mirror of
https://github.com/sqlite/sqlite.git
synced 2025-10-21 11:13:54 +03:00

SQL functions. FossilOrigin-Name: 8d3943890ef3b533df35c4784c2a42c52503a4d9c3dbe67241510d8b70669b48
3409 lines
104 KiB
C
3409 lines
104 KiB
C
/*
|
|
** 2002 February 23
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** This file contains the C-language implementations for many of the SQL
|
|
** functions of SQLite. (Some function, and in particular the date and
|
|
** time functions, are implemented separately.)
|
|
*/
|
|
#include "sqliteInt.h"
|
|
#include <stdlib.h>
|
|
#include <assert.h>
|
|
#ifndef SQLITE_OMIT_FLOATING_POINT
|
|
#include <math.h>
|
|
#endif
|
|
#include "vdbeInt.h"
|
|
|
|
/*
|
|
** Return the collating function associated with a function.
|
|
*/
|
|
static CollSeq *sqlite3GetFuncCollSeq(sqlite3_context *context){
|
|
VdbeOp *pOp;
|
|
assert( context->pVdbe!=0 );
|
|
pOp = &context->pVdbe->aOp[context->iOp-1];
|
|
assert( pOp->opcode==OP_CollSeq );
|
|
assert( pOp->p4type==P4_COLLSEQ );
|
|
return pOp->p4.pColl;
|
|
}
|
|
|
|
/*
|
|
** Indicate that the accumulator load should be skipped on this
|
|
** iteration of the aggregate loop.
|
|
*/
|
|
static void sqlite3SkipAccumulatorLoad(sqlite3_context *context){
|
|
assert( context->isError<=0 );
|
|
context->isError = -1;
|
|
context->skipFlag = 1;
|
|
}
|
|
|
|
/*
|
|
** Implementation of the non-aggregate min() and max() functions
|
|
*/
|
|
static void minmaxFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
int i;
|
|
int mask; /* 0 for min() or 0xffffffff for max() */
|
|
int iBest;
|
|
CollSeq *pColl;
|
|
|
|
assert( argc>1 );
|
|
mask = sqlite3_user_data(context)==0 ? 0 : -1;
|
|
pColl = sqlite3GetFuncCollSeq(context);
|
|
assert( pColl );
|
|
assert( mask==-1 || mask==0 );
|
|
iBest = 0;
|
|
if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
|
|
for(i=1; i<argc; i++){
|
|
if( sqlite3_value_type(argv[i])==SQLITE_NULL ) return;
|
|
if( (sqlite3MemCompare(argv[iBest], argv[i], pColl)^mask)>=0 ){
|
|
testcase( mask==0 );
|
|
iBest = i;
|
|
}
|
|
}
|
|
sqlite3_result_value(context, argv[iBest]);
|
|
}
|
|
|
|
/*
|
|
** Return the type of the argument.
|
|
*/
|
|
static void typeofFunc(
|
|
sqlite3_context *context,
|
|
int NotUsed,
|
|
sqlite3_value **argv
|
|
){
|
|
static const char *azType[] = { "integer", "real", "text", "blob", "null" };
|
|
int i = sqlite3_value_type(argv[0]) - 1;
|
|
UNUSED_PARAMETER(NotUsed);
|
|
assert( i>=0 && i<ArraySize(azType) );
|
|
assert( SQLITE_INTEGER==1 );
|
|
assert( SQLITE_FLOAT==2 );
|
|
assert( SQLITE_TEXT==3 );
|
|
assert( SQLITE_BLOB==4 );
|
|
assert( SQLITE_NULL==5 );
|
|
/* EVIDENCE-OF: R-01470-60482 The sqlite3_value_type(V) interface returns
|
|
** the datatype code for the initial datatype of the sqlite3_value object
|
|
** V. The returned value is one of SQLITE_INTEGER, SQLITE_FLOAT,
|
|
** SQLITE_TEXT, SQLITE_BLOB, or SQLITE_NULL. */
|
|
sqlite3_result_text(context, azType[i], -1, SQLITE_STATIC);
|
|
}
|
|
|
|
/* subtype(X)
|
|
**
|
|
** Return the subtype of X
|
|
*/
|
|
static void subtypeFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
UNUSED_PARAMETER(argc);
|
|
sqlite3_result_int(context, sqlite3_value_subtype(argv[0]));
|
|
}
|
|
|
|
/*
|
|
** Implementation of the length() function
|
|
*/
|
|
static void lengthFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
assert( argc==1 );
|
|
UNUSED_PARAMETER(argc);
|
|
switch( sqlite3_value_type(argv[0]) ){
|
|
case SQLITE_BLOB:
|
|
case SQLITE_INTEGER:
|
|
case SQLITE_FLOAT: {
|
|
sqlite3_result_int(context, sqlite3_value_bytes(argv[0]));
|
|
break;
|
|
}
|
|
case SQLITE_TEXT: {
|
|
const unsigned char *z = sqlite3_value_text(argv[0]);
|
|
const unsigned char *z0;
|
|
unsigned char c;
|
|
if( z==0 ) return;
|
|
z0 = z;
|
|
while( (c = *z)!=0 ){
|
|
z++;
|
|
if( c>=0xc0 ){
|
|
while( (*z & 0xc0)==0x80 ){ z++; z0++; }
|
|
}
|
|
}
|
|
sqlite3_result_int(context, (int)(z-z0));
|
|
break;
|
|
}
|
|
default: {
|
|
sqlite3_result_null(context);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Implementation of the octet_length() function
|
|
*/
|
|
static void bytelengthFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
assert( argc==1 );
|
|
UNUSED_PARAMETER(argc);
|
|
switch( sqlite3_value_type(argv[0]) ){
|
|
case SQLITE_BLOB: {
|
|
sqlite3_result_int(context, sqlite3_value_bytes(argv[0]));
|
|
break;
|
|
}
|
|
case SQLITE_INTEGER:
|
|
case SQLITE_FLOAT: {
|
|
i64 m = sqlite3_context_db_handle(context)->enc<=SQLITE_UTF8 ? 1 : 2;
|
|
sqlite3_result_int64(context, sqlite3_value_bytes(argv[0])*m);
|
|
break;
|
|
}
|
|
case SQLITE_TEXT: {
|
|
if( sqlite3_value_encoding(argv[0])<=SQLITE_UTF8 ){
|
|
sqlite3_result_int(context, sqlite3_value_bytes(argv[0]));
|
|
}else{
|
|
sqlite3_result_int(context, sqlite3_value_bytes16(argv[0]));
|
|
}
|
|
break;
|
|
}
|
|
default: {
|
|
sqlite3_result_null(context);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Implementation of the abs() function.
|
|
**
|
|
** IMP: R-23979-26855 The abs(X) function returns the absolute value of
|
|
** the numeric argument X.
|
|
*/
|
|
static void absFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
|
|
assert( argc==1 );
|
|
UNUSED_PARAMETER(argc);
|
|
switch( sqlite3_value_type(argv[0]) ){
|
|
case SQLITE_INTEGER: {
|
|
i64 iVal = sqlite3_value_int64(argv[0]);
|
|
if( iVal<0 ){
|
|
if( iVal==SMALLEST_INT64 ){
|
|
/* IMP: R-31676-45509 If X is the integer -9223372036854775808
|
|
** then abs(X) throws an integer overflow error since there is no
|
|
** equivalent positive 64-bit two complement value. */
|
|
sqlite3_result_error(context, "integer overflow", -1);
|
|
return;
|
|
}
|
|
iVal = -iVal;
|
|
}
|
|
sqlite3_result_int64(context, iVal);
|
|
break;
|
|
}
|
|
case SQLITE_NULL: {
|
|
/* IMP: R-37434-19929 Abs(X) returns NULL if X is NULL. */
|
|
sqlite3_result_null(context);
|
|
break;
|
|
}
|
|
default: {
|
|
/* Because sqlite3_value_double() returns 0.0 if the argument is not
|
|
** something that can be converted into a number, we have:
|
|
** IMP: R-01992-00519 Abs(X) returns 0.0 if X is a string or blob
|
|
** that cannot be converted to a numeric value.
|
|
*/
|
|
double rVal = sqlite3_value_double(argv[0]);
|
|
if( rVal<0 ) rVal = -rVal;
|
|
sqlite3_result_double(context, rVal);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Implementation of the instr() function.
|
|
**
|
|
** instr(haystack,needle) finds the first occurrence of needle
|
|
** in haystack and returns the number of previous characters plus 1,
|
|
** or 0 if needle does not occur within haystack.
|
|
**
|
|
** If both haystack and needle are BLOBs, then the result is one more than
|
|
** the number of bytes in haystack prior to the first occurrence of needle,
|
|
** or 0 if needle never occurs in haystack.
|
|
*/
|
|
static void instrFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
const unsigned char *zHaystack;
|
|
const unsigned char *zNeedle;
|
|
int nHaystack;
|
|
int nNeedle;
|
|
int typeHaystack, typeNeedle;
|
|
int N = 1;
|
|
int isText;
|
|
unsigned char firstChar;
|
|
sqlite3_value *pC1 = 0;
|
|
sqlite3_value *pC2 = 0;
|
|
|
|
UNUSED_PARAMETER(argc);
|
|
typeHaystack = sqlite3_value_type(argv[0]);
|
|
typeNeedle = sqlite3_value_type(argv[1]);
|
|
if( typeHaystack==SQLITE_NULL || typeNeedle==SQLITE_NULL ) return;
|
|
nHaystack = sqlite3_value_bytes(argv[0]);
|
|
nNeedle = sqlite3_value_bytes(argv[1]);
|
|
if( nNeedle>0 ){
|
|
if( typeHaystack==SQLITE_BLOB && typeNeedle==SQLITE_BLOB ){
|
|
zHaystack = sqlite3_value_blob(argv[0]);
|
|
zNeedle = sqlite3_value_blob(argv[1]);
|
|
isText = 0;
|
|
}else if( typeHaystack!=SQLITE_BLOB && typeNeedle!=SQLITE_BLOB ){
|
|
zHaystack = sqlite3_value_text(argv[0]);
|
|
zNeedle = sqlite3_value_text(argv[1]);
|
|
isText = 1;
|
|
}else{
|
|
pC1 = sqlite3_value_dup(argv[0]);
|
|
zHaystack = sqlite3_value_text(pC1);
|
|
if( zHaystack==0 ) goto endInstrOOM;
|
|
nHaystack = sqlite3_value_bytes(pC1);
|
|
pC2 = sqlite3_value_dup(argv[1]);
|
|
zNeedle = sqlite3_value_text(pC2);
|
|
if( zNeedle==0 ) goto endInstrOOM;
|
|
nNeedle = sqlite3_value_bytes(pC2);
|
|
isText = 1;
|
|
}
|
|
if( zNeedle==0 || (nHaystack && zHaystack==0) ) goto endInstrOOM;
|
|
firstChar = zNeedle[0];
|
|
while( nNeedle<=nHaystack
|
|
&& (zHaystack[0]!=firstChar || memcmp(zHaystack, zNeedle, nNeedle)!=0)
|
|
){
|
|
N++;
|
|
do{
|
|
nHaystack--;
|
|
zHaystack++;
|
|
}while( isText && (zHaystack[0]&0xc0)==0x80 );
|
|
}
|
|
if( nNeedle>nHaystack ) N = 0;
|
|
}
|
|
sqlite3_result_int(context, N);
|
|
endInstr:
|
|
sqlite3_value_free(pC1);
|
|
sqlite3_value_free(pC2);
|
|
return;
|
|
endInstrOOM:
|
|
sqlite3_result_error_nomem(context);
|
|
goto endInstr;
|
|
}
|
|
|
|
/*
|
|
** Implementation of the printf() (a.k.a. format()) SQL function.
|
|
*/
|
|
static void printfFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
PrintfArguments x;
|
|
StrAccum str;
|
|
const char *zFormat;
|
|
int n;
|
|
sqlite3 *db = sqlite3_context_db_handle(context);
|
|
|
|
if( argc>=1 && (zFormat = (const char*)sqlite3_value_text(argv[0]))!=0 ){
|
|
x.nArg = argc-1;
|
|
x.nUsed = 0;
|
|
x.apArg = argv+1;
|
|
sqlite3StrAccumInit(&str, db, 0, 0, db->aLimit[SQLITE_LIMIT_LENGTH]);
|
|
str.printfFlags = SQLITE_PRINTF_SQLFUNC;
|
|
sqlite3_str_appendf(&str, zFormat, &x);
|
|
n = str.nChar;
|
|
sqlite3_result_text(context, sqlite3StrAccumFinish(&str), n,
|
|
SQLITE_DYNAMIC);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Implementation of the substr() function.
