveto()
** which is a performance optimization */
pCx->uc.pCursor = sqlite3BtreeFakeValidCursor();
assert( pOp->p5==0 );
break;
}
/* Opcode: Close P1 * * * *
**
** Close a cursor previously opened as P1. If P1 is not
** currently open, this instruction is a no-op.
*/
case OP_Close: {
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]);
p->apCsr[pOp->p1] = 0;
break;
}
#ifdef SQLITE_ENABLE_COLUMN_USED_MASK
/* Opcode: ColumnsUsed P1 * * P4 *
**
** This opcode (which only exists if SQLite was compiled with
** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the
** table or index for cursor P1 are used. P4 is a 64-bit integer
** (P4_INT64) in which the first 63 bits are one for each of the
** first 63 columns of the table or index that are actually used
** by the cursor. The high-order bit is set if any column after
** the 64th is used.
*/
case OP_ColumnsUsed: {
VdbeCursor *pC;
pC = p->apCsr[pOp->p1];
assert( pC->eCurType==CURTYPE_BTREE );
pC->maskUsed = *(u64*)pOp->p4.pI64;
break;
}
#endif
/* Opcode: SeekGE P1 P2 P3 P4 *
** Synopsis: key=r[P3@P4]
**
** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
** use the value in register P3 as the key. If cursor P1 refers
** to an SQL index, then P3 is the first in an array of P4 registers
** that are used as an unpacked index key.
**
** Reposition cursor P1 so that it points to the smallest entry that
** is greater than or equal to the key value. If there are no records
** greater than or equal to the key and P2 is not zero, then jump to P2.
**
** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
** opcode will always land on a record that equally equals the key, or
** else jump immediately to P2. When the cursor is OPFLAG_SEEKEQ, this
** opcode must be followed by an IdxLE opcode with the same arguments.
** The IdxLE opcode will be skipped if this opcode succeeds, but the
** IdxLE opcode will be used on subsequent loop iterations.
**
** This opcode leaves the cursor configured to move in forward order,
** from the beginning toward the end. In other words, the cursor is
** configured to use Next, not Prev.
**
** See also: Found, NotFound, SeekLt, SeekGt, SeekLe
*/
/* Opcode: SeekGT P1 P2 P3 P4 *
** Synopsis: key=r[P3@P4]
**
** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
** use the value in register P3 as a key. If cursor P1 refers
** to an SQL index, then P3 is the first in an array of P4 registers
** that are used as an unpacked index key.
**
** Reposition cursor P1 so that it points to the smallest entry that
** is greater than the key value. If there are no records greater than
** the key and P2 is not zero, then jump to P2.
**
** This opcode leaves the cursor configured to move in forward order,
** from the beginning toward the end. In other words, the cursor is
** configured to use Next, not Prev.
**
** See also: Found, NotFound, SeekLt, SeekGe, SeekLe
*/
/* Opcode: SeekLT P1 P2 P3 P4 *
** Synopsis: key=r[P3@P4]
**
** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
** use the value in register P3 as a key. If cursor P1 refers
** to an SQL index, then P3 is the first in an array of P4 registers
** that are used as an unpacked index key.
**
** Reposition cursor P1 so that it points to the largest entry that
** is less than the key value. If there are no records less than
** the key and P2 is not zero, then jump to P2.
**
** This opcode leaves the cursor configured to move in reverse order,
** from the end toward the beginning. In other words, the cursor is
** configured to use Prev, not Next.
**
** See also: Found, NotFound, SeekGt, SeekGe, SeekLe
*/
/* Opcode: SeekLE P1 P2 P3 P4 *
** Synopsis: key=r[P3@P4]
**
** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
** use the value in register P3 as a key. If cursor P1 refers
** to an SQL index, then P3 is the first in an array of P4 registers
** that are used as an unpacked index key.
**
** Reposition cursor P1 so that it points to the largest entry that
** is less than or equal to the key value. If there are no records
** less than or equal to the key and P2 is not zero, then jump to P2.
**
** This opcode leaves the cursor configured to move in reverse order,
** from the end toward the beginning. In other words, the cursor is
** configured to use Prev, not Next.
**
** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
** opcode will always land on a record that equally equals the key, or
** else jump immediately to P2. When the cursor is OPFLAG_SEEKEQ, this
** opcode must be followed by an IdxGE opcode with the same arguments.
** The IdxGE opcode will be skipped if this opcode succeeds, but the
** IdxGE opcode will be used on subsequent loop iterations.
**
** See also: Found, NotFound, SeekGt, SeekGe, SeekLt
*/
case OP_SeekLT: /* jump, in3 */
case OP_SeekLE: /* jump, in3 */
case OP_SeekGE: /* jump, in3 */
case OP_SeekGT: { /* jump, in3 */
int res; /* Comparison result */
int oc; /* Opcode */
VdbeCursor *pC; /* The cursor to seek */
UnpackedRecord r; /* The key to seek for */
int nField; /* Number of columns or fields in the key */
i64 iKey; /* The rowid we are to seek to */
int eqOnly; /* Only interested in == results */
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
assert( pOp->p2!=0 );
pC = p->apCsr[pOp->p1];
assert( pC!=0 );
assert( pC->eCurType==CURTYPE_BTREE );
assert( OP_SeekLE == OP_SeekLT+1 );
assert( OP_SeekGE == OP_SeekLT+2 );
assert( OP_SeekGT == OP_SeekLT+3 );
assert( pC->isOrdered );
assert( pC->uc.pCursor!=0 );
oc = pOp->opcode;
eqOnly = 0;
pC->nullRow = 0;
#ifdef SQLITE_DEBUG
pC->seekOp = pOp->opcode;
#endif
if( pC->isTable ){
/* The BTREE_SEEK_EQ flag is only set on index cursors */
assert( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ)==0
|| CORRUPT_DB );
/* The input value in P3 might be of any type: integer, real, string,
** blob, or NULL. But it needs to be an integer before we can do
** the seek, so convert it. */
pIn3 = &aMem[pOp->p3];
if( (pIn3->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
applyNumericAffinity(pIn3, 0);
}
iKey = sqlite3VdbeIntValue(pIn3);
/* If the P3 value could not be converted into an integer without
** loss of information, then special processing is required... */
if( (pIn3->flags & MEM_Int)==0 ){
if( (pIn3->flags & MEM_Real)==0 ){
/* If the P3 value cannot be converted into any kind of a number,
** then the seek is not possible, so jump to P2 */
VdbeBranchTaken(1,2); goto jump_to_p2;
break;
}
/* If the approximation iKey is larger than the actual real search
** term, substitute >= for > and < for <=. e.g. if the search term
** is 4.9 and the integer approximation 5:
**
** (x > 4.9) -> (x >= 5)
** (x <= 4.9) -> (x < 5)
*/
if( pIn3->u.r<(double)iKey ){
assert( OP_SeekGE==(OP_SeekGT-1) );
assert( OP_SeekLT==(OP_SeekLE-1) );
assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) );
if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--;
}
/* If the approximation iKey is smaller than the actual real search
** term, substitute <= for < and > for >=. */
else if( pIn3->u.r>(double)iKey ){
assert( OP_SeekLE==(OP_SeekLT+1) );
assert( OP_SeekGT==(OP_SeekGE+1) );
assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) );
if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++;
}
}
rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)iKey, 0, &res);
pC->movetoTarget = iKey; /* Used by OP_Delete */
if( rc!=SQLITE_OK ){
goto abort_due_to_error;
}
}else{
/* For a cursor with the BTREE_SEEK_EQ hint, only the OP_SeekGE and
** OP_SeekLE opcodes are allowed, and these must be immediately followed
** by an OP_IdxGT or OP_IdxLT opcode, respectively, with the same key.
*/
if( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ) ){
eqOnly = 1;
assert( pOp->opcode==OP_SeekGE || pOp->opcode==OP_SeekLE );
assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
assert( pOp[1].p1==pOp[0].p1 );
assert( pOp[1].p2==pOp[0].p2 );
assert( pOp[1].p3==pOp[0].p3 );
assert( pOp[1].p4.i==pOp[0].p4.i );
}
nField = pOp->p4.i;
assert( pOp->p4type==P4_INT32 );
assert( nField>0 );
r.pKeyInfo = pC->pKeyInfo;
r.nField = (u16)nField;
/* The next line of code computes as follows, only faster:
** if( oc==OP_SeekGT || oc==OP_SeekLE ){
** r.default_rc = -1;
** }else{
** r.default_rc = +1;
** }
*/
r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1);
assert( oc!=OP_SeekGT || r.default_rc==-1 );
assert( oc!=OP_SeekLE || r.default_rc==-1 );
assert( oc!=OP_SeekGE || r.default_rc==+1 );
assert( oc!=OP_SeekLT || r.default_rc==+1 );
r.aMem = &aMem[pOp->p3];
#ifdef SQLITE_DEBUG
{ int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
#endif
r.eqSeen = 0;
rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, &r, 0, 0, &res);
if( rc!=SQLITE_OK ){
goto abort_due_to_error;
}
if( eqOnly && r.eqSeen==0 ){
assert( res!=0 );
goto seek_not_found;
}
}
pC->deferredMoveto = 0;
pC->cacheStatus = CACHE_STALE;
#ifdef SQLITE_TEST
sqlite3_search_count++;
#endif
if( oc>=OP_SeekGE ){ assert( oc==OP_SeekGE || oc==OP_SeekGT );
if( res<0 || (res==0 && oc==OP_SeekGT) ){
res = 0;
rc = sqlite3BtreeNext(pC->uc.pCursor, 0);
if( rc!=SQLITE_OK ){
if( rc==SQLITE_DONE ){
rc = SQLITE_OK;
res = 1;
}else{
goto abort_due_to_error;
}
}
}else{
res = 0;
}
}else{
assert( oc==OP_SeekLT || oc==OP_SeekLE );
if( res>0 || (res==0 && oc==OP_SeekLT) ){
res = 0;
rc = sqlite3BtreePrevious(pC->uc.pCursor, 0);
if( rc!=SQLITE_OK ){
if( rc==SQLITE_DONE ){
rc = SQLITE_OK;
res = 1;
}else{
goto abort_due_to_error;
}
}
}else{
/* res might be negative because the table is empty. Check to
** see if this is the case.
*/
res = sqlite3BtreeEof(pC->uc.pCursor);
}
}
seek_not_found:
assert( pOp->p2>0 );
VdbeBranchTaken(res!=0,2);
if( res ){
goto jump_to_p2;
}else if( eqOnly ){
assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
pOp++; /* Skip the OP_IdxLt or OP_IdxGT that follows */
}
break;
}
/* Opcode: Found P1 P2 P3 P4 *
** Synopsis: key=r[P3@P4]
**
** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
** P4>0 then register P3 is the first of P4 registers that form an unpacked
** record.
**
** Cursor P1 is on an index btree. If the record identified by P3 and P4
** is a prefix of any entry in P1 then a jump is made to P2 and
** P1 is left pointing at the matching entry.
**
** This operation leaves the cursor in a state where it can be
** advanced in the forward direction. The Next instruction will work,
** but not the Prev instruction.
**
** See also: NotFound, NoConflict, NotExists. SeekGe
*/
/* Opcode: NotFound P1 P2 P3 P4 *
** Synopsis: key=r[P3@P4]
**
** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
** P4>0 then register P3 is the first of P4 registers that form an unpacked
** record.
**
** Cursor P1 is on an index btree. If the record identified by P3 and P4
** is not the prefix of any entry in P1 then a jump is made to P2. If P1
** does contain an entry whose prefix matches the P3/P4 record then control
** falls through to the next instruction and P1 is left pointing at the
** matching entry.
**
** This operation leaves the cursor in a state where it cannot be
** advanced in either direction. In other words, the Next and Prev
** opcodes do not work after this operation.
**
** See also: Found, NotExists, NoConflict
*/
/* Opcode: NoConflict P1 P2 P3 P4 *
** Synopsis: key=r[P3@P4]
**
** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
** P4>0 then register P3 is the first of P4 registers that form an unpacked
** record.
**
** Cursor P1 is on an index btree. If the record identified by P3 and P4
** contains any NULL value, jump immediately to P2. If all terms of the
** record are not-NULL then a check is done to determine if any row in the
** P1 index btree has a matching key prefix. If there are no matches, jump
** immediately to P2. If there is a match, fall through and leave the P1
** cursor pointing to the matching row.
**
** This opcode is similar to OP_NotFound with the exceptions that the
** branch is always taken if any part of the search key input is NULL.
**
** This operation leaves the cursor in a state where it cannot be
** advanced in either direction. In other words, the Next and Prev
** opcodes do not work after this operation.
**
** See also: NotFound, Found, NotExists
*/
case OP_NoConflict: /* jump, in3 */
case OP_NotFound: /* jump, in3 */
case OP_Found: { /* jump, in3 */
int alreadyExists;
int takeJump;
int ii;
VdbeCursor *pC;
int res;
UnpackedRecord *pFree;
UnpackedRecord *pIdxKey;
UnpackedRecord r;
#ifdef SQLITE_TEST
if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++;
#endif
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
assert( pOp->p4type==P4_INT32 );
pC = p->apCsr[pOp->p1];
assert( pC!=0 );
#ifdef SQLITE_DEBUG
pC->seekOp = pOp->opcode;
#endif
pIn3 = &aMem[pOp->p3];
assert( pC->eCurType==CURTYPE_BTREE );
assert( pC->uc.pCursor!=0 );
assert( pC->isTable==0 );
if( pOp->p4.i>0 ){
r.pKeyInfo = pC->pKeyInfo;
r.nField = (u16)pOp->p4.i;
r.aMem = pIn3;
#ifdef SQLITE_DEBUG
for(ii=0; ii<r.nField; ii++){
assert( memIsValid(&r.aMem[ii]) );
assert( (r.aMem[ii].flags & MEM_Zero)==0 || r.aMem[ii].n==0 );
if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]);
}
#endif
pIdxKey = &r;
pFree = 0;
}else{
assert( pIn3->flags & MEM_Blob );
rc = ExpandBlob(pIn3);
assert( rc==SQLITE_OK || rc==SQLITE_NOMEM );
if( rc ) goto no_mem;
pFree = pIdxKey = sqlite3VdbeAllocUnpackedRecord(pC->pKeyInfo);
if( pIdxKey==0 ) goto no_mem;
sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey);
}
pIdxKey->default_rc = 0;
takeJump = 0;
if( pOp->opcode==OP_NoConflict ){
/* For the OP_NoConflict opcode, take the jump if any of the
** input fields are NULL, since any key with a NULL will not
** conflict */
for(ii=0; ii<pIdxKey->nField; ii++){
if( pIdxKey->aMem[ii].flags & MEM_Null ){
takeJump = 1;
break;
}
}
}
rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, pIdxKey, 0, 0, &res);
if( pFree ) sqlite3DbFreeNN(db, pFree);
if( rc!=SQLITE_OK ){
goto abort_due_to_error;
}
pC->seekResult = res;
alreadyExists = (res==0);
pC->nullRow = 1-alreadyExists;
pC->deferredMoveto = 0;
pC->cacheStatus = CACHE_STALE;
if( pOp->opcode==OP_Found ){
VdbeBranchTaken(alreadyExists!=0,2);
if( alreadyExists ) goto jump_to_p2;
}else{
VdbeBranchTaken(takeJump||alreadyExists==0,2);
if( takeJump || !alreadyExists ) goto jump_to_p2;
}
break;