|
|
**
|
|
** substr(x,p1,p2) returns p2 characters of x[] beginning with p1.
|
|
** p1 is 1-indexed. So substr(x,1,1) returns the first character
|
|
** of x. If x is text, then we actually count UTF-8 characters.
|
|
** If x is a blob, then we count bytes.
|
|
**
|
|
** If p1 is negative, then we begin abs(p1) from the end of x[].
|
|
**
|
|
** If p2 is negative, return the p2 characters preceding p1.
|
|
*/
|
|
static void substrFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
const unsigned char *z;
|
|
const unsigned char *z2;
|
|
int len;
|
|
int p0type;
|
|
i64 p1, p2;
|
|
|
|
assert( argc==3 || argc==2 );
|
|
p0type = sqlite3_value_type(argv[0]);
|
|
p1 = sqlite3_value_int64(argv[1]);
|
|
if( p0type==SQLITE_BLOB ){
|
|
len = sqlite3_value_bytes(argv[0]);
|
|
z = sqlite3_value_blob(argv[0]);
|
|
if( z==0 ) return;
|
|
assert( len==sqlite3_value_bytes(argv[0]) );
|
|
}else{
|
|
z = sqlite3_value_text(argv[0]);
|
|
if( z==0 ) return;
|
|
len = 0;
|
|
if( p1<0 ){
|
|
for(z2=z; *z2; len++){
|
|
SQLITE_SKIP_UTF8(z2);
|
|
}
|
|
}
|
|
}
|
|
if( argc==3 ){
|
|
p2 = sqlite3_value_int64(argv[2]);
|
|
if( p2==0 && sqlite3_value_type(argv[2])==SQLITE_NULL ) return;
|
|
}else{
|
|
p2 = sqlite3_context_db_handle(context)->aLimit[SQLITE_LIMIT_LENGTH];
|
|
}
|
|
if( p1==0 ){
|
|
#ifdef SQLITE_SUBSTR_COMPATIBILITY
|
|
/* If SUBSTR_COMPATIBILITY is defined then substr(X,0,N) work the same as
|
|
** as substr(X,1,N) - it returns the first N characters of X. This
|
|
** is essentially a back-out of the bug-fix in check-in [5fc125d362df4b8]
|
|
** from 2009-02-02 for compatibility of applications that exploited the
|
|
** old buggy behavior. */
|
|
p1 = 1; /* <rdar://problem/6778339> */
|
|
#endif
|
|
if( sqlite3_value_type(argv[1])==SQLITE_NULL ) return;
|
|
}
|
|
if( p1<0 ){
|
|
p1 += len;
|
|
if( p1<0 ){
|
|
if( p2<0 ){
|
|
p2 = 0;
|
|
}else{
|
|
p2 += p1;
|
|
}
|
|
p1 = 0;
|
|
}
|
|
}else if( p1>0 ){
|
|
p1--;
|
|
}else if( p2>0 ){
|
|
p2--;
|
|
}
|
|
if( p2<0 ){
|
|
if( p2<-p1 ){
|
|
p2 = p1;
|
|
}else{
|
|
p2 = -p2;
|
|
}
|
|
p1 -= p2;
|
|
}
|
|
assert( p1>=0 && p2>=0 );
|
|
if( p0type!=SQLITE_BLOB ){
|
|
while( *z && p1 ){
|
|
SQLITE_SKIP_UTF8(z);
|
|
p1--;
|
|
}
|
|
for(z2=z; *z2 && p2; p2--){
|
|
SQLITE_SKIP_UTF8(z2);
|
|
}
|
|
sqlite3_result_text64(context, (char*)z, z2-z, SQLITE_TRANSIENT,
|
|
SQLITE_UTF8);
|
|
}else{
|
|
if( p1>=len ){
|
|
p1 = p2 = 0;
|
|
}else if( p2>len-p1 ){
|
|
p2 = len-p1;
|
|
assert( p2>0 );
|
|
}
|
|
sqlite3_result_blob64(context, (char*)&z[p1], (u64)p2, SQLITE_TRANSIENT);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Implementation of the round() function
|
|
*/
|
|
#ifndef SQLITE_OMIT_FLOATING_POINT
|
|
static void roundFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
|
|
i64 n = 0;
|
|
double r;
|
|
char *zBuf;
|
|
assert( argc==1 || argc==2 );
|
|
if( argc==2 ){
|
|
if( SQLITE_NULL==sqlite3_value_type(argv[1]) ) return;
|
|
n = sqlite3_value_int64(argv[1]);
|
|
if( n>30 ) n = 30;
|
|
if( n<0 ) n = 0;
|
|
}
|
|
if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
|
|
r = sqlite3_value_double(argv[0]);
|
|
/* If Y==0 and X will fit in a 64-bit int,
|
|
** handle the rounding directly,
|
|
** otherwise use printf.
|
|
*/
|
|
if( r<-4503599627370496.0 || r>+4503599627370496.0 ){
|
|
/* The value has no fractional part so there is nothing to round */
|
|
}else if( n==0 ){
|
|
r = (double)((sqlite_int64)(r+(r<0?-0.5:+0.5)));
|
|
}else{
|
|
zBuf = sqlite3_mprintf("%!.*f",(int)n,r);
|
|
if( zBuf==0 ){
|
|
sqlite3_result_error_nomem(context);
|
|
return;
|
|
}
|
|
sqlite3AtoF(zBuf, &r, sqlite3Strlen30(zBuf), SQLITE_UTF8);
|
|
sqlite3_free(zBuf);
|
|
}
|
|
sqlite3_result_double(context, r);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** Allocate nByte bytes of space using sqlite3Malloc(). If the
|
|
** allocation fails, call sqlite3_result_error_nomem() to notify
|
|
** the database handle that malloc() has failed and return NULL.
|
|
** If nByte is larger than the maximum string or blob length, then
|
|
** raise an SQLITE_TOOBIG exception and return NULL.
|
|
*/
|
|
static void *contextMalloc(sqlite3_context *context, i64 nByte){
|
|
char *z;
|
|
sqlite3 *db = sqlite3_context_db_handle(context);
|
|
assert( nByte>0 );
|
|
testcase( nByte==db->aLimit[SQLITE_LIMIT_LENGTH] );
|
|
testcase( nByte==db->aLimit[SQLITE_LIMIT_LENGTH]+1 );
|
|
if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
|
|
sqlite3_result_error_toobig(context);
|
|
z = 0;
|
|
}else{
|
|
z = sqlite3Malloc(nByte);
|
|
if( !z ){
|
|
sqlite3_result_error_nomem(context);
|
|
}
|
|
}
|
|
return z;
|
|
}
|
|
|
|
/*
|
|
** Implementation of the upper() and lower() SQL functions.
|
|
*/
|
|
static void upperFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
|
|
char *z1;
|
|
const char *z2;
|
|
int i, n;
|
|
UNUSED_PARAMETER(argc);
|
|
z2 = (char*)sqlite3_value_text(argv[0]);
|
|
n = sqlite3_value_bytes(argv[0]);
|
|
/* Verify that the call to _bytes() does not invalidate the _text() pointer */
|
|
assert( z2==(char*)sqlite3_value_text(argv[0]) );
|
|
if( z2 ){
|
|
z1 = contextMalloc(context, ((i64)n)+1);
|
|
if( z1 ){
|
|
for(i=0; i<n; i++){
|
|
z1[i] = (char)sqlite3Toupper(z2[i]);
|
|
}
|
|
sqlite3_result_text(context, z1, n, sqlite3_free);
|
|
}
|
|
}
|
|
}
|
|
static void lowerFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
|
|
char *z1;
|
|
const char *z2;
|
|
int i, n;
|
|
UNUSED_PARAMETER(argc);
|
|
z2 = (char*)sqlite3_value_text(argv[0]);
|
|
n = sqlite3_value_bytes(argv[0]);
|
|
/* Verify that the call to _bytes() does not invalidate the _text() pointer */
|
|
assert( z2==(char*)sqlite3_value_text(argv[0]) );
|
|
if( z2 ){
|
|
z1 = contextMalloc(context, ((i64)n)+1);
|
|
if( z1 ){
|
|
for(i=0; i<n; i++){
|
|
z1[i] = sqlite3Tolower(z2[i]);
|
|
}
|
|
sqlite3_result_text(context, z1, n, sqlite3_free);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Some functions like COALESCE() and IFNULL() and UNLIKELY() are implemented
|
|
** as VDBE code so that unused argument values do not have to be computed.
|
|
** However, we still need some kind of function implementation for this
|
|
** routines in the function table. The noopFunc macro provides this.
|
|
** noopFunc will never be called so it doesn't matter what the implementation
|
|
** is. We might as well use the "version()" function as a substitute.
|
|
*/
|
|
#define noopFunc versionFunc /* Substitute function - never called */
|
|
|
|
/*
|
|
** Implementation of random(). Return a random integer.
|
|
*/
|
|
static void randomFunc(
|
|
sqlite3_context *context,
|
|
int NotUsed,
|
|
sqlite3_value **NotUsed2
|
|
){
|
|
sqlite_int64 r;
|
|
UNUSED_PARAMETER2(NotUsed, NotUsed2);
|
|
sqlite3_randomness(sizeof(r), &r);
|
|
if( r<0 ){
|
|
/* We need to prevent a random number of 0x8000000000000000
|
|
** (or -9223372036854775808) since when you do abs() of that
|
|
** number of you get the same value back again. To do this
|
|
** in a way that is testable, mask the sign bit off of negative
|
|
** values, resulting in a positive value. Then take the
|
|
** 2s complement of that positive value. The end result can
|
|
** therefore be no less than -9223372036854775807.
|
|
*/
|
|
r = -(r & LARGEST_INT64);
|
|
}
|
|
sqlite3_result_int64(context, r);
|
|
}
|
|
|
|
/*
|
|
** Implementation of randomblob(N). Return a random blob
|
|
** that is N bytes long.
|
|
*/
|
|
static void randomBlob(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
sqlite3_int64 n;
|
|
unsigned char *p;
|
|
assert( argc==1 );
|
|
UNUSED_PARAMETER(argc);
|
|
n = sqlite3_value_int64(argv[0]);
|
|
if( n<1 ){
|
|
n = 1;
|
|
}
|
|
p = contextMalloc(context, n);
|
|
if( p ){
|
|
sqlite3_randomness(n, p);
|
|
sqlite3_result_blob(context, (char*)p, n, sqlite3_free);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Implementation of the last_insert_rowid() SQL function. The return
|
|
** value is the same as the sqlite3_last_insert_rowid() API function.
|
|
*/
|
|
static void last_insert_rowid(
|
|
sqlite3_context *context,
|
|
int NotUsed,
|
|
sqlite3_value **NotUsed2
|
|
){
|
|
sqlite3 *db = sqlite3_context_db_handle(context);
|
|
UNUSED_PARAMETER2(NotUsed, NotUsed2);
|
|
/* IMP: R-51513-12026 The last_insert_rowid() SQL function is a
|
|
** wrapper around the sqlite3_last_insert_rowid() C/C++ interface
|
|
** function. */
|
|
sqlite3_result_int64(context, sqlite3_last_insert_rowid(db));
|
|
}
|
|
|
|
/*
|
|
** Implementation of the changes() SQL function.
|
|
**
|
|
** IMP: R-32760-32347 The changes() SQL function is a wrapper
|
|
** around the sqlite3_changes64() C/C++ function and hence follows the
|
|
** same rules for counting changes.
|
|
*/
|
|
static void changes(
|
|
sqlite3_context *context,
|
|
int NotUsed,
|
|
sqlite3_value **NotUsed2
|
|
){
|
|
sqlite3 *db = sqlite3_context_db_handle(context);
|
|
UNUSED_PARAMETER2(NotUsed, NotUsed2);
|
|
sqlite3_result_int64(context, sqlite3_changes64(db));
|
|
}
|
|
|
|
/*
|
|
** Implementation of the total_changes() SQL function. The return value is
|
|
** the same as the sqlite3_total_changes64() API function.
|
|
*/
|
|
static void total_changes(
|
|
sqlite3_context *context,
|
|
int NotUsed,
|
|
sqlite3_value **NotUsed2
|
|
){
|
|
sqlite3 *db = sqlite3_context_db_handle(context);
|
|
UNUSED_PARAMETER2(NotUsed, NotUsed2);
|
|
/* IMP: R-11217-42568 This function is a wrapper around the
|
|
** sqlite3_total_changes64() C/C++ interface. */
|
|
sqlite3_result_int64(context, sqlite3_total_changes64(db));
|
|
}
|
|
|
|
/*
|
|
** A structure defining how to do GLOB-style comparisons.
|
|
*/
|
|
struct compareInfo {
|
|
u8 matchAll; /* "*" or "%" */
|
|
u8 matchOne; /* "?" or "_" */
|
|
u8 matchSet; /* "[" or 0 */
|
|
u8 noCase; /* true to ignore case differences */
|
|
};
|
|
|
|
/*
|
|
** For LIKE and GLOB matching on EBCDIC machines, assume that every
|
|
** character is exactly one byte in size. Also, provide the Utf8Read()
|
|
** macro for fast reading of the next character in the common case where
|
|
** the next character is ASCII.
|
|
*/
|
|
#if defined(SQLITE_EBCDIC)
|
|
# define sqlite3Utf8Read(A) (*((*A)++))
|
|
# define Utf8Read(A) (*(A++))
|
|
#else
|
|
# define Utf8Read(A) (A[0]<0x80?*(A++):sqlite3Utf8Read(&A))
|
|
#endif
|
|
|
|
static const struct compareInfo globInfo = { '*', '?', '[', 0 };
|
|
/* The correct SQL-92 behavior is for the LIKE operator to ignore
|
|
** case. Thus 'a' LIKE 'A' would be true. */
|
|
static const struct compareInfo likeInfoNorm = { '%', '_', 0, 1 };
|
|
/* If SQLITE_CASE_SENSITIVE_LIKE is defined, then the LIKE operator
|
|
** is case sensitive causing 'a' LIKE 'A' to be false */
|
|
static const struct compareInfo likeInfoAlt = { '%', '_', 0, 0 };
|
|
|
|
/*
|
|
** Possible error returns from patternMatch()
|
|
*/
|
|
#define SQLITE_MATCH 0
|
|
#define SQLITE_NOMATCH 1
|
|
#define SQLITE_NOWILDCARDMATCH 2
|
|
|
|
/*
|
|
** Compare two UTF-8 strings for equality where the first string is
|
|
** a GLOB or LIKE expression. Return values:
|
|
**
|
|
** SQLITE_MATCH: Match
|
|
** SQLITE_NOMATCH: No match
|
|
** SQLITE_NOWILDCARDMATCH: No match in spite of having * or % wildcards.
|
|
**
|
|
** Globbing rules:
|
|
**
|
|
** '*' Matches any sequence of zero or more characters.
|
|
**
|
|
** '?' Matches exactly one character.
|
|
**
|
|
** [...] Matches one character from the enclosed list of
|
|
** characters.
|
|
**
|
|
** [^...] Matches one character not in the enclosed list.
|
|
**
|
|
** With the [...] and [^...] matching, a ']' character can be included
|
|
** in the list by making it the first character after '[' or '^'. A
|
|
** range of characters can be specified using '-'. Example:
|
|
** "[a-z]" matches any single lower-case letter. To match a '-', make
|
|
** it the last character in the list.
|
|
**
|
|
** Like matching rules:
|
|
**
|
|
** '%' Matches any sequence of zero or more characters
|
|
**
|
|
*** '_' Matches any one character
|
|
**
|
|
** Ec Where E is the "esc" character and c is any other
|
|
** character, including '%', '_', and esc, match exactly c.
|
|
**
|
|
** The comments within this routine usually assume glob matching.
|
|
**
|
|
** This routine is usually quick, but can be N**2 in the worst case.
|
|
*/
|
|
static int patternCompare(
|
|
const u8 *zPattern, /* The glob pattern */
|
|
const u8 *zString, /* The string to compare against the glob */
|
|
const struct compareInfo *pInfo, /* Information about how to do the compare */
|
|
u32 matchOther /* The escape char (LIKE) or '[' (GLOB) */
|
|
){
|
|
u32 c, c2; /* Next pattern and input string chars */
|
|
u32 matchOne = pInfo->matchOne; /* "?" or "_" */
|
|
u32 matchAll = pInfo->matchAll; /* "*" or "%" */
|
|
u8 noCase = pInfo->noCase; /* True if uppercase==lowercase */
|
|
const u8 *zEscaped = 0; /* One past the last escaped input char */
|
|
|
|
while( (c = Utf8Read(zPattern))!=0 ){
|
|
if( c==matchAll ){ /* Match "*" */
|
|
/* Skip over multiple "*" characters in the pattern. If there
|
|
** are also "?" characters, skip those as well, but consume a
|
|
** single character of the input string for each "?" skipped */
|
|
while( (c=Utf8Read(zPattern)) == matchAll
|
|
|| (c == matchOne && matchOne!=0) ){
|
|
if( c==matchOne && sqlite3Utf8Read(&zString)==0 ){
|
|
return SQLITE_NOWILDCARDMATCH;
|
|
}
|
|
}
|
|
if( c==0 ){
|
|
return SQLITE_MATCH; /* "*" at the end of the pattern matches */
|
|
}else if( c==matchOther ){
|
|
if( pInfo->matchSet==0 ){
|
|
c = sqlite3Utf8Read(&zPattern);
|
|
if( c==0 ) return SQLITE_NOWILDCARDMATCH;
|
|
}else{
|
|
/* "[...]" immediately follows the "*". We have to do a slow
|
|
** recursive search in this case, but it is an unusual case. */
|
|
assert( matchOther<0x80 ); /* '[' is a single-byte character */
|
|
while( *zString ){
|
|
int bMatch = patternCompare(&zPattern[-1],zString,pInfo,matchOther);
|
|
if( bMatch!=SQLITE_NOMATCH ) return bMatch;
|
|
SQLITE_SKIP_UTF8(zString);
|
|
}
|
|
return SQLITE_NOWILDCARDMATCH;
|
|
}
|
|
}
|
|
|
|
/* At this point variable c contains the first character of the
|
|
** pattern string past the "*". Search in the input string for the
|
|
** first matching character and recursively continue the match from
|
|
** that point.
|
|
**
|
|
** For a case-insensitive search, set variable cx to be the same as
|
|
** c but in the other case and search the input string for either
|
|
** c or cx.
|
|
*/
|
|
if( c<0x80 ){
|
|
char zStop[3];
|
|
int bMatch;
|
|
if( noCase ){
|
|
zStop[0] = sqlite3Toupper(c);
|
|
zStop[1] = sqlite3Tolower(c);
|
|
zStop[2] = 0;
|
|
}else{
|
|
zStop[0] = c;
|
|
zStop[1] = 0;
|
|
}
|
|
while(1){
|
|
zString += strcspn((const char*)zString, zStop);
|
|
if( zString[0]==0 ) break;
|
|
zString++;
|
|
bMatch = patternCompare(zPattern,zString,pInfo,matchOther);
|
|
if( bMatch!=SQLITE_NOMATCH ) return bMatch;
|
|
}
|
|
}else{
|
|
int bMatch;
|
|
while( (c2 = Utf8Read(zString))!=0 ){
|
|
if( c2!=c ) continue;
|
|
bMatch = patternCompare(zPattern,zString,pInfo,matchOther);
|
|
if( bMatch!=SQLITE_NOMATCH ) return bMatch;
|
|
}
|
|
}
|
|
return SQLITE_NOWILDCARDMATCH;
|
|
}
|
|
if( c==matchOther ){
|
|
if( pInfo->matchSet==0 ){
|
|
c = sqlite3Utf8Read(&zPattern);
|
|
if( c==0 ) return SQLITE_NOMATCH;
|
|
zEscaped = zPattern;
|
|
}else{
|
|
u32 prior_c = 0;
|
|
int seen = 0;
|
|
int invert = 0;
|
|
c = sqlite3Utf8Read(&zString);
|
|
if( c==0 ) return SQLITE_NOMATCH;
|
|
c2 = sqlite3Utf8Read(&zPattern);
|
|
if( c2=='^' ){
|
|
invert = 1;
|
|
c2 = sqlite3Utf8Read(&zPattern);
|
|
}
|
|
if( c2==']' ){
|
|
if( c==']' ) seen = 1;
|
|
c2 = sqlite3Utf8Read(&zPattern);
|
|
}
|
|
while( c2 && c2!=']' ){
|
|
if( c2=='-' && zPattern[0]!=']' && zPattern[0]!=0 && prior_c>0 ){
|
|
c2 = sqlite3Utf8Read(&zPattern);
|
|
if( c>=prior_c && c<=c2 ) seen = 1;
|
|
prior_c = 0;
|
|
}else{
|
|
if( c==c2 ){
|
|
seen = 1;
|
|
}
|
|
prior_c = c2;
|
|
}
|
|
c2 = sqlite3Utf8Read(&zPattern);
|
|
}
|
|
if( c2==0 || (seen ^ invert)==0 ){
|
|
return SQLITE_NOMATCH;
|
|
}
|
|
continue;
|
|
}
|
|
}
|
|
c2 = Utf8Read(zString);
|
|
if( c==c2 ) continue;
|
|
if( noCase && sqlite3Tolower(c)==sqlite3Tolower(c2) && c<0x80 && c2<0x80 ){
|
|
continue;
|
|
}
|
|
if( c==matchOne && zPattern!=zEscaped && c2!=0 ) continue;
|
|
return SQLITE_NOMATCH;
|
|
}
|
|
return *zString==0 ? SQLITE_MATCH : SQLITE_NOMATCH;
|
|
}
|
|
|
|
/*
|
|
** The sqlite3_strglob() interface. Return 0 on a match (like strcmp()) and
|
|
** non-zero if there is no match.
|
|
*/
|
|
int sqlite3_strglob(const char *zGlobPattern, const char *zString){
|
|
if( zString==0 ){
|
|
return zGlobPattern!=0;
|
|
}else if( zGlobPattern==0 ){
|
|
return 1;
|
|
}else {
|
|
return patternCompare((u8*)zGlobPattern, (u8*)zString, &globInfo, '[');
|
|
}
|
|
}
|
|
|
|
/*
|
|
** The sqlite3_strlike() interface. Return 0 on a match and non-zero for
|
|
** a miss - like strcmp().
|
|
*/
|
|
int sqlite3_strlike(const char *zPattern, const char *zStr, unsigned int esc){
|
|
if( zStr==0 ){
|
|
return zPattern!=0;
|
|
}else if( zPattern==0 ){
|
|
return 1;
|
|
}else{
|
|
return patternCompare((u8*)zPattern, (u8*)zStr, &likeInfoNorm, esc);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Count the number of times that the LIKE operator (or GLOB which is
|
|
** just a variation of LIKE) gets called. This is used for testing
|
|
** only.
|
|
*/
|
|
#ifdef SQLITE_TEST
|
|
int sqlite3_like_count = 0;
|
|
#endif
|
|
|
|
|
|
/*
|
|
** Implementation of the like() SQL function. This function implements
|
|
** the built-in LIKE operator. The first argument to the function is the
|
|
** pattern and the second argument is the string. So, the SQL statements:
|
|
**
|
|
** A LIKE B
|
|
**
|
|
** is implemented as like(B,A).
|
|
**
|
|
** This same function (with a different compareInfo structure) computes
|
|
** the GLOB operator.
|
|
*/
|
|
static void likeFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
const unsigned char *zA, *zB;
|
|
u32 escape;
|
|
int nPat;
|
|
sqlite3 *db = sqlite3_context_db_handle(context);
|
|
struct compareInfo *pInfo = sqlite3_user_data(context);
|
|
struct compareInfo backupInfo;
|
|
|
|
#ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS
|
|
if( sqlite3_value_type(argv[0])==SQLITE_BLOB
|
|
|| sqlite3_value_type(argv[1])==SQLITE_BLOB
|
|
){
|
|
#ifdef SQLITE_TEST
|
|
sqlite3_like_count++;
|
|
#endif
|
|
sqlite3_result_int(context, 0);
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
/* Limit the length of the LIKE or GLOB pattern to avoid problems
|
|
** of deep recursion and N*N behavior in patternCompare().
|
|
*/
|
|
nPat = sqlite3_value_bytes(argv[0]);
|
|
testcase( nPat==db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH] );
|
|
testcase( nPat==db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH]+1 );
|
|
if( nPat > db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH] ){
|
|
sqlite3_result_error(context, "LIKE or GLOB pattern too complex", -1);
|
|
return;
|
|
}
|
|
if( argc==3 ){
|
|
/* The escape character string must consist of a single UTF-8 character.