}
/* Opcode: SeekRowid P1 P2 P3 * *
** Synopsis: intkey=r[P3]
**
** P1 is the index of a cursor open on an SQL table btree (with integer
** keys). If register P3 does not contain an integer or if P1 does not
** contain a record with rowid P3 then jump immediately to P2.
** Or, if P2 is 0, raise an SQLITE_CORRUPT error. If P1 does contain
** a record with rowid P3 then
** leave the cursor pointing at that record and fall through to the next
** instruction.
**
** The OP_NotExists opcode performs the same operation, but with OP_NotExists
** the P3 register must be guaranteed to contain an integer value. With this
** opcode, register P3 might not contain an integer.
**
** The OP_NotFound opcode performs the same operation on index btrees
** (with arbitrary multi-value keys).
**
** This opcode leaves the cursor in a state where it cannot be advanced
** in either direction. In other words, the Next and Prev opcodes will
** not work following this opcode.
**
** See also: Found, NotFound, NoConflict, SeekRowid
*/
/* Opcode: NotExists P1 P2 P3 * *
** Synopsis: intkey=r[P3]
**
** P1 is the index of a cursor open on an SQL table btree (with integer
** keys). P3 is an integer rowid. If P1 does not contain a record with
** rowid P3 then jump immediately to P2. Or, if P2 is 0, raise an
** SQLITE_CORRUPT error. If P1 does contain a record with rowid P3 then
** leave the cursor pointing at that record and fall through to the next
** instruction.
**
** The OP_SeekRowid opcode performs the same operation but also allows the
** P3 register to contain a non-integer value, in which case the jump is
** always taken. This opcode requires that P3 always contain an integer.
**
** The OP_NotFound opcode performs the same operation on index btrees
** (with arbitrary multi-value keys).
**
** This opcode leaves the cursor in a state where it cannot be advanced
** in either direction. In other words, the Next and Prev opcodes will
** not work following this opcode.
**
** See also: Found, NotFound, NoConflict, SeekRowid
*/
case OP_SeekRowid: { /* jump, in3 */
VdbeCursor *pC;
BtCursor *pCrsr;
int res;
u64 iKey;
pIn3 = &aMem[pOp->p3];
if( (pIn3->flags & MEM_Int)==0 ){
applyAffinity(pIn3, SQLITE_AFF_NUMERIC, encoding);
if( (pIn3->flags & MEM_Int)==0 ) goto jump_to_p2;
}
/* Fall through into OP_NotExists */
case OP_NotExists: /* jump, in3 */
pIn3 = &aMem[pOp->p3];
assert( pIn3->flags & MEM_Int );
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
pC = p->apCsr[pOp->p1];
assert( pC!=0 );
#ifdef SQLITE_DEBUG
pC->seekOp = 0;
#endif
assert( pC->isTable );
assert( pC->eCurType==CURTYPE_BTREE );
pCrsr = pC->uc.pCursor;
assert( pCrsr!=0 );
res = 0;
iKey = pIn3->u.i;
rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res);
assert( rc==SQLITE_OK || res==0 );
pC->movetoTarget = iKey; /* Used by OP_Delete */
pC->nullRow = 0;
pC->cacheStatus = CACHE_STALE;
pC->deferredMoveto = 0;
VdbeBranchTaken(res!=0,2);
pC->seekResult = res;
if( res!=0 ){
assert( rc==SQLITE_OK );
if( pOp->p2==0 ){
rc = SQLITE_CORRUPT_BKPT;
}else{
goto jump_to_p2;
}
}
if( rc ) goto abort_due_to_error;
break;
}
/* Opcode: Sequence P1 P2 * * *
** Synopsis: r[P2]=cursor[P1].ctr++
**
** Find the next available sequence number for cursor P1.
** Write the sequence number into register P2.
** The sequence number on the cursor is incremented after this
** instruction.
*/
case OP_Sequence: { /* out2 */
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
assert( p->apCsr[pOp->p1]!=0 );
assert( p->apCsr[pOp->p1]->eCurType!=CURTYPE_VTAB );
pOut = out2Prerelease(p, pOp);
pOut->u.i = p->apCsr[pOp->p1]->seqCount++;
break;
}
/* Opcode: NewRowid P1 P2 P3 * *
** Synopsis: r[P2]=rowid
**
** Get a new integer record number (a.k.a "rowid") used as the key to a table.
** The record number is not previously used as a key in the database
** table that cursor P1 points to. The new record number is written
** written to register P2.
**
** If P3>0 then P3 is a register in the root frame of this VDBE that holds
** the largest previously generated record number. No new record numbers are
** allowed to be less than this value. When this value reaches its maximum,
** an SQLITE_FULL error is generated. The P3 register is updated with the '
** generated record number. This P3 mechanism is used to help implement the
** AUTOINCREMENT feature.
*/
case OP_NewRowid: { /* out2 */
i64 v; /* The new rowid */
VdbeCursor *pC; /* Cursor of table to get the new rowid */
int res; /* Result of an sqlite3BtreeLast() */
int cnt; /* Counter to limit the number of searches */
Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */
VdbeFrame *pFrame; /* Root frame of VDBE */
v = 0;
res = 0;
pOut = out2Prerelease(p, pOp);
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
pC = p->apCsr[pOp->p1];
assert( pC!=0 );
assert( pC->eCurType==CURTYPE_BTREE );
assert( pC->uc.pCursor!=0 );
{
/* The next rowid or record number (different terms for the same
** thing) is obtained in a two-step algorithm.
**
** First we attempt to find the largest existing rowid and add one
** to that. But if the largest existing rowid is already the maximum
** positive integer, we have to fall through to the second
** probabilistic algorithm
**
** The second algorithm is to select a rowid at random and see if
** it already exists in the table. If it does not exist, we have
** succeeded. If the random rowid does exist, we select a new one
** and try again, up to 100 times.
*/
assert( pC->isTable );
#ifdef SQLITE_32BIT_ROWID
# define MAX_ROWID 0x7fffffff
#else
/* Some compilers complain about constants of the form 0x7fffffffffffffff.
** Others complain about 0x7ffffffffffffffffLL. The following macro seems
** to provide the constant while making all compilers happy.
*/
# define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
#endif
if( !pC->useRandomRowid ){
rc = sqlite3BtreeLast(pC->uc.pCursor, &res);
if( rc!=SQLITE_OK ){
goto abort_due_to_error;
}
if( res ){
v = 1; /* IMP: R-61914-48074 */
}else{
assert( sqlite3BtreeCursorIsValid(pC->uc.pCursor) );
v = sqlite3BtreeIntegerKey(pC->uc.pCursor);
if( v>=MAX_ROWID ){
pC->useRandomRowid = 1;
}else{
v++; /* IMP: R-29538-34987 */
}
}
}
#ifndef SQLITE_OMIT_AUTOINCREMENT
if( pOp->p3 ){
/* Assert that P3 is a valid memory cell. */
assert( pOp->p3>0 );
if( p->pFrame ){
for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
/* Assert that P3 is a valid memory cell. */
assert( pOp->p3<=pFrame->nMem );
pMem = &pFrame->aMem[pOp->p3];
}else{
/* Assert that P3 is a valid memory cell. */
assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
pMem = &aMem[pOp->p3];
memAboutToChange(p, pMem);
}
assert( memIsValid(pMem) );
REGISTER_TRACE(pOp->p3, pMem);
sqlite3VdbeMemIntegerify(pMem);
assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */
if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
rc = SQLITE_FULL; /* IMP: R-17817-00630 */
goto abort_due_to_error;
}
if( v<pMem->u.i+1 ){
v = pMem->u.i + 1;
}
pMem->u.i = v;
}
#endif
if( pC->useRandomRowid ){
/* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
** largest possible integer (9223372036854775807) then the database
** engine starts picking positive candidate ROWIDs at random until
** it finds one that is not previously used. */
assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is
** an AUTOINCREMENT table. */
cnt = 0;
do{
sqlite3_randomness(sizeof(v), &v);
v &= (MAX_ROWID>>1); v++; /* Ensure that v is greater than zero */
}while( ((rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)v,
0, &res))==SQLITE_OK)
&& (res==0)
&& (++cnt<100));
if( rc ) goto abort_due_to_error;
if( res==0 ){
rc = SQLITE_FULL; /* IMP: R-38219-53002 */
goto abort_due_to_error;
}
assert( v>0 ); /* EV: R-40812-03570 */
}
pC->deferredMoveto = 0;
pC->cacheStatus = CACHE_STALE;
}
pOut->u.i = v;
break;
}
/* Opcode: Insert P1 P2 P3 P4 P5
** Synopsis: intkey=r[P3] data=r[P2]
**
** Write an entry into the table of cursor P1. A new entry is
** created if it doesn't already exist or the data for an existing
** entry is overwritten. The data is the value MEM_Blob stored in register
** number P2. The key is stored in register P3. The key must
** be a MEM_Int.
**
** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set,
** then rowid is stored for subsequent return by the
** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
**
** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might
** run faster by avoiding an unnecessary seek on cursor P1. However,
** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior
** seeks on the cursor or if the most recent seek used a key equal to P3.
**
** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
** UPDATE operation. Otherwise (if the flag is clear) then this opcode
** is part of an INSERT operation. The difference is only important to
** the update hook.
**
** Parameter P4 may point to a Table structure, or may be NULL. If it is
** not NULL, then the update-hook (sqlite3.xUpdateCallback) is invoked
** following a successful insert.
**
** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
** allocated, then ownership of P2 is transferred to the pseudo-cursor
** and register P2 becomes ephemeral. If the cursor is changed, the
** value of register P2 will then change. Make sure this does not
** cause any problems.)
**
** This instruction only works on tables. The equivalent instruction
** for indices is OP_IdxInsert.
*/
/* Opcode: InsertInt P1 P2 P3 P4 P5
** Synopsis: intkey=P3 data=r[P2]
**
** This works exactly like OP_Insert except that the key is the
** integer value P3, not the value of the integer stored in register P3.
*/
case OP_Insert:
case OP_InsertInt: {
Mem *pData; /* MEM cell holding data for the record to be inserted */
Mem *pKey; /* MEM cell holding key for the record */
VdbeCursor *pC; /* Cursor to table into which insert is written */
int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */
const char *zDb; /* database name - used by the update hook */
Table *pTab; /* Table structure - used by update and pre-update hooks */
int op; /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */
BtreePayload x; /* Payload to be inserted */
op = 0;
pData = &aMem[pOp->p2];
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
assert( memIsValid(pData) );
pC = p->apCsr[pOp->p1];
assert( pC!=0 );
assert( pC->eCurType==CURTYPE_BTREE );
assert( pC->uc.pCursor!=0 );
assert( (pOp->p5 & OPFLAG_ISNOOP) || pC->isTable );
assert( pOp->p4type==P4_TABLE || pOp->p4type>=P4_STATIC );
REGISTER_TRACE(pOp->p2, pData);
if( pOp->opcode==OP_Insert ){
pKey = &aMem[pOp->p3];
assert( pKey->flags & MEM_Int );
assert( memIsValid(pKey) );
REGISTER_TRACE(pOp->p3, pKey);
x.nKey = pKey->u.i;
}else{
assert( pOp->opcode==OP_InsertInt );
x.nKey = pOp->p3;
}
if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){
assert( pC->iDb>=0 );
zDb = db->aDb[pC->iDb].zDbSName;
pTab = pOp->p4.pTab;
assert( (pOp->p5 & OPFLAG_ISNOOP) || HasRowid(pTab) );
op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT);
}else{
pTab = 0; /* Not needed. Silence a compiler warning. */
zDb = 0; /* Not needed. Silence a compiler warning. */
}
#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
/* Invoke the pre-update hook, if any */
if( db->xPreUpdateCallback
&& pOp->p4type==P4_TABLE
&& !(pOp->p5 & OPFLAG_ISUPDATE)
){
sqlite3VdbePreUpdateHook(p, pC, SQLITE_INSERT, zDb, pTab, x.nKey, pOp->p2);
}
if( pOp->p5 & OPFLAG_ISNOOP ) break;
#endif
if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = x.nKey;
assert( pData->flags & (MEM_Blob|MEM_Str) );
x.pData = pData->z;
x.nData = pData->n;
seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0);
if( pData->flags & MEM_Zero ){
x.nZero = pData->u.nZero;
}else{
x.nZero = 0;
}
x.pKey = 0;
rc = sqlite3BtreeInsert(pC->uc.pCursor, &x,
(pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION)), seekResult
);
pC->deferredMoveto = 0;
pC->cacheStatus = CACHE_STALE;
/* Invoke the update-hook if required. */
if( rc ) goto abort_due_to_error;
if( db->xUpdateCallback && op ){
db->xUpdateCallback(db->pUpdateArg, op, zDb, pTab->zName, x.nKey);
}
break;