|
|
** Otherwise, return an error.
|
|
*/
|
|
const unsigned char *zEsc = sqlite3_value_text(argv[2]);
|
|
if( zEsc==0 ) return;
|
|
if( sqlite3Utf8CharLen((char*)zEsc, -1)!=1 ){
|
|
sqlite3_result_error(context,
|
|
"ESCAPE expression must be a single character", -1);
|
|
return;
|
|
}
|
|
escape = sqlite3Utf8Read(&zEsc);
|
|
if( escape==pInfo->matchAll || escape==pInfo->matchOne ){
|
|
memcpy(&backupInfo, pInfo, sizeof(backupInfo));
|
|
pInfo = &backupInfo;
|
|
if( escape==pInfo->matchAll ) pInfo->matchAll = 0;
|
|
if( escape==pInfo->matchOne ) pInfo->matchOne = 0;
|
|
}
|
|
}else{
|
|
escape = pInfo->matchSet;
|
|
}
|
|
zB = sqlite3_value_text(argv[0]);
|
|
zA = sqlite3_value_text(argv[1]);
|
|
if( zA && zB ){
|
|
#ifdef SQLITE_TEST
|
|
sqlite3_like_count++;
|
|
#endif
|
|
sqlite3_result_int(context,
|
|
patternCompare(zB, zA, pInfo, escape)==SQLITE_MATCH);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Implementation of the NULLIF(x,y) function. The result is the first
|
|
** argument if the arguments are different. The result is NULL if the
|
|
** arguments are equal to each other.
|
|
*/
|
|
static void nullifFunc(
|
|
sqlite3_context *context,
|
|
int NotUsed,
|
|
sqlite3_value **argv
|
|
){
|
|
CollSeq *pColl = sqlite3GetFuncCollSeq(context);
|
|
UNUSED_PARAMETER(NotUsed);
|
|
if( sqlite3MemCompare(argv[0], argv[1], pColl)!=0 ){
|
|
sqlite3_result_value(context, argv[0]);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Implementation of the sqlite_version() function. The result is the version
|
|
** of the SQLite library that is running.
|
|
*/
|
|
static void versionFunc(
|
|
sqlite3_context *context,
|
|
int NotUsed,
|
|
sqlite3_value **NotUsed2
|
|
){
|
|
UNUSED_PARAMETER2(NotUsed, NotUsed2);
|
|
/* IMP: R-48699-48617 This function is an SQL wrapper around the
|
|
** sqlite3_libversion() C-interface. */
|
|
sqlite3_result_text(context, sqlite3_libversion(), -1, SQLITE_STATIC);
|
|
}
|
|
|
|
/*
|
|
** Implementation of the sqlite_source_id() function. The result is a string
|
|
** that identifies the particular version of the source code used to build
|
|
** SQLite.
|
|
*/
|
|
static void sourceidFunc(
|
|
sqlite3_context *context,
|
|
int NotUsed,
|
|
sqlite3_value **NotUsed2
|
|
){
|
|
UNUSED_PARAMETER2(NotUsed, NotUsed2);
|
|
/* IMP: R-24470-31136 This function is an SQL wrapper around the
|
|
** sqlite3_sourceid() C interface. */
|
|
sqlite3_result_text(context, sqlite3_sourceid(), -1, SQLITE_STATIC);
|
|
}
|
|
|
|
/*
|
|
** Implementation of the sqlite_log() function. This is a wrapper around
|
|
** sqlite3_log(). The return value is NULL. The function exists purely for
|
|
** its side-effects.
|
|
*/
|
|
static void errlogFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
UNUSED_PARAMETER(argc);
|
|
UNUSED_PARAMETER(context);
|
|
sqlite3_log(sqlite3_value_int(argv[0]), "%s", sqlite3_value_text(argv[1]));
|
|
}
|
|
|
|
/*
|
|
** Implementation of the sqlite_compileoption_used() function.
|
|
** The result is an integer that identifies if the compiler option
|
|
** was used to build SQLite.
|
|
*/
|
|
#ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
|
|
static void compileoptionusedFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
const char *zOptName;
|
|
assert( argc==1 );
|
|
UNUSED_PARAMETER(argc);
|
|
/* IMP: R-39564-36305 The sqlite_compileoption_used() SQL
|
|
** function is a wrapper around the sqlite3_compileoption_used() C/C++
|
|
** function.
|
|
*/
|
|
if( (zOptName = (const char*)sqlite3_value_text(argv[0]))!=0 ){
|
|
sqlite3_result_int(context, sqlite3_compileoption_used(zOptName));
|
|
}
|
|
}
|
|
#endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
|
|
|
|
/*
|
|
** Implementation of the sqlite_compileoption_get() function.
|
|
** The result is a string that identifies the compiler options
|
|
** used to build SQLite.
|
|
*/
|
|
#ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
|
|
static void compileoptiongetFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
int n;
|
|
assert( argc==1 );
|
|
UNUSED_PARAMETER(argc);
|
|
/* IMP: R-04922-24076 The sqlite_compileoption_get() SQL function
|
|
** is a wrapper around the sqlite3_compileoption_get() C/C++ function.
|
|
*/
|
|
n = sqlite3_value_int(argv[0]);
|
|
sqlite3_result_text(context, sqlite3_compileoption_get(n), -1, SQLITE_STATIC);
|
|
}
|
|
#endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
|
|
|
|
/* Array for converting from half-bytes (nybbles) into ASCII hex
|
|
** digits. */
|
|
static const char hexdigits[] = {
|
|
'0', '1', '2', '3', '4', '5', '6', '7',
|
|
'8', '9', 'A', 'B', 'C', 'D', 'E', 'F'
|
|
};
|
|
|
|
/*
|
|
** Append to pStr text that is the SQL literal representation of the
|
|
** value contained in pValue.
|
|
*/
|
|
void sqlite3QuoteValue(StrAccum *pStr, sqlite3_value *pValue, int bEscape){
|
|
/* As currently implemented, the string must be initially empty.
|
|
** we might relax this requirement in the future, but that will
|
|
** require enhancements to the implementation. */
|
|
assert( pStr!=0 && pStr->nChar==0 );
|
|
|
|
switch( sqlite3_value_type(pValue) ){
|
|
case SQLITE_FLOAT: {
|
|
double r1, r2;
|
|
const char *zVal;
|
|
r1 = sqlite3_value_double(pValue);
|
|
sqlite3_str_appendf(pStr, "%!0.15g", r1);
|
|
zVal = sqlite3_str_value(pStr);
|
|
if( zVal ){
|
|
sqlite3AtoF(zVal, &r2, pStr->nChar, SQLITE_UTF8);
|
|
if( r1!=r2 ){
|
|
sqlite3_str_reset(pStr);
|
|
sqlite3_str_appendf(pStr, "%!0.20e", r1);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case SQLITE_INTEGER: {
|
|
sqlite3_str_appendf(pStr, "%lld", sqlite3_value_int64(pValue));
|
|
break;
|
|
}
|
|
case SQLITE_BLOB: {
|
|
char const *zBlob = sqlite3_value_blob(pValue);
|
|
i64 nBlob = sqlite3_value_bytes(pValue);
|
|
assert( zBlob==sqlite3_value_blob(pValue) ); /* No encoding change */
|
|
sqlite3StrAccumEnlarge(pStr, nBlob*2 + 4);
|
|
if( pStr->accError==0 ){
|
|
char *zText = pStr->zText;
|
|
int i;
|
|
for(i=0; i<nBlob; i++){
|
|
zText[(i*2)+2] = hexdigits[(zBlob[i]>>4)&0x0F];
|
|
zText[(i*2)+3] = hexdigits[(zBlob[i])&0x0F];
|
|
}
|
|
zText[(nBlob*2)+2] = '\'';
|
|
zText[(nBlob*2)+3] = '\0';
|
|
zText[0] = 'X';
|
|
zText[1] = '\'';
|
|
pStr->nChar = nBlob*2 + 3;
|
|
}
|
|
break;
|
|
}
|
|
case SQLITE_TEXT: {
|
|
const unsigned char *zArg = sqlite3_value_text(pValue);
|
|
sqlite3_str_appendf(pStr, bEscape ? "%#Q" : "%Q", zArg);
|
|
break;
|
|
}
|
|
default: {
|
|
assert( sqlite3_value_type(pValue)==SQLITE_NULL );
|
|
sqlite3_str_append(pStr, "NULL", 4);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Return true if z[] begins with N hexadecimal digits, and write
|
|
** a decoding of those digits into *pVal. Or return false if any
|
|
** one of the first N characters in z[] is not a hexadecimal digit.
|
|
*/
|
|
static int isNHex(const char *z, int N, u32 *pVal){
|
|
int i;
|
|
u32 v = 0;
|
|
for(i=0; i<N; i++){
|
|
if( !sqlite3Isxdigit(z[i]) ) return 0;
|
|
v = (v<<4) + sqlite3HexToInt(z[i]);
|
|
}
|
|
*pVal = v;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
** Implementation of the UNISTR() function.
|
|
**
|
|
** This is intended to be a work-alike of the UNISTR() function in
|
|
** PostgreSQL. Quoting from the PG documentation (PostgreSQL 17 -
|
|
** scraped on 2025-02-22):
|
|
**
|
|
** Evaluate escaped Unicode characters in the argument. Unicode
|
|
** characters can be specified as \XXXX (4 hexadecimal digits),
|
|
** \+XXXXXX (6 hexadecimal digits), \uXXXX (4 hexadecimal digits),
|
|
** or \UXXXXXXXX (8 hexadecimal digits). To specify a backslash,
|
|
** write two backslashes. All other characters are taken literally.
|
|
*/
|
|
static void unistrFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
char *zOut;
|
|
const char *zIn;
|
|
int nIn;
|
|
int i, j, n;
|
|
u32 v;
|
|
|
|
assert( argc==1 );
|
|
UNUSED_PARAMETER( argc );
|
|
zIn = (const char*)sqlite3_value_text(argv[0]);
|
|
if( zIn==0 ) return;
|
|
nIn = sqlite3_value_bytes(argv[0]);
|
|
zOut = sqlite3_malloc64(nIn+1);
|
|
if( zOut==0 ){
|
|
sqlite3_result_error_nomem(context);
|
|
return;
|
|
}
|
|
i = j = 0;
|
|
while( i<nIn ){
|
|
char *z = strchr(&zIn[i],'\\');
|
|
if( z==0 ){
|
|
n = nIn - i;
|
|
memmove(&zOut[j], &zIn[i], n);
|
|
j += n;
|
|
break;
|
|
}
|
|
n = z - &zIn[i];
|
|
if( n>0 ){
|
|
memmove(&zOut[j], &zIn[i], n);
|
|
j += n;
|
|
i += n;
|
|
}
|
|
if( zIn[i+1]=='\\' ){
|
|
i += 2;
|
|
zOut[j++] = '\\';
|
|
}else if( sqlite3Isxdigit(zIn[i+1]) ){
|
|
if( !isNHex(&zIn[i+1], 4, &v) ) goto unistr_error;
|
|
i += 5;
|
|
j += sqlite3AppendOneUtf8Character(&zOut[j], v);
|
|
}else if( zIn[i+1]=='+' ){
|
|
if( !isNHex(&zIn[i+2], 6, &v) ) goto unistr_error;
|
|
i += 8;
|
|
j += sqlite3AppendOneUtf8Character(&zOut[j], v);
|
|
}else if( zIn[i+1]=='u' ){
|
|
if( !isNHex(&zIn[i+2], 4, &v) ) goto unistr_error;
|
|
i += 6;
|
|
j += sqlite3AppendOneUtf8Character(&zOut[j], v);
|
|
}else if( zIn[i+1]=='U' ){
|
|
if( !isNHex(&zIn[i+2], 8, &v) ) goto unistr_error;
|
|
i += 10;
|
|
j += sqlite3AppendOneUtf8Character(&zOut[j], v);
|
|
}else{
|
|
goto unistr_error;
|
|
}
|
|
}
|
|
zOut[j] = 0;
|
|
sqlite3_result_text64(context, zOut, j, sqlite3_free, SQLITE_UTF8);
|
|
return;
|
|
|
|
unistr_error:
|
|
sqlite3_free(zOut);
|
|
sqlite3_result_error(context, "invalid Unicode escape", -1);
|
|
return;