}
/* Opcode: Delete P1 P2 P3 P4 P5
**
** Delete the record at which the P1 cursor is currently pointing.
**
** If the OPFLAG_SAVEPOSITION bit of the P5 parameter is set, then
** the cursor will be left pointing at either the next or the previous
** record in the table. If it is left pointing at the next record, then
** the next Next instruction will be a no-op. As a result, in this case
** it is ok to delete a record from within a Next loop. If
** OPFLAG_SAVEPOSITION bit of P5 is clear, then the cursor will be
** left in an undefined state.
**
** If the OPFLAG_AUXDELETE bit is set on P5, that indicates that this
** delete one of several associated with deleting a table row and all its
** associated index entries. Exactly one of those deletes is the "primary"
** delete. The others are all on OPFLAG_FORDELETE cursors or else are
** marked with the AUXDELETE flag.
**
** If the OPFLAG_NCHANGE flag of P2 (NB: P2 not P5) is set, then the row
** change count is incremented (otherwise not).
**
** P1 must not be pseudo-table. It has to be a real table with
** multiple rows.
**
** If P4 is not NULL then it points to a Table object. In this case either
** the update or pre-update hook, or both, may be invoked. The P1 cursor must
** have been positioned using OP_NotFound prior to invoking this opcode in
** this case. Specifically, if one is configured, the pre-update hook is
** invoked if P4 is not NULL. The update-hook is invoked if one is configured,
** P4 is not NULL, and the OPFLAG_NCHANGE flag is set in P2.
**
** If the OPFLAG_ISUPDATE flag is set in P2, then P3 contains the address
** of the memory cell that contains the value that the rowid of the row will
** be set to by the update.
*/
case OP_Delete: {
VdbeCursor *pC;
const char *zDb;
Table *pTab;
int opflags;
opflags = pOp->p2;
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
pC = p->apCsr[pOp->p1];
assert( pC!=0 );
assert( pC->eCurType==CURTYPE_BTREE );
assert( pC->uc.pCursor!=0 );
assert( pC->deferredMoveto==0 );
#ifdef SQLITE_DEBUG
if( pOp->p4type==P4_TABLE && HasRowid(pOp->p4.pTab) && pOp->p5==0 ){
/* If p5 is zero, the seek operation that positioned the cursor prior to
** OP_Delete will have also set the pC->movetoTarget field to the rowid of
** the row that is being deleted */
i64 iKey = sqlite3BtreeIntegerKey(pC->uc.pCursor);
assert( pC->movetoTarget==iKey );
}
#endif
/* If the update-hook or pre-update-hook will be invoked, set zDb to
** the name of the db to pass as to it. Also set local pTab to a copy
** of p4.pTab. Finally, if p5 is true, indicating that this cursor was
** last moved with OP_Next or OP_Prev, not Seek or NotFound, set
** VdbeCursor.movetoTarget to the current rowid. */
if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){
assert( pC->iDb>=0 );
assert( pOp->p4.pTab!=0 );
zDb = db->aDb[pC->iDb].zDbSName;
pTab = pOp->p4.pTab;
if( (pOp->p5 & OPFLAG_SAVEPOSITION)!=0 && pC->isTable ){
pC->movetoTarget = sqlite3BtreeIntegerKey(pC->uc.pCursor);
}
}else{
zDb = 0; /* Not needed. Silence a compiler warning. */
pTab = 0; /* Not needed. Silence a compiler warning. */
}
#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
/* Invoke the pre-update-hook if required. */
if( db->xPreUpdateCallback && pOp->p4.pTab ){
assert( !(opflags & OPFLAG_ISUPDATE)
|| HasRowid(pTab)==0
|| (aMem[pOp->p3].flags & MEM_Int)
);
sqlite3VdbePreUpdateHook(p, pC,
(opflags & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_DELETE,
zDb, pTab, pC->movetoTarget,
pOp->p3
);
}
if( opflags & OPFLAG_ISNOOP ) break;
#endif
/* Only flags that can be set are SAVEPOISTION and AUXDELETE */
assert( (pOp->p5 & ~(OPFLAG_SAVEPOSITION|OPFLAG_AUXDELETE))==0 );
assert( OPFLAG_SAVEPOSITION==BTREE_SAVEPOSITION );
assert( OPFLAG_AUXDELETE==BTREE_AUXDELETE );
#ifdef SQLITE_DEBUG
if( p->pFrame==0 ){
if( pC->isEphemeral==0
&& (pOp->p5 & OPFLAG_AUXDELETE)==0
&& (pC->wrFlag & OPFLAG_FORDELETE)==0
){
nExtraDelete++;
}
if( pOp->p2 & OPFLAG_NCHANGE ){
nExtraDelete--;
}
}
#endif
rc = sqlite3BtreeDelete(pC->uc.pCursor, pOp->p5);
pC->cacheStatus = CACHE_STALE;
pC->seekResult = 0;
if( rc ) goto abort_due_to_error;
/* Invoke the update-hook if required. */
if( opflags & OPFLAG_NCHANGE ){
p->nChange++;
if( db->xUpdateCallback && HasRowid(pTab) ){
db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, pTab->zName,
pC->movetoTarget);
assert( pC->iDb>=0 );
}
}
break;
}
/* Opcode: ResetCount * * * * *
**
** The value of the change counter is copied to the database handle
** change counter (returned by subsequent calls to sqlite3_changes()).
** Then the VMs internal change counter resets to 0.
** This is used by trigger programs.
*/
case OP_ResetCount: {
sqlite3VdbeSetChanges(db, p->nChange);
p->nChange = 0;
break;
}
/* Opcode: SorterCompare P1 P2 P3 P4
** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2
**
** P1 is a sorter cursor. This instruction compares a prefix of the
** record blob in register P3 against a prefix of the entry that
** the sorter cursor currently points to. Only the first P4 fields
** of r[P3] and the sorter record are compared.
**
** If either P3 or the sorter contains a NULL in one of their significant
** fields (not counting the P4 fields at the end which are ignored) then
** the comparison is assumed to be equal.
**
** Fall through to next instruction if the two records compare equal to
** each other. Jump to P2 if they are different.
*/
case OP_SorterCompare: {
VdbeCursor *pC;
int res;
int nKeyCol;
pC = p->apCsr[pOp->p1];
assert( isSorter(pC) );
assert( pOp->p4type==P4_INT32 );
pIn3 = &aMem[pOp->p3];
nKeyCol = pOp->p4.i;
res = 0;
rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res);
VdbeBranchTaken(res!=0,2);
if( rc ) goto abort_due_to_error;
if( res ) goto jump_to_p2;
break;
};
/* Opcode: SorterData P1 P2 P3 * *
** Synopsis: r[P2]=data
**
** Write into register P2 the current sorter data for sorter cursor P1.
** Then clear the column header cache on cursor P3.
**
** This opcode is normally use to move a record out of the sorter and into
** a register that is the source for a pseudo-table cursor created using
** OpenPseudo. That pseudo-table cursor is the one that is identified by
** parameter P3. Clearing the P3 column cache as part of this opcode saves
** us from having to issue a separate NullRow instruction to clear that cache.
*/
case OP_SorterData: {
VdbeCursor *pC;
pOut = &aMem[pOp->p2];
pC = p->apCsr[pOp->p1];
assert( isSorter(pC) );
rc = sqlite3VdbeSorterRowkey(pC, pOut);
assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) );
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
if( rc ) goto abort_due_to_error;
p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE;
break;
}
/* Opcode: RowData P1 P2 P3 * *
** Synopsis: r[P2]=data
**
** Write into register P2 the complete row content for the row at
** which cursor P1 is currently pointing.
** There is no interpretation of the data.
** It is just copied onto the P2 register exactly as
** it is found in the database file.
**
** If cursor P1 is an index, then the content is the key of the row.
** If cursor P2 is a table, then the content extracted is the data.
**
** If the P1 cursor must be pointing to a valid row (not a NULL row)
** of a real table, not a pseudo-table.
**
** If P3!=0 then this opcode is allowed to make an ephermeral pointer
** into the database page. That means that the content of the output
** register will be invalidated as soon as the cursor moves - including
** moves caused by other cursors that "save" the the current cursors
** position in order that they can write to the same table. If P3==0
** then a copy of the data is made into memory. P3!=0 is faster, but
** P3==0 is safer.
**
** If P3!=0 then the content of the P2 register is unsuitable for use
** in OP_Result and any OP_Result will invalidate the P2 register content.
** The P2 register content is invalidated by opcodes like OP_Function or
** by any use of another cursor pointing to the same table.
*/
case OP_RowData: {
VdbeCursor *pC;
BtCursor *pCrsr;
u32 n;
pOut = out2Prerelease(p, pOp);
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
pC = p->apCsr[pOp->p1];
assert( pC!=0 );
assert( pC->eCurType==CURTYPE_BTREE );
assert( isSorter(pC)==0 );
assert( pC->nullRow==0 );
assert( pC->uc.pCursor!=0 );
pCrsr = pC->uc.pCursor;
/* The OP_RowData opcodes always follow OP_NotExists or
** OP_SeekRowid or OP_Rewind/Op_Next with no intervening instructions
** that might invalidate the cursor.
** If this where not the case, on of the following assert()s
** would fail. Should this ever change (because of changes in the code
** generator) then the fix would be to insert a call to
** sqlite3VdbeCursorMoveto().
*/
assert( pC->deferredMoveto==0 );
assert( sqlite3BtreeCursorIsValid(pCrsr) );
#if 0 /* Not required due to the previous to assert() statements */
rc = sqlite3VdbeCursorMoveto(pC);
if( rc!=SQLITE_OK ) goto abort_due_to_error;
#endif
n = sqlite3BtreePayloadSize(pCrsr);
if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
goto too_big;
}
testcase( n==0 );
rc = sqlite3VdbeMemFromBtree(pCrsr, 0, n, pOut);
if( rc ) goto abort_due_to_error;
if( !pOp->p3 ) Deephemeralize(pOut);
UPDATE_MAX_BLOBSIZE(pOut);
REGISTER_TRACE(pOp->p2, pOut);
break;
}
/* Opcode: Rowid P1 P2 * * *
** Synopsis: r[P2]=rowid
**
** Store in register P2 an integer which is the key of the table entry that
** P1 is currently point to.
**
** P1 can be either an ordinary table or a virtual table. There used to
** be a separate OP_VRowid opcode for use with virtual tables, but this
** one opcode now works for both table types.
*/
case OP_Rowid: { /* out2 */
VdbeCursor *pC;
i64 v;
sqlite3_vtab *pVtab;
const sqlite3_module *pModule;
pOut = out2Prerelease(p, pOp);
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
pC = p->apCsr[pOp->p1];
assert( pC!=0 );
assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
if( pC->nullRow ){
pOut->flags = MEM_Null;
break;
}else if( pC->deferredMoveto ){
v = pC->movetoTarget;
#ifndef SQLITE_OMIT_VIRTUALTABLE
}else if( pC->eCurType==CURTYPE_VTAB ){
assert( pC->uc.pVCur!=0 );
pVtab = pC->uc.pVCur->pVtab;
pModule = pVtab->pModule;
assert( pModule->xRowid );
rc = pModule->xRowid(pC->uc.pVCur, &v);
sqlite3VtabImportErrmsg(p, pVtab);
if( rc ) goto abort_due_to_error;
#endif /* SQLITE_OMIT_VIRTUALTABLE */
}else{
assert( pC->eCurType==CURTYPE_BTREE );
assert( pC->uc.pCursor!=0 );
rc = sqlite3VdbeCursorRestore(pC);
if( rc ) goto abort_due_to_error;
if( pC->nullRow ){
pOut->flags = MEM_Null;
break;
}
v = sqlite3BtreeIntegerKey(pC->uc.pCursor);
}
pOut->u.i = v;
break;
}
/* Opcode: NullRow P1 * * * *
**
** Move the cursor P1 to a null row. Any OP_Column operations
** that occur while the cursor is on the null row will always
** write a NULL.
*/
case OP_NullRow: {
VdbeCursor *pC;
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
pC = p->apCsr[pOp->p1];
assert( pC!=0 );
pC->nullRow = 1;
pC->cacheStatus = CACHE_STALE;
if( pC->eCurType==CURTYPE_BTREE ){
assert( pC->uc.pCursor!=0 );
sqlite3BtreeClearCursor(pC->uc.pCursor);
}
break;
}
/* Opcode: SeekEnd P1 * * * *
**
** Position cursor P1 at the end of the btree for the purpose of
** appending a new entry onto the btree.
**
** It is assumed that the cursor is used only for appending and so
** if the cursor is valid, then the cursor must already be pointing
** at the end of the btree and so no changes are made to
** the cursor.
*/
/* Opcode: Last P1 P2 * * *
**
** The next use of the Rowid or Column or Prev instruction for P1
** will refer to the last entry in the database table or index.
** If the table or index is empty and P2>0, then jump immediately to P2.
** If P2 is 0 or if the table or index is not empty, fall through
** to the following instruction.
**
** This opcode leaves the cursor configured to move in reverse order,
** from the end toward the beginning. In other words, the cursor is
** configured to use Prev, not Next.
*/
case OP_SeekEnd:
case OP_Last: { /* jump */
VdbeCursor *pC;
BtCursor *pCrsr;
int res;
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
pC = p->apCsr[pOp->p1];
assert( pC!=0 );
assert( pC->eCurType==CURTYPE_BTREE );
pCrsr = pC->uc.pCursor;
res = 0;
assert( pCrsr!=0 );
#ifdef SQLITE_DEBUG
pC->seekOp = pOp->opcode;
#endif
if( pOp->opcode==OP_SeekEnd ){
assert( pOp->p2==0 );
pC->seekResult = -1;
if( sqlite3BtreeCursorIsValidNN(pCrsr) ){
break;
}
}
rc = sqlite3BtreeLast(pCrsr, &res);
pC->nullRow = (u8)res;
pC->deferredMoveto = 0;
pC->cacheStatus = CACHE_STALE;
if( rc ) goto abort_due_to_error;
if( pOp->p2>0 ){
VdbeBranchTaken(res!=0,2);
if( res ) goto jump_to_p2;
}
break;
}
/* Opcode: IfSmaller P1 P2 P3 * *
**
** Estimate the number of rows in the table P1. Jump to P2 if that
** estimate is less than approximately 2**(0.1*P3).
*/
case OP_IfSmaller: { /* jump */
VdbeCursor *pC;
BtCursor *pCrsr;
int res;
i64 sz;
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
pC = p->apCsr[pOp->p1];
assert( pC!=0 );
pCrsr = pC->uc.pCursor;
assert( pCrsr );
rc = sqlite3BtreeFirst(pCrsr, &res);
if( rc ) goto abort_due_to_error;
if( res==0 ){
sz = sqlite3BtreeRowCountEst(pCrsr);
if( ALWAYS(sz>=0) && sqlite3LogEst((u64)sz)<pOp->p3 ) res = 1;
}
VdbeBranchTaken(res!=0,2);
if( res ) goto jump_to_p2;
break;
}
/* Opcode: SorterSort P1 P2 * * *
**
** After all records have been inserted into the Sorter object
** identified by P1, invoke this opcode to actually do the sorting.
** Jump to P2 if there are no records to be sorted.
**
** This opcode is an alias for OP_Sort and OP_Rewind that is used
** for Sorter objects.
*/
/* Opcode: Sort P1 P2 * * *
**
** This opcode does exactly the same thing as OP_Rewind except that
** it increments an undocumented global variable used for testing.
**
** Sorting is accomplished by writing records into a sorting index,
** then rewinding that index and playing it back from beginning to
** end. We use the OP_Sort opcode instead of OP_Rewind to do the
** rewinding so that the global variable will be incremented and
** regression tests can determine whether or not the optimizer is
** correctly optimizing out sorts.
*/
case OP_SorterSort: /* jump */
case OP_Sort: { /* jump */
#ifdef SQLITE_TEST
sqlite3_sort_count++;
sqlite3_search_count--;
#endif
p->aCounter[SQLITE_STMTSTATUS_SORT]++;
/* Fall through into OP_Rewind */
}
/* Opcode: Rewind P1 P2 * * *
**
** The next use of the Rowid or Column or Next instruction for P1
** will refer to the first entry in the database table or index.
** If the table or index is empty, jump immediately to P2.
** If the table or index is not empty, fall through to the following
** instruction.
**
** This opcode leaves the cursor configured to move in forward order,
** from the beginning toward the end. In other words, the cursor is
** configured to use Next, not Prev.
*/
case OP_Rewind: { /* jump */
VdbeCursor *pC;
BtCursor *pCrsr;
int res;
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
pC = p->apCsr[pOp->p1];
assert( pC!=0 );
assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) );
res = 1;
#ifdef SQLITE_DEBUG
pC->seekOp = OP_Rewind;
#endif
if( isSorter(pC) ){
rc = sqlite3VdbeSorterRewind(pC, &res);
}else{
assert( pC->eCurType==CURTYPE_BTREE );
pCrsr = pC->uc.pCursor;
assert( pCrsr );
rc = sqlite3BtreeFirst(pCrsr, &res);
pC->deferredMoveto = 0;
pC->cacheStatus = CACHE_STALE;
}
if( rc ) goto abort_due_to_error;
pC->nullRow = (u8)res;
assert( pOp->p2>0 && pOp->p2<p->nOp );
VdbeBranchTaken(res!=0,2);
if( res ) goto jump_to_p2;
break;
}
/* Opcode: Next P1 P2 P3 P4 P5
**
** Advance cursor P1 so that it points to the next key/data pair in its
** table or index. If there are no more key/value pairs then fall through
** to the following instruction. But if the cursor advance was successful,
** jump immediately to P2.
**
** The Next opcode is only valid following an SeekGT, SeekGE, or
** OP_Rewind opcode used to position the cursor. Next is not allowed
** to follow SeekLT, SeekLE, or OP_Last.
**
** The P1 cursor must be for a real table, not a pseudo-table. P1 must have
** been opened prior to this opcode or the program will segfault.
**
** The P3 value is a hint to the btree implementation. If P3==1, that
** means P1 is an SQL index and that this instruction could have been
** omitted if that index had been unique. P3 is usually 0. P3 is
** always either 0 or 1.
**
** P4 is always of type P4_ADVANCE. The function pointer points to
** sqlite3BtreeNext().
**
** If P5 is positive and the jump is taken, then event counter
** number P5-1 in the prepared statement is incremented.
**
** See also: Prev, NextIfOpen
*/
/* Opcode: NextIfOpen P1 P2 P3 P4 P5
**
** This opcode works just like Next except that if cursor P1 is not
** open it behaves a no-op.
*/
/* Opcode: Prev P1 P2 P3 P4 P5
**
** Back up cursor P1 so that it points to the previous key/data pair in its
** table or index. If there is no previous key/value pairs then fall through
** to the following instruction. But if the cursor backup was successful,
** jump immediately to P2.
**
**
** The Prev opcode is only valid following an SeekLT, SeekLE, or
** OP_Last opcode used to position the cursor. Prev is not allowed
** to follow SeekGT, SeekGE, or OP_Rewind.
**
** The P1 cursor must be for a real table, not a pseudo-table. If P1 is
** not open then the behavior is undefined.
**
** The P3 value is a hint to the btree implementation. If P3==1, that
** means P1 is an SQL index and that this instruction could have been
** omitted if that index had been unique. P3 is usually 0. P3 is
** always either 0 or 1.
**
** P4 is always of type P4_ADVANCE. The function pointer points to
** sqlite3BtreePrevious().
**
** If P5 is positive and the jump is taken, then event counter
** number P5-1 in the prepared statement is incremented.
*/
/* Opcode: PrevIfOpen P1 P2 P3 P4 P5
**
** This opcode works just like Prev except that if cursor P1 is not
** open it behaves a no-op.
*/
/* Opcode: SorterNext P1 P2 * * P5
**
** This opcode works just like OP_Next except that P1 must be a
** sorter object for which the OP_SorterSort opcode has been
** invoked. This opcode advances the cursor to the next sorted
** record, or jumps to P2 if there are no more sorted records.
*/
case OP_SorterNext: { /* jump */
VdbeCursor *pC;
pC = p->apCsr[pOp->p1];
assert( isSorter(pC) );
rc = sqlite3VdbeSorterNext(db, pC);
goto next_tail;
case OP_PrevIfOpen: /* jump */
case OP_NextIfOpen: /* jump */
if( p->apCsr[pOp->p1]==0 ) break;
/* Fall through */
case OP_Prev: /* jump */
case OP_Next: /* jump */
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
assert( pOp->p5<ArraySize(p->aCounter) );
pC = p->apCsr[pOp->p1];
assert( pC!=0 );
assert( pC->deferredMoveto==0 );
assert( pC->eCurType==CURTYPE_BTREE );
assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext );
assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious );
assert( pOp->opcode!=OP_NextIfOpen || pOp->p4.xAdvance==sqlite3BtreeNext );
assert( pOp->opcode!=OP_PrevIfOpen || pOp->p4.xAdvance==sqlite3BtreePrevious);
/* The Next opcode is only used after SeekGT, SeekGE, and Rewind.
** The Prev opcode is only used after SeekLT, SeekLE, and Last. */
assert( pOp->opcode!=OP_Next || pOp->opcode!=OP_NextIfOpen
|| pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE
|| pC->seekOp==OP_Rewind || pC->seekOp==OP_Found);
assert( pOp->opcode!=OP_Prev || pOp->opcode!=OP_PrevIfOpen
|| pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE
|| pC->seekOp==OP_Last );
rc = pOp->p4.xAdvance(pC->uc.pCursor, pOp->p3);
next_tail:
pC->cacheStatus = CACHE_STALE;
VdbeBranchTaken(rc==SQLITE_OK,2);
if( rc==SQLITE_OK ){
pC->nullRow = 0;
p->aCounter[pOp->p5]++;
#ifdef SQLITE_TEST
sqlite3_search_count++;
#endif
goto jump_to_p2_and_check_for_interrupt;
}
if( rc!=SQLITE_DONE ) goto abort_due_to_error;
rc = SQLITE_OK;
pC->nullRow = 1;
goto check_for_interrupt;
}
/* Opcode: IdxInsert P1 P2 P3 P4 P5
** Synopsis: key=r[P2]
**
** Register P2 holds an SQL index key made using the
** MakeRecord instructions. This opcode writes that key
** into the index P1. Data for the entry is nil.
**
** If P4 is not zero, then it is the number of values in the unpacked
** key of reg(P2). In that case, P3 is the index of the first register
** for the unpacked key. The availability of the unpacked key can sometimes
** be an optimization.
**
** If P5 has the OPFLAG_APPEND bit set, that is a hint to the b-tree layer
** that this insert is likely to be an append.
**
** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is
** incremented by this instruction. If the OPFLAG_NCHANGE bit is clear,
** then the change counter is unchanged.
**
** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might
** run faster by avoiding an unnecessary seek on cursor P1. However,
** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior
** seeks on the cursor or if the most recent seek used a key equivalent
** to P2.
**
** This instruction only works for indices. The equivalent instruction
** for tables is OP_Insert.
*/
/* Opcode: SorterInsert P1 P2 * * *
** Synopsis: key=r[P2]
**
** Register P2 holds an SQL index key made using the
** MakeRecord instructions. This opcode writes that key
** into the sorter P1. Data for the entry is nil.
*/
case OP_SorterInsert: /* in2 */
case OP_IdxInsert: { /* in2 */
VdbeCursor *pC;
BtreePayload x;
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
pC = p->apCsr[pOp->p1];
assert( pC!=0 );
assert( isSorter(pC)==(pOp->opcode==OP_SorterInsert) );
pIn2 = &aMem[pOp->p2];
assert( pIn2->flags & MEM_Blob );
if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
assert( pC->eCurType==CURTYPE_BTREE || pOp->opcode==OP_SorterInsert );
assert( pC->isTable==0 );
rc = ExpandBlob(pIn2);
if( rc ) goto abort_due_to_error;
if( pOp->opcode==OP_SorterInsert ){
rc = sqlite3VdbeSorterWrite(pC, pIn2);
}else{
x.nKey = pIn2->n;
x.pKey = pIn2->z;
x.aMem = aMem + pOp->p3;
x.nMem = (u16)pOp->p4.i;
rc = sqlite3BtreeInsert(pC->uc.pCursor, &x,
(pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION)),
((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
);
assert( pC->deferredMoveto==0 );
pC->cacheStatus = CACHE_STALE;
}
if( rc) goto abort_due_to_error;
break;
}
/* Opcode: IdxDelete P1 P2 P3 * *
** Synopsis: key=r[P2@P3]
**
** The content of P3 registers starting at register P2 form
** an unpacked index key. This opcode removes that entry from the
** index opened by cursor P1.
*/
case OP_IdxDelete: {
VdbeCursor *pC;
BtCursor *pCrsr;
int res;
UnpackedRecord r;
assert( pOp->p3>0 );
assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem+1 - p->nCursor)+1 );
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
pC = p->apCsr[pOp->p1];
assert( pC!=0 );
assert( pC->eCurType==CURTYPE_BTREE );
pCrsr = pC->uc.pCursor;
assert( pCrsr!=0 );
assert( pOp->p5==0 );
r.pKeyInfo = pC->pKeyInfo;
r.nField = (u16)pOp->p3;
r.default_rc = 0;
r.aMem = &aMem[pOp->p2];
rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res);
if( rc ) goto abort_due_to_error;
if( res==0 ){
rc = sqlite3BtreeDelete(pCrsr, BTREE_AUXDELETE);
if( rc ) goto abort_due_to_error;
}
assert( pC->deferredMoveto==0 );
pC->cacheStatus = CACHE_STALE;
pC->seekResult = 0;
break;
}
/* Opcode: DeferredSeek P1 * P3 P4 *
** Synopsis: Move P3 to P1.rowid if needed
**
** P1 is an open index cursor and P3 is a cursor on the corresponding
** table. This opcode does a deferred seek of the P3 table cursor
** to the row that corresponds to the current row of P1.
**
** This is a deferred seek. Nothing actually happens until
** the cursor is used to read a record. That way, if no reads
** occur, no unnecessary I/O happens.
**
** P4 may be an array of integers (type P4_INTARRAY) containing
** one entry for each column in the P3 table. If array entry a(i)
** is non-zero, then reading column a(i)-1 from cursor P3 is
** equivalent to performing the deferred seek and then reading column i
** from P1. This information is stored in P3 and used to redirect
** reads against P3 over to P1, thus possibly avoiding the need to
** seek and read cursor P3.
*/
/* Opcode: IdxRowid P1 P2 * * *
** Synopsis: r[P2]=rowid
**
** Write into register P2 an integer which is the last entry in the record at
** the end of the index key pointed to by cursor P1. This integer should be
** the rowid of the table entry to which this index entry points.
**
** See also: Rowid, MakeRecord.
*/
case OP_DeferredSeek:
case OP_IdxRowid: { /* out2 */
VdbeCursor *pC; /* The P1 index cursor */
VdbeCursor *pTabCur; /* The P2 table cursor (OP_DeferredSeek only) */
i64 rowid; /* Rowid that P1 current points to */
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
pC = p->apCsr[pOp->p1];
assert( pC!=0 );
assert( pC->eCurType==CURTYPE_BTREE );
assert( pC->uc.pCursor!=0 );
assert( pC->isTable==0 );
assert( pC->deferredMoveto==0 );
assert( !pC->nullRow || pOp->opcode==OP_IdxRowid );
/* The IdxRowid and Seek opcodes are combined because of the commonality
** of sqlite3VdbeCursorRestore() and sqlite3VdbeIdxRowid(). */
rc = sqlite3VdbeCursorRestore(pC);
/* sqlite3VbeCursorRestore() can only fail if the record has been deleted
** out from under the cursor. That will never happens for an IdxRowid
** or Seek opcode */
if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
if( !pC->nullRow ){
rowid = 0; /* Not needed. Only used to silence a warning. */
rc = sqlite3VdbeIdxRowid(db, pC->uc.pCursor, &rowid);
if( rc!=SQLITE_OK ){
goto abort_due_to_error;
}
if( pOp->opcode==OP_DeferredSeek ){
assert( pOp->p3>=0 && pOp->p3<p->nCursor );
pTabCur = p->apCsr[pOp->p3];
assert( pTabCur!=0 );
assert( pTabCur->eCurType==CURTYPE_BTREE );
assert( pTabCur->uc.pCursor!=0 );
assert( pTabCur->isTable );
pTabCur->nullRow = 0;
pTabCur->movetoTarget = rowid;
pTabCur->deferredMoveto = 1;
assert( pOp->p4type==P4_INTARRAY || pOp->p4.ai==0 );
pTabCur->aAltMap = pOp->p4.ai;
pTabCur->pAltCursor = pC;
}else{
pOut = out2Prerelease(p, pOp);
pOut->u.i = rowid;
}
}else{
assert( pOp->opcode==OP_IdxRowid );
sqlite3VdbeMemSetNull(&aMem[pOp->p2]);
}
break;
}
/* Opcode: IdxGE P1 P2 P3 P4 P5
** Synopsis: key=r[P3@P4]
**
** The P4 register values beginning with P3 form an unpacked index
** key that omits the PRIMARY KEY. Compare this key value against the index
** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
** fields at the end.
**
** If the P1 index entry is greater than or equal to the key value
** then jump to P2. Otherwise fall through to the next instruction.
*/
/* Opcode: IdxGT P1 P2 P3 P4 P5
** Synopsis: key=r[P3@P4]
**
** The P4 register values beginning with P3 form an unpacked index
** key that omits the PRIMARY KEY. Compare this key value against the index
** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
** fields at the end.
**
** If the P1 index entry is greater than the key value
** then jump to P2. Otherwise fall through to the next instruction.
*/
/* Opcode: IdxLT P1 P2 P3 P4 P5
** Synopsis: key=r[P3@P4]
**
** The P4 register values beginning with P3 form an unpacked index
** key that omits the PRIMARY KEY or ROWID. Compare this key value against
** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
** ROWID on the P1 index.
**
** If the P1 index entry is less than the key value then jump to P2.
** Otherwise fall through to the next instruction.
*/
/* Opcode: IdxLE P1 P2 P3 P4 P5
** Synopsis: key=r[P3@P4]
**
** The P4 register values beginning with P3 form an unpacked index
** key that omits the PRIMARY KEY or ROWID. Compare this key value against
** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
** ROWID on the P1 index.
**
** If the P1 index entry is less than or equal to the key value then jump
** to P2. Otherwise fall through to the next instruction.
*/
case OP_IdxLE: /* jump */
case OP_IdxGT: /* jump */
case OP_IdxLT: /* jump */
case OP_IdxGE: { /* jump */
VdbeCursor *pC;
int res;
UnpackedRecord r;
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
pC = p->apCsr[pOp->p1];
assert( pC!=0 );
assert( pC->isOrdered );
assert( pC->eCurType==CURTYPE_BTREE );
assert( pC->uc.pCursor!=0);
assert( pC->deferredMoveto==0 );
assert( pOp->p5==0 || pOp->p5==1 );
assert( pOp->p4type==P4_INT32 );
r.pKeyInfo = pC->pKeyInfo;
r.nField = (u16)pOp->p4.i;
if( pOp->opcode<OP_IdxLT ){
assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT );
r.default_rc = -1;
}else{
assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT );
r.default_rc = 0;
}
r.aMem = &aMem[pOp->p3];
#ifdef SQLITE_DEBUG
{ int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
#endif
res = 0; /* Not needed. Only used to silence a warning. */
rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res);
assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) );
if( (pOp->opcode&1)==(OP_IdxLT&1) ){
assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT );
res = -res;
}else{
assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT );
res++;
}
VdbeBranchTaken(res>0,2);
if( rc ) goto abort_due_to_error;
if( res>0 ) goto jump_to_p2;
break;