|
|
}
|
|
|
|
|
|
/*
|
|
** Implementation of the QUOTE() function.
|
|
**
|
|
** The quote(X) function returns the text of an SQL literal which is the
|
|
** value of its argument suitable for inclusion into an SQL statement.
|
|
** Strings are surrounded by single-quotes with escapes on interior quotes
|
|
** as needed. BLOBs are encoded as hexadecimal literals. Strings with
|
|
** embedded NUL characters cannot be represented as string literals in SQL
|
|
** and hence the returned string literal is truncated prior to the first NUL.
|
|
**
|
|
** If sqlite3_user_data() is non-zero, then the UNISTR_QUOTE() function is
|
|
** implemented instead. The difference is that UNISTR_QUOTE() uses the
|
|
** UNISTR() function to escape control characters.
|
|
*/
|
|
static void quoteFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
|
|
sqlite3_str str;
|
|
sqlite3 *db = sqlite3_context_db_handle(context);
|
|
assert( argc==1 );
|
|
UNUSED_PARAMETER(argc);
|
|
sqlite3StrAccumInit(&str, db, 0, 0, db->aLimit[SQLITE_LIMIT_LENGTH]);
|
|
sqlite3QuoteValue(&str,argv[0],SQLITE_PTR_TO_INT(sqlite3_user_data(context)));
|
|
sqlite3_result_text(context, sqlite3StrAccumFinish(&str), str.nChar,
|
|
SQLITE_DYNAMIC);
|
|
if( str.accError!=SQLITE_OK ){
|
|
sqlite3_result_null(context);
|
|
sqlite3_result_error_code(context, str.accError);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** The unicode() function. Return the integer unicode code-point value
|
|
** for the first character of the input string.
|
|
*/
|
|
static void unicodeFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
const unsigned char *z = sqlite3_value_text(argv[0]);
|
|
(void)argc;
|
|
if( z && z[0] ) sqlite3_result_int(context, sqlite3Utf8Read(&z));
|
|
}
|
|
|
|
/*
|
|
** The char() function takes zero or more arguments, each of which is
|
|
** an integer. It constructs a string where each character of the string
|
|
** is the unicode character for the corresponding integer argument.
|
|
*/
|
|
static void charFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
unsigned char *z, *zOut;
|
|
int i;
|
|
zOut = z = sqlite3_malloc64( argc*4+1 );
|
|
if( z==0 ){
|
|
sqlite3_result_error_nomem(context);
|
|
return;
|
|
}
|
|
for(i=0; i<argc; i++){
|
|
sqlite3_int64 x;
|
|
unsigned c;
|
|
x = sqlite3_value_int64(argv[i]);
|
|
if( x<0 || x>0x10ffff ) x = 0xfffd;
|
|
c = (unsigned)(x & 0x1fffff);
|
|
if( c<0x00080 ){
|
|
*zOut++ = (u8)(c&0xFF);
|
|
}else if( c<0x00800 ){
|
|
*zOut++ = 0xC0 + (u8)((c>>6)&0x1F);
|
|
*zOut++ = 0x80 + (u8)(c & 0x3F);
|
|
}else if( c<0x10000 ){
|
|
*zOut++ = 0xE0 + (u8)((c>>12)&0x0F);
|
|
*zOut++ = 0x80 + (u8)((c>>6) & 0x3F);
|
|
*zOut++ = 0x80 + (u8)(c & 0x3F);
|
|
}else{
|
|
*zOut++ = 0xF0 + (u8)((c>>18) & 0x07);
|
|
*zOut++ = 0x80 + (u8)((c>>12) & 0x3F);
|
|
*zOut++ = 0x80 + (u8)((c>>6) & 0x3F);
|
|
*zOut++ = 0x80 + (u8)(c & 0x3F);
|
|
} \
|
|
}
|
|
*zOut = 0;
|
|
sqlite3_result_text64(context, (char*)z, zOut-z, sqlite3_free, SQLITE_UTF8);
|
|
}
|
|
|
|
/*
|
|
** The hex() function. Interpret the argument as a blob. Return
|
|
** a hexadecimal rendering as text.
|
|
*/
|
|
static void hexFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
int i, n;
|
|
const unsigned char *pBlob;
|
|
char *zHex, *z;
|
|
assert( argc==1 );
|
|
UNUSED_PARAMETER(argc);
|
|
pBlob = sqlite3_value_blob(argv[0]);
|
|
n = sqlite3_value_bytes(argv[0]);
|
|
assert( pBlob==sqlite3_value_blob(argv[0]) ); /* No encoding change */
|
|
z = zHex = contextMalloc(context, ((i64)n)*2 + 1);
|
|
if( zHex ){
|
|
for(i=0; i<n; i++, pBlob++){
|
|
unsigned char c = *pBlob;
|
|
*(z++) = hexdigits[(c>>4)&0xf];
|
|
*(z++) = hexdigits[c&0xf];
|
|
}
|
|
*z = 0;
|
|
sqlite3_result_text64(context, zHex, (u64)(z-zHex),
|
|
sqlite3_free, SQLITE_UTF8);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Buffer zStr contains nStr bytes of utf-8 encoded text. Return 1 if zStr
|
|
** contains character ch, or 0 if it does not.
|
|
*/
|
|
static int strContainsChar(const u8 *zStr, int nStr, u32 ch){
|
|
const u8 *zEnd = &zStr[nStr];
|
|
const u8 *z = zStr;
|
|
while( z<zEnd ){
|
|
u32 tst = Utf8Read(z);
|
|
if( tst==ch ) return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** The unhex() function. This function may be invoked with either one or
|
|
** two arguments. In both cases the first argument is interpreted as text
|
|
** a text value containing a set of pairs of hexadecimal digits which are
|
|
** decoded and returned as a blob.
|
|
**
|
|
** If there is only a single argument, then it must consist only of an
|
|
** even number of hexadecimal digits. Otherwise, return NULL.
|
|
**
|
|
** Or, if there is a second argument, then any character that appears in
|
|
** the second argument is also allowed to appear between pairs of hexadecimal
|
|
** digits in the first argument. If any other character appears in the
|
|
** first argument, or if one of the allowed characters appears between
|
|
** two hexadecimal digits that make up a single byte, NULL is returned.
|
|
**
|
|
** The following expressions are all true:
|
|
**
|
|
** unhex('ABCD') IS x'ABCD'
|
|
** unhex('AB CD') IS NULL
|
|
** unhex('AB CD', ' ') IS x'ABCD'
|
|
** unhex('A BCD', ' ') IS NULL
|
|
*/
|
|
static void unhexFunc(
|
|
sqlite3_context *pCtx,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
const u8 *zPass = (const u8*)"";
|
|
int nPass = 0;
|
|
const u8 *zHex = sqlite3_value_text(argv[0]);
|
|
int nHex = sqlite3_value_bytes(argv[0]);
|
|
#ifdef SQLITE_DEBUG
|
|
const u8 *zEnd = zHex ? &zHex[nHex] : 0;
|
|
#endif
|
|
u8 *pBlob = 0;
|
|
u8 *p = 0;
|
|
|
|
assert( argc==1 || argc==2 );
|
|
if( argc==2 ){
|
|
zPass = sqlite3_value_text(argv[1]);
|
|
nPass = sqlite3_value_bytes(argv[1]);
|
|
}
|
|
if( !zHex || !zPass ) return;
|
|
|
|
p = pBlob = contextMalloc(pCtx, (nHex/2)+1);
|
|
if( pBlob ){
|
|
u8 c; /* Most significant digit of next byte */
|
|
u8 d; /* Least significant digit of next byte */
|
|
|
|
while( (c = *zHex)!=0x00 ){
|
|
while( !sqlite3Isxdigit(c) ){
|
|
u32 ch = Utf8Read(zHex);
|
|
assert( zHex<=zEnd );
|
|
if( !strContainsChar(zPass, nPass, ch) ) goto unhex_null;
|
|
c = *zHex;
|
|
if( c==0x00 ) goto unhex_done;
|
|
}
|
|
zHex++;
|
|
assert( *zEnd==0x00 );
|
|
assert( zHex<=zEnd );
|
|
d = *(zHex++);
|
|
if( !sqlite3Isxdigit(d) ) goto unhex_null;
|
|
*(p++) = (sqlite3HexToInt(c)<<4) | sqlite3HexToInt(d);
|
|
}
|
|
}
|
|
|
|
unhex_done:
|
|
sqlite3_result_blob(pCtx, pBlob, (p - pBlob), sqlite3_free);
|
|
return;
|
|
|
|
unhex_null:
|
|
sqlite3_free(pBlob);
|
|
return;
|
|
}
|
|
|
|
|
|
/*
|
|
** The zeroblob(N) function returns a zero-filled blob of size N bytes.
|
|
*/
|
|
static void zeroblobFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
i64 n;
|
|
int rc;
|
|
assert( argc==1 );
|
|
UNUSED_PARAMETER(argc);
|
|
n = sqlite3_value_int64(argv[0]);
|
|
if( n<0 ) n = 0;
|
|
rc = sqlite3_result_zeroblob64(context, n); /* IMP: R-00293-64994 */
|
|
if( rc ){
|
|
sqlite3_result_error_code(context, rc);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** The replace() function. Three arguments are all strings: call
|
|
** them A, B, and C. The result is also a string which is derived
|
|
** from A by replacing every occurrence of B with C. The match
|
|
** must be exact. Collating sequences are not used.
|
|
*/
|
|
static void replaceFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
const unsigned char *zStr; /* The input string A */
|
|
const unsigned char *zPattern; /* The pattern string B */
|
|
const unsigned char *zRep; /* The replacement string C */
|
|
unsigned char *zOut; /* The output */
|
|
int nStr; /* Size of zStr */
|
|
int nPattern; /* Size of zPattern */
|
|
int nRep; /* Size of zRep */
|
|
i64 nOut; /* Maximum size of zOut */
|
|
int loopLimit; /* Last zStr[] that might match zPattern[] */
|
|
int i, j; /* Loop counters */
|
|
unsigned cntExpand; /* Number zOut expansions */
|
|
sqlite3 *db = sqlite3_context_db_handle(context);
|
|
|
|
assert( argc==3 );
|
|
UNUSED_PARAMETER(argc);
|
|
zStr = sqlite3_value_text(argv[0]);
|
|
if( zStr==0 ) return;
|
|
nStr = sqlite3_value_bytes(argv[0]);
|
|
assert( zStr==sqlite3_value_text(argv[0]) ); /* No encoding change */
|
|
zPattern = sqlite3_value_text(argv[1]);
|
|
if( zPattern==0 ){
|
|
assert( sqlite3_value_type(argv[1])==SQLITE_NULL
|
|
|| sqlite3_context_db_handle(context)->mallocFailed );
|
|
return;
|
|
}
|
|
if( zPattern[0]==0 ){
|
|
assert( sqlite3_value_type(argv[1])!=SQLITE_NULL );
|
|
sqlite3_result_text(context, (const char*)zStr, nStr, SQLITE_TRANSIENT);
|
|
return;
|
|
}
|
|
nPattern = sqlite3_value_bytes(argv[1]);
|
|
assert( zPattern==sqlite3_value_text(argv[1]) ); /* No encoding change */
|
|
zRep = sqlite3_value_text(argv[2]);
|
|
if( zRep==0 ) return;
|
|
nRep = sqlite3_value_bytes(argv[2]);
|
|
assert( zRep==sqlite3_value_text(argv[2]) );
|
|
nOut = nStr + 1;
|
|
assert( nOut<SQLITE_MAX_LENGTH );
|
|
zOut = contextMalloc(context, nOut);
|
|
if( zOut==0 ){
|
|
return;
|
|
}
|
|
loopLimit = nStr - nPattern;
|
|
cntExpand = 0;
|
|
for(i=j=0; i<=loopLimit; i++){
|
|
if( zStr[i]!=zPattern[0] || memcmp(&zStr[i], zPattern, nPattern) ){
|
|
zOut[j++] = zStr[i];
|
|
}else{
|
|
if( nRep>nPattern ){
|
|
nOut += nRep - nPattern;
|
|
testcase( nOut-1==db->aLimit[SQLITE_LIMIT_LENGTH] );
|
|
testcase( nOut-2==db->aLimit[SQLITE_LIMIT_LENGTH] );
|
|
if( nOut-1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
|
|
sqlite3_result_error_toobig(context);
|
|
sqlite3_free(zOut);
|
|
return;
|
|
}
|
|
cntExpand++;
|
|
if( (cntExpand&(cntExpand-1))==0 ){
|
|
/* Grow the size of the output buffer only on substitutions
|
|
** whose index is a power of two: 1, 2, 4, 8, 16, 32, ... */
|
|
u8 *zOld;
|
|
zOld = zOut;
|
|
zOut = sqlite3Realloc(zOut, (int)nOut + (nOut - nStr - 1));
|
|
if( zOut==0 ){
|
|
sqlite3_result_error_nomem(context);
|
|
sqlite3_free(zOld);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
memcpy(&zOut[j], zRep, nRep);
|
|
j += nRep;
|
|
i += nPattern-1;
|
|
}
|
|
}
|
|
assert( j+nStr-i+1<=nOut );
|
|
memcpy(&zOut[j], &zStr[i], nStr-i);
|
|
j += nStr - i;
|
|
assert( j<=nOut );
|
|
zOut[j] = 0;
|
|
sqlite3_result_text(context, (char*)zOut, j, sqlite3_free);
|
|
}
|
|
|
|
/*
|
|
** Implementation of the TRIM(), LTRIM(), and RTRIM() functions.
|
|
** The userdata is 0x1 for left trim, 0x2 for right trim, 0x3 for both.
|
|
*/
|
|
static void trimFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
const unsigned char *zIn; /* Input string */
|
|
const unsigned char *zCharSet; /* Set of characters to trim */
|
|
unsigned int nIn; /* Number of bytes in input */
|
|
int flags; /* 1: trimleft 2: trimright 3: trim */
|
|
int i; /* Loop counter */
|
|
unsigned int *aLen = 0; /* Length of each character in zCharSet */
|
|
unsigned char **azChar = 0; /* Individual characters in zCharSet */
|
|
int nChar; /* Number of characters in zCharSet */
|
|
|
|
if( sqlite3_value_type(argv[0])==SQLITE_NULL ){
|
|
return;
|
|
}
|
|
zIn = sqlite3_value_text(argv[0]);
|
|
if( zIn==0 ) return;
|
|
nIn = (unsigned)sqlite3_value_bytes(argv[0]);
|
|
assert( zIn==sqlite3_value_text(argv[0]) );
|
|
if( argc==1 ){
|
|
static const unsigned lenOne[] = { 1 };
|
|
static unsigned char * const azOne[] = { (u8*)" " };
|
|
nChar = 1;
|
|
aLen = (unsigned*)lenOne;
|
|
azChar = (unsigned char **)azOne;
|
|
zCharSet = 0;
|
|
}else if( (zCharSet = sqlite3_value_text(argv[1]))==0 ){
|
|
return;
|
|
}else{
|
|
const unsigned char *z;
|
|
for(z=zCharSet, nChar=0; *z; nChar++){
|
|
SQLITE_SKIP_UTF8(z);
|
|
}
|
|
if( nChar>0 ){
|
|
azChar = contextMalloc(context,
|
|
((i64)nChar)*(sizeof(char*)+sizeof(unsigned)));
|
|
if( azChar==0 ){
|
|
return;
|
|
}
|
|
aLen = (unsigned*)&azChar[nChar];
|
|
for(z=zCharSet, nChar=0; *z; nChar++){
|
|
azChar[nChar] = (unsigned char *)z;
|
|
SQLITE_SKIP_UTF8(z);
|
|
aLen[nChar] = (unsigned)(z - azChar[nChar]);
|
|
}
|
|
}
|
|
}
|
|
if( nChar>0 ){
|
|
flags = SQLITE_PTR_TO_INT(sqlite3_user_data(context));
|
|
if( flags & 1 ){
|
|
while( nIn>0 ){
|
|
unsigned int len = 0;
|
|
for(i=0; i<nChar; i++){
|
|
len = aLen[i];
|
|
if( len<=nIn && memcmp(zIn, azChar[i], len)==0 ) break;
|
|
}
|
|
if( i>=nChar ) break;
|
|
zIn += len;
|
|
nIn -= len;
|
|
}
|
|
}
|
|
if( flags & 2 ){
|
|
while( nIn>0 ){
|
|
unsigned int len = 0;
|
|
for(i=0; i<nChar; i++){
|
|
len = aLen[i];
|
|
if( len<=nIn && memcmp(&zIn[nIn-len],azChar[i],len)==0 ) break;
|
|
}
|
|
if( i>=nChar ) break;
|
|
nIn -= len;
|
|
}
|
|
}
|
|
if( zCharSet ){
|
|
sqlite3_free(azChar);
|
|
}
|
|
}
|
|
sqlite3_result_text(context, (char*)zIn, nIn, SQLITE_TRANSIENT);
|
|
}
|
|
|
|
/* The core implementation of the CONCAT(...) and CONCAT_WS(SEP,...)
|
|
** functions.
|
|
**
|
|
** Return a string value that is the concatenation of all non-null
|
|
** entries in argv[]. Use zSep as the separator.
|
|
*/
|
|
static void concatFuncCore(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv,
|
|
int nSep,
|
|
const char *zSep
|
|
){
|
|
i64 j, n = 0;
|
|
int i;
|
|
int bNotNull = 0; /* True after at least NOT NULL argument seen */
|
|
char *z;
|
|
for(i=0; i<argc; i++){
|
|
n += sqlite3_value_bytes(argv[i]);
|
|
}
|
|
n += (argc-1)*(i64)nSep;
|
|
z = sqlite3_malloc64(n+1);
|
|
if( z==0 ){
|
|
sqlite3_result_error_nomem(context);
|
|
return;
|
|
}
|
|
j = 0;
|
|
for(i=0; i<argc; i++){
|
|
if( sqlite3_value_type(argv[i])!=SQLITE_NULL ){
|
|
int k = sqlite3_value_bytes(argv[i]);
|
|
const char *v = (const char*)sqlite3_value_text(argv[i]);
|
|
if( v!=0 ){
|
|
if( bNotNull && nSep>0 ){
|
|
memcpy(&z[j], zSep, nSep);
|
|
j += nSep;
|
|
}
|
|
memcpy(&z[j], v, k);
|
|
j += k;
|
|
bNotNull = 1;
|
|
}
|
|
}
|
|
}
|
|
z[j] = 0;
|
|
assert( j<=n );
|
|
sqlite3_result_text64(context, z, j, sqlite3_free, SQLITE_UTF8);
|
|
}
|
|
|
|
/*
|
|
** The CONCAT(...) function. Generate a string result that is the
|
|
** concatentation of all non-null arguments.
|
|
*/
|
|
static void concatFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
concatFuncCore(context, argc, argv, 0, "");
|
|
}
|
|
|
|
/*
|
|
** The CONCAT_WS(separator, ...) function.
|
|
**
|
|
** Generate a string that is the concatenation of 2nd through the Nth
|
|
** argument. Use the first argument (which must be non-NULL) as the
|
|
** separator.
|
|
*/
|
|
static void concatwsFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
int nSep = sqlite3_value_bytes(argv[0]);
|
|
const char *zSep = (const char*)sqlite3_value_text(argv[0]);
|
|
if( zSep==0 ) return;
|
|
concatFuncCore(context, argc-1, argv+1, nSep, zSep);
|
|
}
|
|
|
|
|
|
#ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
|
|
/*
|
|
** The "unknown" function is automatically substituted in place of
|
|
** any unrecognized function name when doing an EXPLAIN or EXPLAIN QUERY PLAN
|
|
** when the SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION compile-time option is used.
|
|
** When the "sqlite3" command-line shell is built using this functionality,
|
|
** that allows an EXPLAIN or EXPLAIN QUERY PLAN for complex queries
|
|
** involving application-defined functions to be examined in a generic
|
|
** sqlite3 shell.
|
|
*/
|
|
static void unknownFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
/* no-op */
|
|
(void)context;
|
|
(void)argc;
|
|
(void)argv;
|
|
}
|
|
#endif /*SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION*/
|
|
|
|
|
|
/* IMP: R-25361-16150 This function is omitted from SQLite by default. It
|
|
** is only available if the SQLITE_SOUNDEX compile-time option is used
|
|
** when SQLite is built.
|
|
*/
|
|
#ifdef SQLITE_SOUNDEX
|
|
/*
|
|
** Compute the soundex encoding of a word.
|
|
**
|
|
** IMP: R-59782-00072 The soundex(X) function returns a string that is the
|
|
** soundex encoding of the string X.
|
|
*/
|
|
static void soundexFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
char zResult[8];
|
|
const u8 *zIn;
|
|
int i, j;
|
|
static const unsigned char iCode[] = {
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0,
|
|
1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0,
|
|
0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0,
|
|
1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0,
|
|
};
|
|
assert( argc==1 );
|
|
zIn = (u8*)sqlite3_value_text(argv[0]);
|
|
if( zIn==0 ) zIn = (u8*)"";
|
|
for(i=0; zIn[i] && !sqlite3Isalpha(zIn[i]); i++){}
|
|
if( zIn[i] ){
|
|
u8 prevcode = iCode[zIn[i]&0x7f];
|
|
zResult[0] = sqlite3Toupper(zIn[i]);
|
|
for(j=1; j<4 && zIn[i]; i++){
|
|
int code = iCode[zIn[i]&0x7f];
|
|
if( code>0 ){
|
|
if( code!=prevcode ){
|
|
prevcode = code;
|
|
zResult[j++] = code + '0';
|
|
}
|
|
}else{
|
|
prevcode = 0;
|
|
}
|
|
}
|
|
while( j<4 ){
|
|
zResult[j++] = '0';
|
|
}
|
|
zResult[j] = 0;
|
|
sqlite3_result_text(context, zResult, 4, SQLITE_TRANSIENT);
|
|
}else{
|
|
/* IMP: R-64894-50321 The string "?000" is returned if the argument
|
|
** is NULL or contains no ASCII alphabetic characters. */
|
|
sqlite3_result_text(context, "?000", 4, SQLITE_STATIC);
|
|
}
|
|
}
|
|
#endif /* SQLITE_SOUNDEX */
|
|
|
|
#ifndef SQLITE_OMIT_LOAD_EXTENSION
|
|
/*
|
|
** A function that loads a shared-library extension then returns NULL.
|
|
*/
|
|
static void loadExt(sqlite3_context *context, int argc, sqlite3_value **argv){
|
|
const char *zFile = (const char *)sqlite3_value_text(argv[0]);
|
|
const char *zProc;
|
|
sqlite3 *db = sqlite3_context_db_handle(context);
|
|
char *zErrMsg = 0;
|
|
|
|
/* Disallow the load_extension() SQL function unless the SQLITE_LoadExtFunc
|
|
** flag is set. See the sqlite3_enable_load_extension() API.
|
|
*/
|
|
if( (db->flags & SQLITE_LoadExtFunc)==0 ){
|
|
sqlite3_result_error(context, "not authorized", -1);
|
|
return;
|
|
}
|
|
|
|
if( argc==2 ){
|
|
zProc = (const char *)sqlite3_value_text(argv[1]);
|
|
}else{
|
|
zProc = 0;
|
|
}
|
|
if( zFile && sqlite3_load_extension(db, zFile, zProc, &zErrMsg) ){
|
|
sqlite3_result_error(context, zErrMsg, -1);
|
|
sqlite3_free(zErrMsg);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
|
|
/*
|
|
** An instance of the following structure holds the context of a
|
|
** sum() or avg() aggregate computation.
|
|
*/
|
|
typedef struct SumCtx SumCtx;
|
|
struct SumCtx {
|
|
double rSum; /* Running sum as as a double */
|
|
double rErr; /* Error term for Kahan-Babushka-Neumaier summation */
|
|
i64 iSum; /* Running sum as a signed integer */
|
|
i64 cnt; /* Number of elements summed */
|
|
u8 approx; /* True if any non-integer value was input to the sum */
|
|
u8 ovrfl; /* Integer overflow seen */
|
|
};
|
|
|
|
/*
|
|
** Do one step of the Kahan-Babushka-Neumaier summation.
|
|
**
|
|
** https://en.wikipedia.org/wiki/Kahan_summation_algorithm
|
|
**
|
|
** Variables are marked "volatile" to defeat c89 x86 floating point
|
|
** optimizations can mess up this algorithm.
|
|
*/
|
|
static void kahanBabuskaNeumaierStep(
|
|
volatile SumCtx *pSum,
|
|
volatile double r
|
|
){
|
|
volatile double s = pSum->rSum;
|
|
volatile double t = s + r;
|
|
if( fabs(s) > fabs(r) ){
|
|
pSum->rErr += (s - t) + r;
|
|
}else{
|
|
pSum->rErr += (r - t) + s;
|
|
}
|
|
pSum->rSum = t;
|
|
}
|
|
|
|
/*
|
|
** Add a (possibly large) integer to the running sum.
|
|
*/
|
|
static void kahanBabuskaNeumaierStepInt64(volatile SumCtx *pSum, i64 iVal){
|
|
if( iVal<=-4503599627370496LL || iVal>=+4503599627370496LL ){
|
|
i64 iBig, iSm;
|
|
iSm = iVal % 16384;
|
|
iBig = iVal - iSm;
|
|
kahanBabuskaNeumaierStep(pSum, iBig);
|
|
kahanBabuskaNeumaierStep(pSum, iSm);
|
|
}else{
|
|
kahanBabuskaNeumaierStep(pSum, (double)iVal);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Initialize the Kahan-Babaska-Neumaier sum from a 64-bit integer
|
|
*/
|
|
static void kahanBabuskaNeumaierInit(
|
|
volatile SumCtx *p,
|
|
i64 iVal
|
|
){
|
|
if( iVal<=-4503599627370496LL || iVal>=+4503599627370496LL ){
|
|
i64 iSm = iVal % 16384;
|
|
p->rSum = (double)(iVal - iSm);
|
|
p->rErr = (double)iSm;
|
|
}else{
|
|
p->rSum = (double)iVal;
|
|
p->rErr = 0.0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Routines used to compute the sum, average, and total.