}
/* Opcode: Destroy P1 P2 P3 * *
**
** Delete an entire database table or index whose root page in the database
** file is given by P1.
**
** The table being destroyed is in the main database file if P3==0. If
** P3==1 then the table to be clear is in the auxiliary database file
** that is used to store tables create using CREATE TEMPORARY TABLE.
**
** If AUTOVACUUM is enabled then it is possible that another root page
** might be moved into the newly deleted root page in order to keep all
** root pages contiguous at the beginning of the database. The former
** value of the root page that moved - its value before the move occurred -
** is stored in register P2. If no page movement was required (because the
** table being dropped was already the last one in the database) then a
** zero is stored in register P2. If AUTOVACUUM is disabled then a zero
** is stored in register P2.
**
** This opcode throws an error if there are any active reader VMs when
** it is invoked. This is done to avoid the difficulty associated with
** updating existing cursors when a root page is moved in an AUTOVACUUM
** database. This error is thrown even if the database is not an AUTOVACUUM
** db in order to avoid introducing an incompatibility between autovacuum
** and non-autovacuum modes.
**
** See also: Clear
*/
case OP_Destroy: { /* out2 */
int iMoved;
int iDb;
assert( p->readOnly==0 );
assert( pOp->p1>1 );
pOut = out2Prerelease(p, pOp);
pOut->flags = MEM_Null;
if( db->nVdbeRead > db->nVDestroy+1 ){
rc = SQLITE_LOCKED;
p->errorAction = OE_Abort;
goto abort_due_to_error;
}else{
iDb = pOp->p3;
assert( DbMaskTest(p->btreeMask, iDb) );
iMoved = 0; /* Not needed. Only to silence a warning. */
rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
pOut->flags = MEM_Int;
pOut->u.i = iMoved;
if( rc ) goto abort_due_to_error;
#ifndef SQLITE_OMIT_AUTOVACUUM
if( iMoved!=0 ){
sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1);
/* All OP_Destroy operations occur on the same btree */
assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 );
resetSchemaOnFault = iDb+1;
}
#endif
}
break;
}
/* Opcode: Clear P1 P2 P3
**
** Delete all contents of the database table or index whose root page
** in the database file is given by P1. But, unlike Destroy, do not
** remove the table or index from the database file.
**
** The table being clear is in the main database file if P2==0. If
** P2==1 then the table to be clear is in the auxiliary database file
** that is used to store tables create using CREATE TEMPORARY TABLE.
**
** If the P3 value is non-zero, then the table referred to must be an
** intkey table (an SQL table, not an index). In this case the row change
** count is incremented by the number of rows in the table being cleared.
** If P3 is greater than zero, then the value stored in register P3 is
** also incremented by the number of rows in the table being cleared.
**
** See also: Destroy
*/
case OP_Clear: {
int nChange;
nChange = 0;
assert( p->readOnly==0 );
assert( DbMaskTest(p->btreeMask, pOp->p2) );
rc = sqlite3BtreeClearTable(
db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0)
);
if( pOp->p3 ){
p->nChange += nChange;
if( pOp->p3>0 ){
assert( memIsValid(&aMem[pOp->p3]) );
memAboutToChange(p, &aMem[pOp->p3]);
aMem[pOp->p3].u.i += nChange;
}
}
if( rc ) goto abort_due_to_error;
break;
}
/* Opcode: ResetSorter P1 * * * *
**
** Delete all contents from the ephemeral table or sorter
** that is open on cursor P1.
**
** This opcode only works for cursors used for sorting and
** opened with OP_OpenEphemeral or OP_SorterOpen.
*/
case OP_ResetSorter: {
VdbeCursor *pC;
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
pC = p->apCsr[pOp->p1];
assert( pC!=0 );
if( isSorter(pC) ){
sqlite3VdbeSorterReset(db, pC->uc.pSorter);
}else{
assert( pC->eCurType==CURTYPE_BTREE );
assert( pC->isEphemeral );
rc = sqlite3BtreeClearTableOfCursor(pC->uc.pCursor);
if( rc ) goto abort_due_to_error;
}
break;
}
/* Opcode: CreateBtree P1 P2 P3 * *
** Synopsis: r[P2]=root iDb=P1 flags=P3
**
** Allocate a new b-tree in the main database file if P1==0 or in the
** TEMP database file if P1==1 or in an attached database if
** P1>1. The P3 argument must be 1 (BTREE_INTKEY) for a rowid table
** it must be 2 (BTREE_BLOBKEY) for a index or WITHOUT ROWID table.
** The root page number of the new b-tree is stored in register P2.
*/
case OP_CreateBtree: { /* out2 */
int pgno;
Db *pDb;
pOut = out2Prerelease(p, pOp);
pgno = 0;
assert( pOp->p3==BTREE_INTKEY || pOp->p3==BTREE_BLOBKEY );
assert( pOp->p1>=0 && pOp->p1<db->nDb );
assert( DbMaskTest(p->btreeMask, pOp->p1) );
assert( p->readOnly==0 );
pDb = &db->aDb[pOp->p1];
assert( pDb->pBt!=0 );
rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, pOp->p3);
if( rc ) goto abort_due_to_error;
pOut->u.i = pgno;
break;
}
/* Opcode: SqlExec * * * P4 *
**
** Run the SQL statement or statements specified in the P4 string.
*/
case OP_SqlExec: {
db->nSqlExec++;
rc = sqlite3_exec(db, pOp->p4.z, 0, 0, 0);
db->nSqlExec--;
if( rc ) goto abort_due_to_error;
break;
}
/* Opcode: ParseSchema P1 * * P4 *
**
** Read and parse all entries from the SQLITE_MASTER table of database P1
** that match the WHERE clause P4.
**
** This opcode invokes the parser to create a new virtual machine,
** then runs the new virtual machine. It is thus a re-entrant opcode.
*/
case OP_ParseSchema: {
int iDb;
const char *zMaster;
char *zSql;
InitData initData;
/* Any prepared statement that invokes this opcode will hold mutexes
** on every btree. This is a prerequisite for invoking
** sqlite3InitCallback().
*/
#ifdef SQLITE_DEBUG
for(iDb=0; iDb<db->nDb; iDb++){
assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
}
#endif
iDb = pOp->p1;
assert( iDb>=0 && iDb<db->nDb );
assert( DbHasProperty(db, iDb, DB_SchemaLoaded) );
/* Used to be a conditional */ {
zMaster = MASTER_NAME;
initData.db = db;
initData.iDb = pOp->p1;
initData.pzErrMsg = &p->zErrMsg;
zSql = sqlite3MPrintf(db,
"SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid",
db->aDb[iDb].zDbSName, zMaster, pOp->p4.z);
if( zSql==0 ){
rc = SQLITE_NOMEM_BKPT;
}else{
assert( db->init.busy==0 );
db->init.busy = 1;
initData.rc = SQLITE_OK;
assert( !db->mallocFailed );
rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
if( rc==SQLITE_OK ) rc = initData.rc;
sqlite3DbFreeNN(db, zSql);
db->init.busy = 0;
}
}
if( rc ){
sqlite3ResetAllSchemasOfConnection(db);
if( rc==SQLITE_NOMEM ){
goto no_mem;
}
goto abort_due_to_error;
}
break;
}
#if !defined(SQLITE_OMIT_ANALYZE)
/* Opcode: LoadAnalysis P1 * * * *
**
** Read the sqlite_stat1 table for database P1 and load the content
** of that table into the internal index hash table. This will cause
** the analysis to be used when preparing all subsequent queries.
*/
case OP_LoadAnalysis: {
assert( pOp->p1>=0 && pOp->p1<db->nDb );
rc = sqlite3AnalysisLoad(db, pOp->p1);
if( rc ) goto abort_due_to_error;
break;
}
#endif /* !defined(SQLITE_OMIT_ANALYZE) */
/* Opcode: DropTable P1 * * P4 *
**
** Remove the internal (in-memory) data structures that describe
** the table named P4 in database P1. This is called after a table
** is dropped from disk (using the Destroy opcode) in order to keep
** the internal representation of the
** schema consistent with what is on disk.
*/
case OP_DropTable: {
sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
break;
}
/* Opcode: DropIndex P1 * * P4 *
**
** Remove the internal (in-memory) data structures that describe
** the index named P4 in database P1. This is called after an index
** is dropped from disk (using the Destroy opcode)
** in order to keep the internal representation of the
** schema consistent with what is on disk.
*/
case OP_DropIndex: {
sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
break;
}
/* Opcode: DropTrigger P1 * * P4 *
**
** Remove the internal (in-memory) data structures that describe
** the trigger named P4 in database P1. This is called after a trigger
** is dropped from disk (using the Destroy opcode) in order to keep
** the internal representation of the
** schema consistent with what is on disk.
*/
case OP_DropTrigger: {
sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
break;
}
#ifndef SQLITE_OMIT_INTEGRITY_CHECK
/* Opcode: IntegrityCk P1 P2 P3 P4 P5
**
** Do an analysis of the currently open database. Store in
** register P1 the text of an error message describing any problems.
** If no problems are found, store a NULL in register P1.
**
** The register P3 contains one less than the maximum number of allowed errors.
** At most reg(P3) errors will be reported.
** In other words, the analysis stops as soon as reg(P1) errors are
** seen. Reg(P1) is updated with the number of errors remaining.
**
** The root page numbers of all tables in the database are integers
** stored in P4_INTARRAY argument.
**
** If P5 is not zero, the check is done on the auxiliary database
** file, not the main database file.
**
** This opcode is used to implement the integrity_check pragma.
*/
case OP_IntegrityCk: {
int nRoot; /* Number of tables to check. (Number of root pages.) */
int *aRoot; /* Array of rootpage numbers for tables to be checked */
int nErr; /* Number of errors reported */
char *z; /* Text of the error report */
Mem *pnErr; /* Register keeping track of errors remaining */
assert( p->bIsReader );
nRoot = pOp->p2;
aRoot = pOp->p4.ai;
assert( nRoot>0 );
assert( aRoot[0]==nRoot );
assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
pnErr = &aMem[pOp->p3];
assert( (pnErr->flags & MEM_Int)!=0 );
assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
pIn1 = &aMem[pOp->p1];
assert( pOp->p5<db->nDb );
assert( DbMaskTest(p->btreeMask, pOp->p5) );
z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, &aRoot[1], nRoot,
(int)pnErr->u.i+1, &nErr);
sqlite3VdbeMemSetNull(pIn1);
if( nErr==0 ){
assert( z==0 );
}else if( z==0 ){
goto no_mem;
}else{
pnErr->u.i -= nErr-1;
sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
}
UPDATE_MAX_BLOBSIZE(pIn1);
sqlite3VdbeChangeEncoding(pIn1, encoding);
break;
}
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
/* Opcode: RowSetAdd P1 P2 * * *
** Synopsis: rowset(P1)=r[P2]
**
** Insert the integer value held by register P2 into a RowSet object
** held in register P1.
**
** An assertion fails if P2 is not an integer.
*/
case OP_RowSetAdd: { /* in1, in2 */
pIn1 = &aMem[pOp->p1];
pIn2 = &aMem[pOp->p2];
assert( (pIn2->flags & MEM_Int)!=0 );
if( (pIn1->flags & MEM_RowSet)==0 ){
sqlite3VdbeMemSetRowSet(pIn1);
if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
}
sqlite3RowSetInsert(pIn1->u.pRowSet, pIn2->u.i);
break;
}
/* Opcode: RowSetRead P1 P2 P3 * *
** Synopsis: r[P3]=rowset(P1)
**
** Extract the smallest value from the RowSet object in P1
** and put that value into register P3.
** Or, if RowSet object P1 is initially empty, leave P3
** unchanged and jump to instruction P2.
*/
case OP_RowSetRead: { /* jump, in1, out3 */
i64 val;
pIn1 = &aMem[pOp->p1];
if( (pIn1->flags & MEM_RowSet)==0
|| sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0
){
/* The boolean index is empty */
sqlite3VdbeMemSetNull(pIn1);
VdbeBranchTaken(1,2);
goto jump_to_p2_and_check_for_interrupt;
}else{
/* A value was pulled from the index */
VdbeBranchTaken(0,2);
sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val);
}
goto check_for_interrupt;
}
/* Opcode: RowSetTest P1 P2 P3 P4
** Synopsis: if r[P3] in rowset(P1) goto P2
**
** Register P3 is assumed to hold a 64-bit integer value. If register P1
** contains a RowSet object and that RowSet object contains
** the value held in P3, jump to register P2. Otherwise, insert the
** integer in P3 into the RowSet and continue on to the
** next opcode.
**
** The RowSet object is optimized for the case where sets of integers
** are inserted in distinct phases, which each set contains no duplicates.
** Each set is identified by a unique P4 value. The first set
** must have P4==0, the final set must have P4==-1, and for all other sets
** must have P4>0.
**
** This allows optimizations: (a) when P4==0 there is no need to test
** the RowSet object for P3, as it is guaranteed not to contain it,
** (b) when P4==-1 there is no need to insert the value, as it will
** never be tested for, and (c) when a value that is part of set X is
** inserted, there is no need to search to see if the same value was
** previously inserted as part of set X (only if it was previously
** inserted as part of some other set).
*/
case OP_RowSetTest: { /* jump, in1, in3 */
int iSet;
int exists;
pIn1 = &aMem[pOp->p1];
pIn3 = &aMem[pOp->p3];
iSet = pOp->p4.i;
assert( pIn3->flags&MEM_Int );
/* If there is anything other than a rowset object in memory cell P1,
** delete it now and initialize P1 with an empty rowset
*/
if( (pIn1->flags & MEM_RowSet)==0 ){
sqlite3VdbeMemSetRowSet(pIn1);
if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
}
assert( pOp->p4type==P4_INT32 );
assert( iSet==-1 || iSet>=0 );
if( iSet ){
exists = sqlite3RowSetTest(pIn1->u.pRowSet, iSet, pIn3->u.i);
VdbeBranchTaken(exists!=0,2);
if( exists ) goto jump_to_p2;
}
if( iSet>=0 ){
sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i);
}
break;
}
#ifndef SQLITE_OMIT_TRIGGER
/* Opcode: Program P1 P2 P3 P4 P5
**
** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
**
** P1 contains the address of the memory cell that contains the first memory
** cell in an array of values used as arguments to the sub-program. P2
** contains the address to jump to if the sub-program throws an IGNORE
** exception using the RAISE() function. Register P3 contains the address
** of a memory cell in this (the parent) VM that is used to allocate the
** memory required by the sub-vdbe at runtime.
**
** P4 is a pointer to the VM containing the trigger program.
**
** If P5 is non-zero, then recursive program invocation is enabled.
*/
case OP_Program: { /* jump */
int nMem; /* Number of memory registers for sub-program */
int nByte; /* Bytes of runtime space required for sub-program */
Mem *pRt; /* Register to allocate runtime space */
Mem *pMem; /* Used to iterate through memory cells */
Mem *pEnd; /* Last memory cell in new array */
VdbeFrame *pFrame; /* New vdbe frame to execute in */
SubProgram *pProgram; /* Sub-program to execute */
void *t; /* Token identifying trigger */
pProgram = pOp->p4.pProgram;
pRt = &aMem[pOp->p3];
assert( pProgram->nOp>0 );
/* If the p5 flag is clear, then recursive invocation of triggers is
** disabled for backwards compatibility (p5 is set if this sub-program
** is really a trigger, not a foreign key action, and the flag set
** and cleared by the "PRAGMA recursive_triggers" command is clear).
**
** It is recursive invocation of triggers, at the SQL level, that is
** disabled. In some cases a single trigger may generate more than one
** SubProgram (if the trigger may be executed with more than one different
** ON CONFLICT algorithm). SubProgram structures associated with a
** single trigger all have the same value for the SubProgram.token
** variable. */
if( pOp->p5 ){
t = pProgram->token;
for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent);
if( pFrame ) break;
}
if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){
rc = SQLITE_ERROR;
sqlite3VdbeError(p, "too many levels of trigger recursion");
goto abort_due_to_error;