|
|
**
|
|
** The SUM() function follows the (broken) SQL standard which means
|
|
** that it returns NULL if it sums over no inputs. TOTAL returns
|
|
** 0.0 in that case. In addition, TOTAL always returns a float where
|
|
** SUM might return an integer if it never encounters a floating point
|
|
** value. TOTAL never fails, but SUM might throw an exception if
|
|
** it overflows an integer.
|
|
*/
|
|
static void sumStep(sqlite3_context *context, int argc, sqlite3_value **argv){
|
|
SumCtx *p;
|
|
int type;
|
|
assert( argc==1 );
|
|
UNUSED_PARAMETER(argc);
|
|
p = sqlite3_aggregate_context(context, sizeof(*p));
|
|
type = sqlite3_value_numeric_type(argv[0]);
|
|
if( p && type!=SQLITE_NULL ){
|
|
p->cnt++;
|
|
if( p->approx==0 ){
|
|
if( type!=SQLITE_INTEGER ){
|
|
kahanBabuskaNeumaierInit(p, p->iSum);
|
|
p->approx = 1;
|
|
kahanBabuskaNeumaierStep(p, sqlite3_value_double(argv[0]));
|
|
}else{
|
|
i64 x = p->iSum;
|
|
if( sqlite3AddInt64(&x, sqlite3_value_int64(argv[0]))==0 ){
|
|
p->iSum = x;
|
|
}else{
|
|
p->ovrfl = 1;
|
|
kahanBabuskaNeumaierInit(p, p->iSum);
|
|
p->approx = 1;
|
|
kahanBabuskaNeumaierStepInt64(p, sqlite3_value_int64(argv[0]));
|
|
}
|
|
}
|
|
}else{
|
|
if( type==SQLITE_INTEGER ){
|
|
kahanBabuskaNeumaierStepInt64(p, sqlite3_value_int64(argv[0]));
|
|
}else{
|
|
p->ovrfl = 0;
|
|
kahanBabuskaNeumaierStep(p, sqlite3_value_double(argv[0]));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#ifndef SQLITE_OMIT_WINDOWFUNC
|
|
static void sumInverse(sqlite3_context *context, int argc, sqlite3_value**argv){
|
|
SumCtx *p;
|
|
int type;
|
|
assert( argc==1 );
|
|
UNUSED_PARAMETER(argc);
|
|
p = sqlite3_aggregate_context(context, sizeof(*p));
|
|
type = sqlite3_value_numeric_type(argv[0]);
|
|
/* p is always non-NULL because sumStep() will have been called first
|
|
** to initialize it */
|
|
if( ALWAYS(p) && type!=SQLITE_NULL ){
|
|
assert( p->cnt>0 );
|
|
p->cnt--;
|
|
if( !p->approx ){
|
|
if( sqlite3SubInt64(&p->iSum, sqlite3_value_int64(argv[0])) ){
|
|
p->ovrfl = 1;
|
|
p->approx = 1;
|
|
}
|
|
}else if( type==SQLITE_INTEGER ){
|
|
i64 iVal = sqlite3_value_int64(argv[0]);
|
|
if( iVal!=SMALLEST_INT64 ){
|
|
kahanBabuskaNeumaierStepInt64(p, -iVal);
|
|
}else{
|
|
kahanBabuskaNeumaierStepInt64(p, LARGEST_INT64);
|
|
kahanBabuskaNeumaierStepInt64(p, 1);
|
|
}
|
|
}else{
|
|
kahanBabuskaNeumaierStep(p, -sqlite3_value_double(argv[0]));
|
|
}
|
|
}
|
|
}
|
|
#else
|
|
# define sumInverse 0
|
|
#endif /* SQLITE_OMIT_WINDOWFUNC */
|
|
static void sumFinalize(sqlite3_context *context){
|
|
SumCtx *p;
|
|
p = sqlite3_aggregate_context(context, 0);
|
|
if( p && p->cnt>0 ){
|
|
if( p->approx ){
|
|
if( p->ovrfl ){
|
|
sqlite3_result_error(context,"integer overflow",-1);
|
|
}else if( !sqlite3IsOverflow(p->rErr) ){
|
|
sqlite3_result_double(context, p->rSum+p->rErr);
|
|
}else{
|
|
sqlite3_result_double(context, p->rSum);
|
|
}
|
|
}else{
|
|
sqlite3_result_int64(context, p->iSum);
|
|
}
|
|
}
|
|
}
|
|
static void avgFinalize(sqlite3_context *context){
|
|
SumCtx *p;
|
|
p = sqlite3_aggregate_context(context, 0);
|
|
if( p && p->cnt>0 ){
|
|
double r;
|
|
if( p->approx ){
|
|
r = p->rSum;
|
|
if( !sqlite3IsOverflow(p->rErr) ) r += p->rErr;
|
|
}else{
|
|
r = (double)(p->iSum);
|
|
}
|
|
sqlite3_result_double(context, r/(double)p->cnt);
|
|
}
|
|
}
|
|
static void totalFinalize(sqlite3_context *context){
|
|
SumCtx *p;
|
|
double r = 0.0;
|
|
p = sqlite3_aggregate_context(context, 0);
|
|
if( p ){
|
|
if( p->approx ){
|
|
r = p->rSum;
|
|
if( !sqlite3IsOverflow(p->rErr) ) r += p->rErr;
|
|
}else{
|
|
r = (double)(p->iSum);
|
|
}
|
|
}
|
|
sqlite3_result_double(context, r);
|
|
}
|
|
|
|
/*
|
|
** The following structure keeps track of state information for the
|
|
** count() aggregate function.
|
|
*/
|
|
typedef struct CountCtx CountCtx;
|
|
struct CountCtx {
|
|
i64 n;
|
|
#ifdef SQLITE_DEBUG
|
|
int bInverse; /* True if xInverse() ever called */
|
|
#endif
|
|
};
|
|
|
|
/*
|
|
** Routines to implement the count() aggregate function.
|
|
*/
|
|
static void countStep(sqlite3_context *context, int argc, sqlite3_value **argv){
|
|
CountCtx *p;
|
|
p = sqlite3_aggregate_context(context, sizeof(*p));
|
|
if( (argc==0 || SQLITE_NULL!=sqlite3_value_type(argv[0])) && p ){
|
|
p->n++;
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_DEPRECATED
|
|
/* The sqlite3_aggregate_count() function is deprecated. But just to make
|
|
** sure it still operates correctly, verify that its count agrees with our
|
|
** internal count when using count(*) and when the total count can be
|
|
** expressed as a 32-bit integer. */
|
|
assert( argc==1 || p==0 || p->n>0x7fffffff || p->bInverse
|
|
|| p->n==sqlite3_aggregate_count(context) );
|
|
#endif
|
|
}
|
|
static void countFinalize(sqlite3_context *context){
|
|
CountCtx *p;
|
|
p = sqlite3_aggregate_context(context, 0);
|
|
sqlite3_result_int64(context, p ? p->n : 0);
|
|
}
|
|
#ifndef SQLITE_OMIT_WINDOWFUNC
|
|
static void countInverse(sqlite3_context *ctx, int argc, sqlite3_value **argv){
|
|
CountCtx *p;
|
|
p = sqlite3_aggregate_context(ctx, sizeof(*p));
|
|
/* p is always non-NULL since countStep() will have been called first */
|
|
if( (argc==0 || SQLITE_NULL!=sqlite3_value_type(argv[0])) && ALWAYS(p) ){
|
|
p->n--;
|
|
#ifdef SQLITE_DEBUG
|
|
p->bInverse = 1;
|
|
#endif
|
|
}
|
|
}
|
|
#else
|
|
# define countInverse 0
|
|
#endif /* SQLITE_OMIT_WINDOWFUNC */
|
|
|
|
/*
|
|
** Routines to implement min() and max() aggregate functions.
|
|
*/
|
|
static void minmaxStep(
|
|
sqlite3_context *context,
|
|
int NotUsed,
|
|
sqlite3_value **argv
|
|
){
|
|
Mem *pArg = (Mem *)argv[0];
|
|
Mem *pBest;
|
|
UNUSED_PARAMETER(NotUsed);
|
|
|
|
pBest = (Mem *)sqlite3_aggregate_context(context, sizeof(*pBest));
|
|
if( !pBest ) return;
|
|
|
|
if( sqlite3_value_type(pArg)==SQLITE_NULL ){
|
|
if( pBest->flags ) sqlite3SkipAccumulatorLoad(context);
|
|
}else if( pBest->flags ){
|
|
int max;
|
|
int cmp;
|
|
CollSeq *pColl = sqlite3GetFuncCollSeq(context);
|
|
/* This step function is used for both the min() and max() aggregates,
|
|
** the only difference between the two being that the sense of the
|
|
** comparison is inverted. For the max() aggregate, the
|
|
** sqlite3_user_data() function returns (void *)-1. For min() it
|
|
** returns (void *)db, where db is the sqlite3* database pointer.
|
|
** Therefore the next statement sets variable 'max' to 1 for the max()
|
|
** aggregate, or 0 for min().
|
|
*/
|
|
max = sqlite3_user_data(context)!=0;
|
|
cmp = sqlite3MemCompare(pBest, pArg, pColl);
|
|
if( (max && cmp<0) || (!max && cmp>0) ){
|
|
sqlite3VdbeMemCopy(pBest, pArg);
|
|
}else{
|
|
sqlite3SkipAccumulatorLoad(context);
|
|
}
|
|
}else{
|
|
pBest->db = sqlite3_context_db_handle(context);
|
|
sqlite3VdbeMemCopy(pBest, pArg);
|
|
}
|
|
}
|
|
static void minMaxValueFinalize(sqlite3_context *context, int bValue){
|
|
sqlite3_value *pRes;
|
|
pRes = (sqlite3_value *)sqlite3_aggregate_context(context, 0);
|
|
if( pRes ){
|
|
if( pRes->flags ){
|
|
sqlite3_result_value(context, pRes);
|
|
}
|
|
if( bValue==0 ) sqlite3VdbeMemRelease(pRes);
|
|
}
|
|
}
|
|
#ifndef SQLITE_OMIT_WINDOWFUNC
|
|
static void minMaxValue(sqlite3_context *context){
|
|
minMaxValueFinalize(context, 1);
|
|
}
|
|
#else
|
|
# define minMaxValue 0
|
|
#endif /* SQLITE_OMIT_WINDOWFUNC */
|
|
static void minMaxFinalize(sqlite3_context *context){
|
|
minMaxValueFinalize(context, 0);