}
/* Register pRt is used to store the memory required to save the state
** of the current program, and the memory required at runtime to execute
** the trigger program. If this trigger has been fired before, then pRt
** is already allocated. Otherwise, it must be initialized. */
if( (pRt->flags&MEM_Frame)==0 ){
/* SubProgram.nMem is set to the number of memory cells used by the
** program stored in SubProgram.aOp. As well as these, one memory
** cell is required for each cursor used by the program. Set local
** variable nMem (and later, VdbeFrame.nChildMem) to this value.
*/
nMem = pProgram->nMem + pProgram->nCsr;
assert( nMem>0 );
if( pProgram->nCsr==0 ) nMem++;
nByte = ROUND8(sizeof(VdbeFrame))
+ nMem * sizeof(Mem)
+ pProgram->nCsr * sizeof(VdbeCursor*)
+ (pProgram->nOp + 7)/8;
pFrame = sqlite3DbMallocZero(db, nByte);
if( !pFrame ){
goto no_mem;
}
sqlite3VdbeMemRelease(pRt);
pRt->flags = MEM_Frame;
pRt->u.pFrame = pFrame;
pFrame->v = p;
pFrame->nChildMem = nMem;
pFrame->nChildCsr = pProgram->nCsr;
pFrame->pc = (int)(pOp - aOp);
pFrame->aMem = p->aMem;
pFrame->nMem = p->nMem;
pFrame->apCsr = p->apCsr;
pFrame->nCursor = p->nCursor;
pFrame->aOp = p->aOp;
pFrame->nOp = p->nOp;
pFrame->token = pProgram->token;
#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
pFrame->anExec = p->anExec;
#endif
pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem];
for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){
pMem->flags = MEM_Undefined;
pMem->db = db;
}
}else{
pFrame = pRt->u.pFrame;
assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem
|| (pProgram->nCsr==0 && pProgram->nMem+1==pFrame->nChildMem) );
assert( pProgram->nCsr==pFrame->nChildCsr );
assert( (int)(pOp - aOp)==pFrame->pc );
}
p->nFrame++;
pFrame->pParent = p->pFrame;
pFrame->lastRowid = db->lastRowid;
pFrame->nChange = p->nChange;
pFrame->nDbChange = p->db->nChange;
assert( pFrame->pAuxData==0 );
pFrame->pAuxData = p->pAuxData;
p->pAuxData = 0;
p->nChange = 0;
p->pFrame = pFrame;
p->aMem = aMem = VdbeFrameMem(pFrame);
p->nMem = pFrame->nChildMem;
p->nCursor = (u16)pFrame->nChildCsr;
p->apCsr = (VdbeCursor **)&aMem[p->nMem];
pFrame->aOnce = (u8*)&p->apCsr[pProgram->nCsr];
memset(pFrame->aOnce, 0, (pProgram->nOp + 7)/8);
p->aOp = aOp = pProgram->aOp;
p->nOp = pProgram->nOp;
#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
p->anExec = 0;
#endif
pOp = &aOp[-1];
break;
}
/* Opcode: Param P1 P2 * * *
**
** This opcode is only ever present in sub-programs called via the
** OP_Program instruction. Copy a value currently stored in a memory
** cell of the calling (parent) frame to cell P2 in the current frames
** address space. This is used by trigger programs to access the new.*
** and old.* values.
**
** The address of the cell in the parent frame is determined by adding
** the value of the P1 argument to the value of the P1 argument to the
** calling OP_Program instruction.
*/
case OP_Param: { /* out2 */
VdbeFrame *pFrame;
Mem *pIn;
pOut = out2Prerelease(p, pOp);
pFrame = p->pFrame;
pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1];
sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem);
break;
}
#endif /* #ifndef SQLITE_OMIT_TRIGGER */
#ifndef SQLITE_OMIT_FOREIGN_KEY
/* Opcode: FkCounter P1 P2 * * *
** Synopsis: fkctr[P1]+=P2
**
** Increment a "constraint counter" by P2 (P2 may be negative or positive).
** If P1 is non-zero, the database constraint counter is incremented
** (deferred foreign key constraints). Otherwise, if P1 is zero, the
** statement counter is incremented (immediate foreign key constraints).
*/
case OP_FkCounter: {
if( db->flags & SQLITE_DeferFKs ){
db->nDeferredImmCons += pOp->p2;
}else if( pOp->p1 ){
db->nDeferredCons += pOp->p2;
}else{
p->nFkConstraint += pOp->p2;
}
break;
}
/* Opcode: FkIfZero P1 P2 * * *
** Synopsis: if fkctr[P1]==0 goto P2
**
** This opcode tests if a foreign key constraint-counter is currently zero.
** If so, jump to instruction P2. Otherwise, fall through to the next
** instruction.
**
** If P1 is non-zero, then the jump is taken if the database constraint-counter
** is zero (the one that counts deferred constraint violations). If P1 is
** zero, the jump is taken if the statement constraint-counter is zero
** (immediate foreign key constraint violations).
*/
case OP_FkIfZero: { /* jump */
if( pOp->p1 ){
VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2);
if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
}else{
VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2);
if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
}
break;
}
#endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
#ifndef SQLITE_OMIT_AUTOINCREMENT
/* Opcode: MemMax P1 P2 * * *
** Synopsis: r[P1]=max(r[P1],r[P2])
**
** P1 is a register in the root frame of this VM (the root frame is
** different from the current frame if this instruction is being executed
** within a sub-program). Set the value of register P1 to the maximum of
** its current value and the value in register P2.
**
** This instruction throws an error if the memory cell is not initially
** an integer.
*/
case OP_MemMax: { /* in2 */
VdbeFrame *pFrame;
if( p->pFrame ){
for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
pIn1 = &pFrame->aMem[pOp->p1];
}else{
pIn1 = &aMem[pOp->p1];
}
assert( memIsValid(pIn1) );
sqlite3VdbeMemIntegerify(pIn1);
pIn2 = &aMem[pOp->p2];
sqlite3VdbeMemIntegerify(pIn2);
if( pIn1->u.i<pIn2->u.i){
pIn1->u.i = pIn2->u.i;
}
break;
}
#endif /* SQLITE_OMIT_AUTOINCREMENT */
/* Opcode: IfPos P1 P2 P3 * *
** Synopsis: if r[P1]>0 then r[P1]-=P3, goto P2
**
** Register P1 must contain an integer.
** If the value of register P1 is 1 or greater, subtract P3 from the
** value in P1 and jump to P2.
**
** If the initial value of register P1 is less than 1, then the
** value is unchanged and control passes through to the next instruction.
*/
case OP_IfPos: { /* jump, in1 */
pIn1 = &aMem[pOp->p1];
assert( pIn1->flags&MEM_Int );
VdbeBranchTaken( pIn1->u.i>0, 2);
if( pIn1->u.i>0 ){
pIn1->u.i -= pOp->p3;
goto jump_to_p2;
}
break;
}
/* Opcode: OffsetLimit P1 P2 P3 * *
** Synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1)
**
** This opcode performs a commonly used computation associated with
** LIMIT and OFFSET process. r[P1] holds the limit counter. r[P3]
** holds the offset counter. The opcode computes the combined value
** of the LIMIT and OFFSET and stores that value in r[P2]. The r[P2]
** value computed is the total number of rows that will need to be
** visited in order to complete the query.
**
** If r[P3] is zero or negative, that means there is no OFFSET
** and r[P2] is set to be the value of the LIMIT, r[P1].
**
** if r[P1] is zero or negative, that means there is no LIMIT
** and r[P2] is set to -1.
**
** Otherwise, r[P2] is set to the sum of r[P1] and r[P3].
*/
case OP_OffsetLimit: { /* in1, out2, in3 */
i64 x;
pIn1 = &aMem[pOp->p1];
pIn3 = &aMem[pOp->p3];
pOut = out2Prerelease(p, pOp);
assert( pIn1->flags & MEM_Int );
assert( pIn3->flags & MEM_Int );
x = pIn1->u.i;
if( x<=0 || sqlite3AddInt64(&x, pIn3->u.i>0?pIn3->u.i:0) ){
/* If the LIMIT is less than or equal to zero, loop forever. This
** is documented. But also, if the LIMIT+OFFSET exceeds 2^63 then
** also loop forever. This is undocumented. In fact, one could argue
** that the loop should terminate. But assuming 1 billion iterations
** per second (far exceeding the capabilities of any current hardware)
** it would take nearly 300 years to actually reach the limit. So
** looping forever is a reasonable approximation. */
pOut->u.i = -1;
}else{
pOut->u.i = x;
}
break;
}
/* Opcode: IfNotZero P1 P2 * * *
** Synopsis: if r[P1]!=0 then r[P1]--, goto P2
**
** Register P1 must contain an integer. If the content of register P1 is
** initially greater than zero, then decrement the value in register P1.
** If it is non-zero (negative or positive) and then also jump to P2.
** If register P1 is initially zero, leave it unchanged and fall through.
*/
case OP_IfNotZero: { /* jump, in1 */
pIn1 = &aMem[pOp->p1];
assert( pIn1->flags&MEM_Int );
VdbeBranchTaken(pIn1->u.i<0, 2);
if( pIn1->u.i ){
if( pIn1->u.i>0 ) pIn1->u.i--;
goto jump_to_p2;
}
break;
}
/* Opcode: DecrJumpZero P1 P2 * * *
** Synopsis: if (--r[P1])==0 goto P2
**
** Register P1 must hold an integer. Decrement the value in P1
** and jump to P2 if the new value is exactly zero.
*/
case OP_DecrJumpZero: { /* jump, in1 */
pIn1 = &aMem[pOp->p1];
assert( pIn1->flags&MEM_Int );
if( pIn1->u.i>SMALLEST_INT64 ) pIn1->u.i--;
VdbeBranchTaken(pIn1->u.i==0, 2);
if( pIn1->u.i==0 ) goto jump_to_p2;
break;
}
/* Opcode: AggStep0 * P2 P3 P4 P5
** Synopsis: accum=r[P3] step(r[P2@P5])
**
** Execute the step function for an aggregate. The
** function has P5 arguments. P4 is a pointer to the FuncDef
** structure that specifies the function. Register P3 is the
** accumulator.
**
** The P5 arguments are taken from register P2 and its
** successors.
*/
/* Opcode: AggStep * P2 P3 P4 P5
** Synopsis: accum=r[P3] step(r[P2@P5])
**
** Execute the step function for an aggregate. The
** function has P5 arguments. P4 is a pointer to an sqlite3_context
** object that is used to run the function. Register P3 is
** as the accumulator.
**
** The P5 arguments are taken from register P2 and its
** successors.
**
** This opcode is initially coded as OP_AggStep0. On first evaluation,
** the FuncDef stored in P4 is converted into an sqlite3_context and
** the opcode is changed. In this way, the initialization of the
** sqlite3_context only happens once, instead of on each call to the
** step function.
*/
case OP_AggStep0: {
int n;
sqlite3_context *pCtx;
assert( pOp->p4type==P4_FUNCDEF );
n = pOp->p5;
assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) );
assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
pCtx = sqlite3DbMallocRawNN(db, sizeof(*pCtx) + (n-1)*sizeof(sqlite3_value*));
if( pCtx==0 ) goto no_mem;
pCtx->pMem = 0;
pCtx->pFunc = pOp->p4.pFunc;
pCtx->iOp = (int)(pOp - aOp);
pCtx->pVdbe = p;
pCtx->argc = n;
pOp->p4type = P4_FUNCCTX;
pOp->p4.pCtx = pCtx;
pOp->opcode = OP_AggStep;
/* Fall through into OP_AggStep */
}
case OP_AggStep: {
int i;
sqlite3_context *pCtx;
Mem *pMem;
Mem t;
assert( pOp->p4type==P4_FUNCCTX );
pCtx = pOp->p4.pCtx;
pMem = &aMem[pOp->p3];
/* If this function is inside of a trigger, the register array in aMem[]
** might change from one evaluation to the next. The next block of code
** checks to see if the register array has changed, and if so it
** reinitializes the relavant parts of the sqlite3_context object */
if( pCtx->pMem != pMem ){
pCtx->pMem = pMem;
for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
}
#ifdef SQLITE_DEBUG
for(i=0; i<pCtx->argc; i++){
assert( memIsValid(pCtx->argv[i]) );
REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
}
#endif
pMem->n++;
sqlite3VdbeMemInit(&t, db, MEM_Null);
pCtx->pOut = &t;
pCtx->fErrorOrAux = 0;
pCtx->skipFlag = 0;
(pCtx->pFunc->xSFunc)(pCtx,pCtx->argc,pCtx->argv); /* IMP: R-24505-23230 */
if( pCtx->fErrorOrAux ){
if( pCtx->isError ){
sqlite3VdbeError(p, "%s", sqlite3_value_text(&t));
rc = pCtx->isError;
}
sqlite3VdbeMemRelease(&t);
if( rc ) goto abort_due_to_error;
}else{
assert( t.flags==MEM_Null );
}
if( pCtx->skipFlag ){
assert( pOp[-1].opcode==OP_CollSeq );
i = pOp[-1].p1;
if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1);
}
break;
}
/* Opcode: AggFinal P1 P2 * P4 *
** Synopsis: accum=r[P1] N=P2
**
** Execute the finalizer function for an aggregate. P1 is
** the memory location that is the accumulator for the aggregate.
**
** P2 is the number of arguments that the step function takes and
** P4 is a pointer to the FuncDef for this function. The P2
** argument is not used by this opcode. It is only there to disambiguate
** functions that can take varying numbers of arguments. The
** P4 argument is only needed for the degenerate case where
** the step function was not previously called.
*/
case OP_AggFinal: {
Mem *pMem;
assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
pMem = &aMem[pOp->p1];
assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
if( rc ){
sqlite3VdbeError(p, "%s", sqlite3_value_text(pMem));
goto abort_due_to_error;
}
sqlite3VdbeChangeEncoding(pMem, encoding);
UPDATE_MAX_BLOBSIZE(pMem);
if( sqlite3VdbeMemTooBig(pMem) ){
goto too_big;
}
break;
}
#ifndef SQLITE_OMIT_WAL
/* Opcode: Checkpoint P1 P2 P3 * *
**
** Checkpoint database P1. This is a no-op if P1 is not currently in
** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL,
** RESTART, or TRUNCATE. Write 1 or 0 into mem[P3] if the checkpoint returns
** SQLITE_BUSY or not, respectively. Write the number of pages in the
** WAL after the checkpoint into mem[P3+1] and the number of pages
** in the WAL that have been checkpointed after the checkpoint
** completes into mem[P3+2]. However on an error, mem[P3+1] and
** mem[P3+2] are initialized to -1.
*/
case OP_Checkpoint: {
int i; /* Loop counter */
int aRes[3]; /* Results */
Mem *pMem; /* Write results here */
assert( p->readOnly==0 );
aRes[0] = 0;
aRes[1] = aRes[2] = -1;
assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE
|| pOp->p2==SQLITE_CHECKPOINT_FULL
|| pOp->p2==SQLITE_CHECKPOINT_RESTART
|| pOp->p2==SQLITE_CHECKPOINT_TRUNCATE
);
rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]);
if( rc ){
if( rc!=SQLITE_BUSY ) goto abort_due_to_error;
rc = SQLITE_OK;
aRes[0] = 1;
}
for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){
sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]);
}
break;
};
#endif
#ifndef SQLITE_OMIT_PRAGMA
/* Opcode: JournalMode P1 P2 P3 * *
**
** Change the journal mode of database P1 to P3. P3 must be one of the
** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
** modes (delete, truncate, persist, off and memory), this is a simple
** operation. No IO is required.
**
** If changing into or out of WAL mode the procedure is more complicated.
**
** Write a string containing the final journal-mode to register P2.
*/
case OP_JournalMode: { /* out2 */
Btree *pBt; /* Btree to change journal mode of */
Pager *pPager; /* Pager associated with pBt */
int eNew; /* New journal mode */
int eOld; /* The old journal mode */
#ifndef SQLITE_OMIT_WAL
const char *zFilename; /* Name of database file for pPager */
#endif
pOut = out2Prerelease(p, pOp);
eNew = pOp->p3;
assert( eNew==PAGER_JOURNALMODE_DELETE
|| eNew==PAGER_JOURNALMODE_TRUNCATE
|| eNew==PAGER_JOURNALMODE_PERSIST
|| eNew==PAGER_JOURNALMODE_OFF
|| eNew==PAGER_JOURNALMODE_MEMORY
|| eNew==PAGER_JOURNALMODE_WAL
|| eNew==PAGER_JOURNALMODE_QUERY
);
assert( pOp->p1>=0 && pOp->p1<db->nDb );
assert( p->readOnly==0 );
pBt = db->aDb[pOp->p1].pBt;
pPager = sqlite3BtreePager(pBt);
eOld = sqlite3PagerGetJournalMode(pPager);
if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld;
if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld;
#ifndef SQLITE_OMIT_WAL
zFilename = sqlite3PagerFilename(pPager, 1);
/* Do not allow a transition to journal_mode=WAL for a database
** in temporary storage or if the VFS does not support shared memory
*/
if( eNew==PAGER_JOURNALMODE_WAL
&& (sqlite3Strlen30(zFilename)==0 /* Temp file */
|| !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */
){
eNew = eOld;
}
if( (eNew!=eOld)
&& (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL)
){
if( !db->autoCommit || db->nVdbeRead>1 ){
rc = SQLITE_ERROR;
sqlite3VdbeError(p,
"cannot change %s wal mode from within a transaction",
(eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of")
);
goto abort_due_to_error;
}else{
if( eOld==PAGER_JOURNALMODE_WAL ){
/* If leaving WAL mode, close the log file. If successful, the call
** to PagerCloseWal() checkpoints and deletes the write-ahead-log
** file. An EXCLUSIVE lock may still be held on the database file
** after a successful return.
*/
rc = sqlite3PagerCloseWal(pPager, db);
if( rc==SQLITE_OK ){
sqlite3PagerSetJournalMode(pPager, eNew);
}
}else if( eOld==PAGER_JOURNALMODE_MEMORY ){
/* Cannot transition directly from MEMORY to WAL. Use mode OFF
** as an intermediate */
sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF);
}
/* Open a transaction on the database file. Regardless of the journal
** mode, this transaction always uses a rollback journal.
*/
assert( sqlite3BtreeIsInTrans(pBt)==0 );
if( rc==SQLITE_OK ){
rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1));
}
}
}
#endif /* ifndef SQLITE_OMIT_WAL */
if( rc ) eNew = eOld;
eNew = sqlite3PagerSetJournalMode(pPager, eNew);
pOut->flags = MEM_Str|MEM_Static|MEM_Term;
pOut->z = (char *)sqlite3JournalModename(eNew);
pOut->n = sqlite3Strlen30(pOut->z);
pOut->enc = SQLITE_UTF8;
sqlite3VdbeChangeEncoding(pOut, encoding);
if( rc ) goto abort_due_to_error;
break;
};
#endif /* SQLITE_OMIT_PRAGMA */
#if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
/* Opcode: Vacuum P1 * * * *
**
** Vacuum the entire database P1. P1 is 0 for "main", and 2 or more
** for an attached database. The "temp" database may not be vacuumed.
*/
case OP_Vacuum: {
assert( p->readOnly==0 );
rc = sqlite3RunVacuum(&p->zErrMsg, db, pOp->p1);
if( rc ) goto abort_due_to_error;
break;
}
#endif
#if !defined(SQLITE_OMIT_AUTOVACUUM)
/* Opcode: IncrVacuum P1 P2 * * *
**
** Perform a single step of the incremental vacuum procedure on
** the P1 database. If the vacuum has finished, jump to instruction
** P2. Otherwise, fall through to the next instruction.
*/
case OP_IncrVacuum: { /* jump */
Btree *pBt;
assert( pOp->p1>=0 && pOp->p1<db->nDb );
assert( DbMaskTest(p->btreeMask, pOp->p1) );
assert( p->readOnly==0 );
pBt = db->aDb[pOp->p1].pBt;
rc = sqlite3BtreeIncrVacuum(pBt);
VdbeBranchTaken(rc==SQLITE_DONE,2);
if( rc ){
if( rc!=SQLITE_DONE ) goto abort_due_to_error;
rc = SQLITE_OK;
goto jump_to_p2;
}
break;
}
#endif
/* Opcode: Expire P1 * * * *
**
** Cause precompiled statements to expire. When an expired statement
** is executed using sqlite3_step() it will either automatically
** reprepare itself (if it was originally created using sqlite3_prepare_v2())
** or it will fail with SQLITE_SCHEMA.
**
** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
** then only the currently executing statement is expired.
*/
case OP_Expire: {
if( !pOp->p1 ){
sqlite3ExpirePreparedStatements(db);
}else{
p->expired = 1;
}
break;
}
#ifndef SQLITE_OMIT_SHARED_CACHE
/* Opcode: TableLock P1 P2 P3 P4 *
** Synopsis: iDb=P1 root=P2 write=P3
**
** Obtain a lock on a particular table. This instruction is only used when
** the shared-cache feature is enabled.
**
** P1 is the index of the database in sqlite3.aDb[] of the database
** on which the lock is acquired. A readlock is obtained if P3==0 or
** a write lock if P3==1.
**
** P2 contains the root-page of the table to lock.
**
** P4 contains a pointer to the name of the table being locked. This is only
** used to generate an error message if the lock cannot be obtained.
*/
case OP_TableLock: {
u8 isWriteLock = (u8)pOp->p3;
if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommit) ){
int p1 = pOp->p1;
assert( p1>=0 && p1<db->nDb );
assert( DbMaskTest(p->btreeMask, p1) );
assert( isWriteLock==0 || isWriteLock==1 );
rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
if( rc ){
if( (rc&0xFF)==SQLITE_LOCKED ){
const char *z = pOp->p4.z;
sqlite3VdbeError(p, "database table is locked: %s", z);
}
goto abort_due_to_error;
}
}
break;
}
#endif /* SQLITE_OMIT_SHARED_CACHE */
#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VBegin * * * P4 *
**
** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
** xBegin method for that table.
**
** Also, whether or not P4 is set, check that this is not being called from
** within a callback to a virtual table xSync() method. If it is, the error
** code will be set to SQLITE_LOCKED.
*/
case OP_VBegin: {
VTable *pVTab;
pVTab = pOp->p4.pVtab;
rc = sqlite3VtabBegin(db, pVTab);
if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab);
if( rc ) goto abort_due_to_error;
break;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */
#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VCreate P1 P2 * * *
**
** P2 is a register that holds the name of a virtual table in database
** P1. Call the xCreate method for that table.
*/
case OP_VCreate: {
Mem sMem; /* For storing the record being decoded */
const char *zTab; /* Name of the virtual table */
memset(&sMem, 0, sizeof(sMem));
sMem.db = db;
/* Because P2 is always a static string, it is impossible for the
** sqlite3VdbeMemCopy() to fail */
assert( (aMem[pOp->p2].flags & MEM_Str)!=0 );
assert( (aMem[pOp->p2].flags & MEM_Static)!=0 );
rc = sqlite3VdbeMemCopy(&sMem, &aMem[pOp->p2]);
assert( rc==SQLITE_OK );
zTab = (const char*)sqlite3_value_text(&sMem);
assert( zTab || db->mallocFailed );
if( zTab ){
rc = sqlite3VtabCallCreate(db, pOp->p1, zTab, &p->zErrMsg);
}
sqlite3VdbeMemRelease(&sMem);
if( rc ) goto abort_due_to_error;
break;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */
#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VDestroy P1 * * P4 *
**
** P4 is the name of a virtual table in database P1. Call the xDestroy method
** of that table.
*/
case OP_VDestroy: {
db->nVDestroy++;
rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
db->nVDestroy--;
if( rc ) goto abort_due_to_error;
break;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */
#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VOpen P1 * * P4 *
**
** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
** P1 is a cursor number. This opcode opens a cursor to the virtual
** table and stores that cursor in P1.
*/
case OP_VOpen: {
VdbeCursor *pCur;
sqlite3_vtab_cursor *pVCur;
sqlite3_vtab *pVtab;
const sqlite3_module *pModule;
assert( p->bIsReader );
pCur = 0;
pVCur = 0;
pVtab = pOp->p4.pVtab->pVtab;
if( pVtab==0 || NEVER(pVtab->pModule==0) ){
rc = SQLITE_LOCKED;
goto abort_due_to_error;
}
pModule = pVtab->pModule;
rc = pModule->xOpen(pVtab, &pVCur);
sqlite3VtabImportErrmsg(p, pVtab);
if( rc ) goto abort_due_to_error;
/* Initialize sqlite3_vtab_cursor base class */
pVCur->pVtab = pVtab;
/* Initialize vdbe cursor object */
pCur = allocateCursor(p, pOp->p1, 0, -1, CURTYPE_VTAB);
if( pCur ){
pCur->uc.pVCur = pVCur;
pVtab->nRef++;
}else{
assert( db->mallocFailed );
pModule->xClose(pVCur);
goto no_mem;
}
break;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */
#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VFilter P1 P2 P3 P4 *
** Synopsis: iplan=r[P3] zplan='P4'
**
** P1 is a cursor opened using VOpen. P2 is an address to jump to if
** the filtered result set is empty.
**
** P4 is either NULL or a string that was generated by the xBestIndex
** method of the module. The interpretation of the P4 string is left
** to the module implementation.
**
** This opcode invokes the xFilter method on the virtual table specified
** by P1. The integer query plan parameter to xFilter is stored in register
** P3. Register P3+1 stores the argc parameter to be passed to the
** xFilter method. Registers P3+2..P3+1+argc are the argc
** additional parameters which are passed to
** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
**
** A jump is made to P2 if the result set after filtering would be empty.
*/
case OP_VFilter: { /* jump */
int nArg;
int iQuery;
const sqlite3_module *pModule;
Mem *pQuery;
Mem *pArgc;
sqlite3_vtab_cursor *pVCur;
sqlite3_vtab *pVtab;
VdbeCursor *pCur;
int res;
int i;
Mem **apArg;
pQuery = &aMem[pOp->p3];
pArgc = &pQuery[1];
pCur = p->apCsr[pOp->p1];
assert( memIsValid(pQuery) );
REGISTER_TRACE(pOp->p3, pQuery);
assert( pCur->eCurType==CURTYPE_VTAB );
pVCur = pCur->uc.pVCur;
pVtab = pVCur->pVtab;
pModule = pVtab->pModule;
/* Grab the index number and argc parameters */
assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
nArg = (int)pArgc->u.i;
iQuery = (int)pQuery->u.i;
/* Invoke the xFilter method */
res = 0;
apArg = p->apArg;
for(i = 0; i<nArg; i++){
apArg[i] = &pArgc[i+1];
}
rc = pModule->xFilter(pVCur, iQuery, pOp->p4.z, nArg, apArg);
sqlite3VtabImportErrmsg(p, pVtab);
if( rc ) goto abort_due_to_error;
res = pModule->xEof(pVCur);
pCur->nullRow = 0;
VdbeBranchTaken(res!=0,2);
if( res ) goto jump_to_p2;
break;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */
#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VColumn P1 P2 P3 * *
** Synopsis: r[P3]=vcolumn(P2)
**
** Store the value of the P2-th column of
** the row of the virtual-table that the
** P1 cursor is pointing to into register P3.
*/
case OP_VColumn: {
sqlite3_vtab *pVtab;
const sqlite3_module *pModule;
Mem *pDest;
sqlite3_context sContext;
VdbeCursor *pCur = p->apCsr[pOp->p1];
assert( pCur->eCurType==CURTYPE_VTAB );
assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
pDest = &aMem[pOp->p3];
memAboutToChange(p, pDest);
if( pCur->nullRow ){
sqlite3VdbeMemSetNull(pDest);
break;
}
pVtab = pCur->uc.pVCur->pVtab;
pModule = pVtab->pModule;
assert( pModule->xColumn );
memset(&sContext, 0, sizeof(sContext));
sContext.pOut = pDest;
MemSetTypeFlag(pDest, MEM_Null);
rc = pModule->xColumn(pCur->uc.pVCur, &sContext, pOp->p2);
sqlite3VtabImportErrmsg(p, pVtab);
if( sContext.isError ){
rc = sContext.isError;
}
sqlite3VdbeChangeEncoding(pDest, encoding);
REGISTER_TRACE(pOp->p3, pDest);
UPDATE_MAX_BLOBSIZE(pDest);
if( sqlite3VdbeMemTooBig(pDest) ){
goto too_big;
}
if( rc ) goto abort_due_to_error;
break;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */
#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VNext P1 P2 * * *
**
** Advance virtual table P1 to the next row in its result set and
** jump to instruction P2. Or, if the virtual table has reached
** the end of its result set, then fall through to the next instruction.
*/
case OP_VNext: { /* jump */
sqlite3_vtab *pVtab;
const sqlite3_module *pModule;
int res;
VdbeCursor *pCur;
res = 0;
pCur = p->apCsr[pOp->p1];
assert( pCur->eCurType==CURTYPE_VTAB );
if( pCur->nullRow ){
break;
}
pVtab = pCur->uc.pVCur->pVtab;
pModule = pVtab->pModule;
assert( pModule->xNext );
/* Invoke the xNext() method of the module. There is no way for the
** underlying implementation to return an error if one occurs during
** xNext(). Instead, if an error occurs, true is returned (indicating that
** data is available) and the error code returned when xColumn or
** some other method is next invoked on the save virtual table cursor.
*/
rc = pModule->xNext(pCur->uc.pVCur);
sqlite3VtabImportErrmsg(p, pVtab);
if( rc ) goto abort_due_to_error;
res = pModule->xEof(pCur->uc.pVCur);
VdbeBranchTaken(!res,2);
if( !res ){
/* If there is data, jump to P2 */
goto jump_to_p2_and_check_for_interrupt;
}
goto check_for_interrupt;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */
#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VRename P1 * * P4 *
**
** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
** This opcode invokes the corresponding xRename method. The value
** in register P1 is passed as the zName argument to the xRename method.
*/
case OP_VRename: {
sqlite3_vtab *pVtab;
Mem *pName;
pVtab = pOp->p4.pVtab->pVtab;
pName = &aMem[pOp->p1];
assert( pVtab->pModule->xRename );
assert( memIsValid(pName) );
assert( p->readOnly==0 );
REGISTER_TRACE(pOp->p1, pName);
assert( pName->flags & MEM_Str );
testcase( pName->enc==SQLITE_UTF8 );
testcase( pName->enc==SQLITE_UTF16BE );
testcase( pName->enc==SQLITE_UTF16LE );
rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8);
if( rc ) goto abort_due_to_error;
rc = pVtab->pModule->xRename(pVtab, pName->z);
sqlite3VtabImportErrmsg(p, pVtab);
p->expired = 0;
if( rc ) goto abort_due_to_error;
break;
}
#endif
#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VUpdate P1 P2 P3 P4 P5
** Synopsis: data=r[P3@P2]
**
** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
** This opcode invokes the corresponding xUpdate method. P2 values
** are contiguous memory cells starting at P3 to pass to the xUpdate
** invocation. The value in register (P3+P2-1) corresponds to the
** p2th element of the argv array passed to xUpdate.
**
** The xUpdate method will do a DELETE or an INSERT or both.
** The argv[0] element (which corresponds to memory cell P3)
** is the rowid of a row to delete. If argv[0] is NULL then no
** deletion occurs. The argv[1] element is the rowid of the new
** row. This can be NULL to have the virtual table select the new
** rowid for itself. The subsequent elements in the array are
** the values of columns in the new row.
**
** If P2==1 then no insert is performed. argv[0] is the rowid of
** a row to delete.
**
** P1 is a boolean flag. If it is set to true and the xUpdate call
** is successful, then the value returned by sqlite3_last_insert_rowid()
** is set to the value of the rowid for the row just inserted.
**
** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to
** apply in the case of a constraint failure on an insert or update.
*/
case OP_VUpdate: {
sqlite3_vtab *pVtab;
const sqlite3_module *pModule;
int nArg;
int i;
sqlite_int64 rowid;
Mem **apArg;
Mem *pX;
assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback
|| pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace
);
assert( p->readOnly==0 );
pVtab = pOp->p4.pVtab->pVtab;
if( pVtab==0 || NEVER(pVtab->pModule==0) ){
rc = SQLITE_LOCKED;
goto abort_due_to_error;
}
pModule = pVtab->pModule;
nArg = pOp->p2;
assert( pOp->p4type==P4_VTAB );
if( ALWAYS(pModule->xUpdate) ){
u8 vtabOnConflict = db->vtabOnConflict;
apArg = p->apArg;
pX = &aMem[pOp->p3];
for(i=0; i<nArg; i++){
assert( memIsValid(pX) );
memAboutToChange(p, pX);
apArg[i] = pX;
pX++;
}
db->vtabOnConflict = pOp->p5;
rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
db->vtabOnConflict = vtabOnConflict;
sqlite3VtabImportErrmsg(p, pVtab);
if( rc==SQLITE_OK && pOp->p1 ){
assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
db->lastRowid = rowid;
}
if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){
if( pOp->p5==OE_Ignore ){
rc = SQLITE_OK;
}else{
p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5);
}
}else{
p->nChange++;
}
if( rc ) goto abort_due_to_error;
}
break;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */
#ifndef SQLITE_OMIT_PAGER_PRAGMAS
/* Opcode: Pagecount P1 P2 * * *
**
** Write the current number of pages in database P1 to memory cell P2.
*/
case OP_Pagecount: { /* out2 */
pOut = out2Prerelease(p, pOp);
pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt);
break;
}
#endif
#ifndef SQLITE_OMIT_PAGER_PRAGMAS
/* Opcode: MaxPgcnt P1 P2 P3 * *
**
** Try to set the maximum page count for database P1 to the value in P3.
** Do not let the maximum page count fall below the current page count and
** do not change the maximum page count value if P3==0.
**
** Store the maximum page count after the change in register P2.
*/
case OP_MaxPgcnt: { /* out2 */
unsigned int newMax;
Btree *pBt;
pOut = out2Prerelease(p, pOp);
pBt = db->aDb[pOp->p1].pBt;
newMax = 0;
if( pOp->p3 ){
newMax = sqlite3BtreeLastPage(pBt);
if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3;
}
pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax);
break;
}
#endif
/* Opcode: Function0 P1 P2 P3 P4 P5
** Synopsis: r[P3]=func(r[P2@P5])
**
** Invoke a user function (P4 is a pointer to a FuncDef object that
** defines the function) with P5 arguments taken from register P2 and
** successors. The result of the function is stored in register P3.
** Register P3 must not be one of the function inputs.
**
** P1 is a 32-bit bitmask indicating whether or not each argument to the
** function was determined to be constant at compile time. If the first
** argument was constant then bit 0 of P1 is set. This is used to determine
** whether meta data associated with a user function argument using the
** sqlite3_set_auxdata() API may be safely retained until the next
** invocation of this opcode.
**
** See also: Function, AggStep, AggFinal
*/
/* Opcode: Function P1 P2 P3 P4 P5
** Synopsis: r[P3]=func(r[P2@P5])
**
** Invoke a user function (P4 is a pointer to an sqlite3_context object that
** contains a pointer to the function to be run) with P5 arguments taken
** from register P2 and successors. The result of the function is stored
** in register P3. Register P3 must not be one of the function inputs.
**
** P1 is a 32-bit bitmask indicating whether or not each argument to the
** function was determined to be constant at compile time. If the first
** argument was constant then bit 0 of P1 is set. This is used to determine
** whether meta data associated with a user function argument using the
** sqlite3_set_auxdata() API may be safely retained until the next
** invocation of this opcode.
**
** SQL functions are initially coded as OP_Function0 with P4 pointing
** to a FuncDef object. But on first evaluation, the P4 operand is
** automatically converted into an sqlite3_context object and the operation
** changed to this OP_Function opcode. In this way, the initialization of
** the sqlite3_context object occurs only once, rather than once for each
** evaluation of the function.
**
** See also: Function0, AggStep, AggFinal
*/
case OP_PureFunc0:
case OP_Function0: {
int n;
sqlite3_context *pCtx;
assert( pOp->p4type==P4_FUNCDEF );
n = pOp->p5;
assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) );
assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
pCtx = sqlite3DbMallocRawNN(db, sizeof(*pCtx) + (n-1)*sizeof(sqlite3_value*));
if( pCtx==0 ) goto no_mem;
pCtx->pOut = 0;
pCtx->pFunc = pOp->p4.pFunc;
pCtx->iOp = (int)(pOp - aOp);
pCtx->pVdbe = p;
pCtx->argc = n;
pOp->p4type = P4_FUNCCTX;
pOp->p4.pCtx = pCtx;
assert( OP_PureFunc == OP_PureFunc0+2 );
assert( OP_Function == OP_Function0+2 );
pOp->opcode += 2;
/* Fall through into OP_Function */
}
case OP_PureFunc:
case OP_Function: {
int i;
sqlite3_context *pCtx;
assert( pOp->p4type==P4_FUNCCTX );
pCtx = pOp->p4.pCtx;
/* If this function is inside of a trigger, the register array in aMem[]
** might change from one evaluation to the next. The next block of code
** checks to see if the register array has changed, and if so it
** reinitializes the relavant parts of the sqlite3_context object */
pOut = &aMem[pOp->p3];
if( pCtx->pOut != pOut ){
pCtx->pOut = pOut;
for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
}
memAboutToChange(p, pOut);
#ifdef SQLITE_DEBUG
for(i=0; i<pCtx->argc; i++){
assert( memIsValid(pCtx->argv[i]) );
REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
}
#endif
MemSetTypeFlag(pOut, MEM_Null);
pCtx->fErrorOrAux = 0;
(*pCtx->pFunc->xSFunc)(pCtx, pCtx->argc, pCtx->argv);/* IMP: R-24505-23230 */
/* If the function returned an error, throw an exception */
if( pCtx->fErrorOrAux ){
if( pCtx->isError ){
sqlite3VdbeError(p, "%s", sqlite3_value_text(pOut));
rc = pCtx->isError;
}
sqlite3VdbeDeleteAuxData(db, &p->pAuxData, pCtx->iOp, pOp->p1);
if( rc ) goto abort_due_to_error;
}
/* Copy the result of the function into register P3 */
if( pOut->flags & (MEM_Str|MEM_Blob) ){
sqlite3VdbeChangeEncoding(pOut, encoding);
if( sqlite3VdbeMemTooBig(pOut) ) goto too_big;
}
REGISTER_TRACE(pOp->p3, pOut);
UPDATE_MAX_BLOBSIZE(pOut);
break;
}
/* Opcode: Init P1 P2 P3 P4 *
** Synopsis: Start at P2
**
** Programs contain a single instance of this opcode as the very first
** opcode.
**
** If tracing is enabled (by the sqlite3_trace()) interface, then
** the UTF-8 string contained in P4 is emitted on the trace callback.
** Or if P4 is blank, use the string returned by sqlite3_sql().
**
** If P2 is not zero, jump to instruction P2.
**
** Increment the value of P1 so that OP_Once opcodes will jump the
** first time they are evaluated for this run.
**
** If P3 is not zero, then it is an address to jump to if an SQLITE_CORRUPT
** error is encountered.
*/
case OP_Init: { /* jump */
char *zTrace;
int i;
/* If the P4 argument is not NULL, then it must be an SQL comment string.
** The "--" string is broken up to prevent false-positives with srcck1.c.
**
** This assert() provides evidence for:
** EVIDENCE-OF: R-50676-09860 The callback can compute the same text that
** would have been returned by the legacy sqlite3_trace() interface by
** using the X argument when X begins with "--" and invoking
** sqlite3_expanded_sql(P) otherwise.
*/
assert( pOp->p4.z==0 || strncmp(pOp->p4.z, "-" "- ", 3)==0 );
assert( pOp==p->aOp ); /* Always instruction 0 */
#ifndef SQLITE_OMIT_TRACE
if( (db->mTrace & (SQLITE_TRACE_STMT|SQLITE_TRACE_LEGACY))!=0
&& !p->doingRerun
&& (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
){
#ifndef SQLITE_OMIT_DEPRECATED
if( db->mTrace & SQLITE_TRACE_LEGACY ){
void (*x)(void*,const char*) = (void(*)(void*,const char*))db->xTrace;
char *z = sqlite3VdbeExpandSql(p, zTrace);
x(db->pTraceArg, z);
sqlite3_free(z);
}else
#endif
if( db->nVdbeExec>1 ){
char *z = sqlite3MPrintf(db, "-- %s", zTrace);
(void)db->xTrace(SQLITE_TRACE_STMT, db->pTraceArg, p, z);
sqlite3DbFree(db, z);
}else{
(void)db->xTrace(SQLITE_TRACE_STMT, db->pTraceArg, p, zTrace);
}
}
#ifdef SQLITE_USE_FCNTL_TRACE
zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql);
if( zTrace ){
int j;
for(j=0; j<db->nDb; j++){
if( DbMaskTest(p->btreeMask, j)==0 ) continue;
sqlite3_file_control(db, db->aDb[j].zDbSName, SQLITE_FCNTL_TRACE, zTrace);
}
}
#endif /* SQLITE_USE_FCNTL_TRACE */
#ifdef SQLITE_DEBUG
if( (db->flags & SQLITE_SqlTrace)!=0
&& (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
){
sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
}
#endif /* SQLITE_DEBUG */
#endif /* SQLITE_OMIT_TRACE */
assert( pOp->p2>0 );
if( pOp->p1>=sqlite3GlobalConfig.iOnceResetThreshold ){
for(i=1; i<p->nOp; i++){
if( p->aOp[i].opcode==OP_Once ) p->aOp[i].p1 = 0;
}
pOp->p1 = 0;
}
pOp->p1++;
p->aCounter[SQLITE_STMTSTATUS_RUN]++;
goto jump_to_p2;
}
#ifdef SQLITE_ENABLE_CURSOR_HINTS
/* Opcode: CursorHint P1 * * P4 *
**
** Provide a hint to cursor P1 that it only needs to return rows that
** satisfy the Expr in P4. TK_REGISTER terms in the P4 expression refer
** to values currently held in registers. TK_COLUMN terms in the P4
** expression refer to columns in the b-tree to which cursor P1 is pointing.
*/
case OP_CursorHint: {
VdbeCursor *pC;
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
assert( pOp->p4type==P4_EXPR );
pC = p->apCsr[pOp->p1];
if( pC ){
assert( pC->eCurType==CURTYPE_BTREE );
sqlite3BtreeCursorHint(pC->uc.pCursor, BTREE_HINT_RANGE,
pOp->p4.pExpr, aMem);
}
break;
}
#endif /* SQLITE_ENABLE_CURSOR_HINTS */
/* Opcode: Noop * * * * *
**
** Do nothing. This instruction is often useful as a jump
** destination.
*/
/*
** The magic Explain opcode are only inserted when explain==2 (which
** is to say when the EXPLAIN QUERY PLAN syntax is used.)
** This opcode records information from the optimizer. It is the
** the same as a no-op. This opcodesnever appears in a real VM program.
*/
default: { /* This is really OP_Noop and OP_Explain */
assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain );
break;
}
/*****************************************************************************
** The cases of the switch statement above this line should all be indented
** by 6 spaces. But the left-most 6 spaces have been removed to improve the
** readability. From this point on down, the normal indentation rules are
** restored.
*****************************************************************************/
}
#ifdef VDBE_PROFILE
{
u64 endTime = sqlite3Hwtime();
if( endTime>start ) pOrigOp->cycles += endTime - start;
pOrigOp->cnt++;
}
#endif
/* The following code adds nothing to the actual functionality
** of the program. It is only here for testing and debugging.
** On the other hand, it does burn CPU cycles every time through
** the evaluator loop. So we can leave it out when NDEBUG is defined.
*/
#ifndef NDEBUG
assert( pOp>=&aOp[-1] && pOp<&aOp[p->nOp-1] );
#ifdef SQLITE_DEBUG
if( db->flags & SQLITE_VdbeTrace ){
u8 opProperty = sqlite3OpcodeProperty[pOrigOp->opcode];
if( rc!=0 ) printf("rc=%d\n",rc);
if( opProperty & (OPFLG_OUT2) ){
registerTrace(pOrigOp->p2, &aMem[pOrigOp->p2]);
}
if( opProperty & OPFLG_OUT3 ){
registerTrace(pOrigOp->p3, &aMem[pOrigOp->p3]);
}
}
#endif /* SQLITE_DEBUG */
#endif /* NDEBUG */
} /* The end of the for(;;) loop the loops through opcodes */
/* If we reach this point, it means that execution is finished with
** an error of some kind.
*/
abort_due_to_error:
if( db->mallocFailed ) rc = SQLITE_NOMEM_BKPT;
assert( rc );
if( p->zErrMsg==0 && rc!=SQLITE_IOERR_NOMEM ){
sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc));
}
p->rc = rc;
sqlite3SystemError(db, rc);
testcase( sqlite3GlobalConfig.xLog!=0 );
sqlite3_log(rc, "statement aborts at %d: [%s] %s",
(int)(pOp - aOp), p->zSql, p->zErrMsg);
sqlite3VdbeHalt(p);
if( rc==SQLITE_IOERR_NOMEM ) sqlite3OomFault(db);
rc = SQLITE_ERROR;
if( resetSchemaOnFault>0 ){
sqlite3ResetOneSchema(db, resetSchemaOnFault-1);
}
/* This is the only way out of this procedure. We have to
** release the mutexes on btrees that were acquired at the
** top. */
vdbe_return:
testcase( nVmStep>0 );
p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep;
sqlite3VdbeLeave(p);
assert( rc!=SQLITE_OK || nExtraDelete==0
|| sqlite3_strlike("DELETE%",p->zSql,0)!=0
);
return rc;
/* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
** is encountered.
*/
too_big:
sqlite3VdbeError(p, "string or blob too big");
rc = SQLITE_TOOBIG;
goto abort_due_to_error;
/* Jump to here if a malloc() fails.
*/
no_mem:
sqlite3OomFault(db);
sqlite3VdbeError(p, "out of memory");
rc = SQLITE_NOMEM_BKPT;
goto abort_due_to_error;
/* Jump to here if the sqlite3_interrupt() API sets the interrupt
** flag.
*/
abort_due_to_interrupt:
assert( db->u1.isInterrupted );
rc = db->mallocFailed ? SQLITE_NOMEM_BKPT : SQLITE_INTERRUPT;
p->rc = rc;
sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc));
goto abort_due_to_error;
}