|
|
}
|
|
|
|
/*
|
|
** group_concat(EXPR, ?SEPARATOR?)
|
|
** string_agg(EXPR, SEPARATOR)
|
|
**
|
|
** Content is accumulated in GroupConcatCtx.str with the SEPARATOR
|
|
** coming before the EXPR value, except for the first entry which
|
|
** omits the SEPARATOR.
|
|
**
|
|
** It is tragic that the SEPARATOR goes before the EXPR string. The
|
|
** groupConcatInverse() implementation would have been easier if the
|
|
** SEPARATOR were appended after EXPR. And the order is undocumented,
|
|
** so we could change it, in theory. But the old behavior has been
|
|
** around for so long that we dare not, for fear of breaking something.
|
|
*/
|
|
typedef struct {
|
|
StrAccum str; /* The accumulated concatenation */
|
|
#ifndef SQLITE_OMIT_WINDOWFUNC
|
|
int nAccum; /* Number of strings presently concatenated */
|
|
int nFirstSepLength; /* Used to detect separator length change */
|
|
/* If pnSepLengths!=0, refs an array of inter-string separator lengths,
|
|
** stored as actually incorporated into presently accumulated result.
|
|
** (Hence, its slots in use number nAccum-1 between method calls.)
|
|
** If pnSepLengths==0, nFirstSepLength is the length used throughout.
|
|
*/
|
|
int *pnSepLengths;
|
|
#endif
|
|
} GroupConcatCtx;
|
|
|
|
static void groupConcatStep(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
const char *zVal;
|
|
GroupConcatCtx *pGCC;
|
|
const char *zSep;
|
|
int nVal, nSep;
|
|
assert( argc==1 || argc==2 );
|
|
if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
|
|
pGCC = (GroupConcatCtx*)sqlite3_aggregate_context(context, sizeof(*pGCC));
|
|
if( pGCC ){
|
|
sqlite3 *db = sqlite3_context_db_handle(context);
|
|
int firstTerm = pGCC->str.mxAlloc==0;
|
|
pGCC->str.mxAlloc = db->aLimit[SQLITE_LIMIT_LENGTH];
|
|
if( argc==1 ){
|
|
if( !firstTerm ){
|
|
sqlite3_str_appendchar(&pGCC->str, 1, ',');
|
|
}
|
|
#ifndef SQLITE_OMIT_WINDOWFUNC
|
|
else{
|
|
pGCC->nFirstSepLength = 1;
|
|
}
|
|
#endif
|
|
}else if( !firstTerm ){
|
|
zSep = (char*)sqlite3_value_text(argv[1]);
|
|
nSep = sqlite3_value_bytes(argv[1]);
|
|
if( zSep ){
|
|
sqlite3_str_append(&pGCC->str, zSep, nSep);
|
|
}
|
|
#ifndef SQLITE_OMIT_WINDOWFUNC
|
|
else{
|
|
nSep = 0;
|
|
}
|
|
if( nSep != pGCC->nFirstSepLength || pGCC->pnSepLengths != 0 ){
|
|
int *pnsl = pGCC->pnSepLengths;
|
|
if( pnsl == 0 ){
|
|
/* First separator length variation seen, start tracking them. */
|
|
pnsl = (int*)sqlite3_malloc64((pGCC->nAccum+1) * sizeof(int));
|
|
if( pnsl!=0 ){
|
|
int i = 0, nA = pGCC->nAccum-1;
|
|
while( i<nA ) pnsl[i++] = pGCC->nFirstSepLength;
|
|
}
|
|
}else{
|
|
pnsl = (int*)sqlite3_realloc64(pnsl, pGCC->nAccum * sizeof(int));
|
|
}
|
|
if( pnsl!=0 ){
|
|
if( ALWAYS(pGCC->nAccum>0) ){
|
|
pnsl[pGCC->nAccum-1] = nSep;
|
|
}
|
|
pGCC->pnSepLengths = pnsl;
|
|
}else{
|
|
sqlite3StrAccumSetError(&pGCC->str, SQLITE_NOMEM);
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
#ifndef SQLITE_OMIT_WINDOWFUNC
|
|
else{
|
|
pGCC->nFirstSepLength = sqlite3_value_bytes(argv[1]);
|
|
}
|
|
pGCC->nAccum += 1;
|
|
#endif
|
|
zVal = (char*)sqlite3_value_text(argv[0]);
|
|
nVal = sqlite3_value_bytes(argv[0]);
|
|
if( zVal ) sqlite3_str_append(&pGCC->str, zVal, nVal);
|
|
}
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_WINDOWFUNC
|
|
static void groupConcatInverse(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
GroupConcatCtx *pGCC;
|
|
assert( argc==1 || argc==2 );
|
|
(void)argc; /* Suppress unused parameter warning */
|
|
if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
|
|
pGCC = (GroupConcatCtx*)sqlite3_aggregate_context(context, sizeof(*pGCC));
|
|
/* pGCC is always non-NULL since groupConcatStep() will have always
|
|
** run first to initialize it */
|
|
if( ALWAYS(pGCC) ){
|
|
int nVS; /* Number of characters to remove */
|
|
/* Must call sqlite3_value_text() to convert the argument into text prior
|
|
** to invoking sqlite3_value_bytes(), in case the text encoding is UTF16 */
|
|
(void)sqlite3_value_text(argv[0]);
|
|
nVS = sqlite3_value_bytes(argv[0]);
|
|
pGCC->nAccum -= 1;
|
|
if( pGCC->pnSepLengths!=0 ){
|
|
assert(pGCC->nAccum >= 0);
|
|
if( pGCC->nAccum>0 ){
|
|
nVS += *pGCC->pnSepLengths;
|
|
memmove(pGCC->pnSepLengths, pGCC->pnSepLengths+1,
|
|
(pGCC->nAccum-1)*sizeof(int));
|
|
}
|
|
}else{
|
|
/* If removing single accumulated string, harmlessly over-do. */
|
|
nVS += pGCC->nFirstSepLength;
|
|
}
|
|
if( nVS>=(int)pGCC->str.nChar ){
|
|
pGCC->str.nChar = 0;
|
|
}else{
|
|
pGCC->str.nChar -= nVS;
|
|
memmove(pGCC->str.zText, &pGCC->str.zText[nVS], pGCC->str.nChar);
|
|
}
|
|
if( pGCC->str.nChar==0 ){
|
|
pGCC->str.mxAlloc = 0;
|
|
sqlite3_free(pGCC->pnSepLengths);
|
|
pGCC->pnSepLengths = 0;
|
|
}
|
|
}
|
|
}
|
|
#else
|
|
# define groupConcatInverse 0
|
|
#endif /* SQLITE_OMIT_WINDOWFUNC */
|
|
static void groupConcatFinalize(sqlite3_context *context){
|
|
GroupConcatCtx *pGCC
|
|
= (GroupConcatCtx*)sqlite3_aggregate_context(context, 0);
|
|
if( pGCC ){
|
|
sqlite3ResultStrAccum(context, &pGCC->str);
|
|
#ifndef SQLITE_OMIT_WINDOWFUNC
|
|
sqlite3_free(pGCC->pnSepLengths);
|
|
#endif
|
|
}
|
|
}
|
|
#ifndef SQLITE_OMIT_WINDOWFUNC
|
|
static void groupConcatValue(sqlite3_context *context){
|
|
GroupConcatCtx *pGCC
|
|
= (GroupConcatCtx*)sqlite3_aggregate_context(context, 0);
|
|
if( pGCC ){
|
|
StrAccum *pAccum = &pGCC->str;
|
|
if( pAccum->accError==SQLITE_TOOBIG ){
|
|
sqlite3_result_error_toobig(context);
|
|
}else if( pAccum->accError==SQLITE_NOMEM ){
|
|
sqlite3_result_error_nomem(context);
|
|
}else if( pGCC->nAccum>0 && pAccum->nChar==0 ){
|
|
sqlite3_result_text(context, "", 1, SQLITE_STATIC);
|
|
}else{
|
|
const char *zText = sqlite3_str_value(pAccum);
|
|
sqlite3_result_text(context, zText, pAccum->nChar, SQLITE_TRANSIENT);
|
|
}
|
|
}
|
|
}
|
|
#else
|
|
# define groupConcatValue 0
|
|
#endif /* SQLITE_OMIT_WINDOWFUNC */
|
|
|
|
/*
|
|
** This routine does per-connection function registration. Most
|
|
** of the built-in functions above are part of the global function set.
|
|
** This routine only deals with those that are not global.
|
|
*/
|
|
void sqlite3RegisterPerConnectionBuiltinFunctions(sqlite3 *db){
|
|
int rc = sqlite3_overload_function(db, "MATCH", 2);
|
|
assert( rc==SQLITE_NOMEM || rc==SQLITE_OK );
|
|
if( rc==SQLITE_NOMEM ){
|
|
sqlite3OomFault(db);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Re-register the built-in LIKE functions. The caseSensitive
|
|
** parameter determines whether or not the LIKE operator is case
|
|
** sensitive.
|
|
*/
|
|
void sqlite3RegisterLikeFunctions(sqlite3 *db, int caseSensitive){
|
|
FuncDef *pDef;
|
|
struct compareInfo *pInfo;
|
|
int flags;
|
|
int nArg;
|
|
if( caseSensitive ){
|
|
pInfo = (struct compareInfo*)&likeInfoAlt;
|
|
flags = SQLITE_FUNC_LIKE | SQLITE_FUNC_CASE;
|
|
}else{
|
|
pInfo = (struct compareInfo*)&likeInfoNorm;
|
|
flags = SQLITE_FUNC_LIKE;
|
|
}
|
|
for(nArg=2; nArg<=3; nArg++){
|
|
sqlite3CreateFunc(db, "like", nArg, SQLITE_UTF8, pInfo, likeFunc,
|
|
0, 0, 0, 0, 0);
|
|
pDef = sqlite3FindFunction(db, "like", nArg, SQLITE_UTF8, 0);
|
|
pDef->funcFlags |= flags;
|
|
pDef->funcFlags &= ~SQLITE_FUNC_UNSAFE;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** pExpr points to an expression which implements a function. If
|
|
** it is appropriate to apply the LIKE optimization to that function
|
|
** then set aWc[0] through aWc[2] to the wildcard characters and the
|
|
** escape character and then return TRUE. If the function is not a
|
|
** LIKE-style function then return FALSE.
|
|
**
|
|
** The expression "a LIKE b ESCAPE c" is only considered a valid LIKE
|
|
** operator if c is a string literal that is exactly one byte in length.
|
|
** That one byte is stored in aWc[3]. aWc[3] is set to zero if there is
|
|
** no ESCAPE clause.
|
|
**
|
|
** *pIsNocase is set to true if uppercase and lowercase are equivalent for
|
|
** the function (default for LIKE). If the function makes the distinction
|
|
** between uppercase and lowercase (as does GLOB) then *pIsNocase is set to
|
|
** false.
|
|
*/
|
|
int sqlite3IsLikeFunction(sqlite3 *db, Expr *pExpr, int *pIsNocase, char *aWc){
|
|
FuncDef *pDef;
|
|
int nExpr;
|
|
assert( pExpr!=0 );
|
|
assert( pExpr->op==TK_FUNCTION );
|
|
assert( ExprUseXList(pExpr) );
|
|
if( !pExpr->x.pList ){
|
|
return 0;
|
|
}
|
|
nExpr = pExpr->x.pList->nExpr;
|
|
assert( !ExprHasProperty(pExpr, EP_IntValue) );
|
|
pDef = sqlite3FindFunction(db, pExpr->u.zToken, nExpr, SQLITE_UTF8, 0);
|
|
#ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
|
|
if( pDef==0 ) return 0;
|
|
#endif
|
|
if( NEVER(pDef==0) || (pDef->funcFlags & SQLITE_FUNC_LIKE)==0 ){
|
|
return 0;
|
|
}
|
|
|
|
/* The memcpy() statement assumes that the wildcard characters are
|
|
** the first three statements in the compareInfo structure. The
|
|
** asserts() that follow verify that assumption
|
|
*/
|
|
memcpy(aWc, pDef->pUserData, 3);
|
|
assert( (char*)&likeInfoAlt == (char*)&likeInfoAlt.matchAll );
|
|
assert( &((char*)&likeInfoAlt)[1] == (char*)&likeInfoAlt.matchOne );
|
|
assert( &((char*)&likeInfoAlt)[2] == (char*)&likeInfoAlt.matchSet );
|
|
|
|
if( nExpr<3 ){
|
|
aWc[3] = 0;
|
|
}else{
|
|
Expr *pEscape = pExpr->x.pList->a[2].pExpr;
|
|
char *zEscape;
|
|
if( pEscape->op!=TK_STRING ) return 0;
|
|
assert( !ExprHasProperty(pEscape, EP_IntValue) );
|
|
zEscape = pEscape->u.zToken;
|
|
if( zEscape[0]==0 || zEscape[1]!=0 ) return 0;
|
|
if( zEscape[0]==aWc[0] ) return 0;
|
|
if( zEscape[0]==aWc[1] ) return 0;
|
|
aWc[3] = zEscape[0];
|
|
}
|
|
|
|
*pIsNocase = (pDef->funcFlags & SQLITE_FUNC_CASE)==0;
|
|
return 1;
|
|
}
|
|
|
|
/* Mathematical Constants */
|
|
#ifndef M_PI
|
|
# define M_PI 3.141592653589793238462643383279502884
|
|
#endif
|
|
#ifndef M_LN10
|
|
# define M_LN10 2.302585092994045684017991454684364208
|
|
#endif
|
|
#ifndef M_LN2
|
|
# define M_LN2 0.693147180559945309417232121458176568
|
|
#endif
|
|
|
|
|
|
/* Extra math functions that require linking with -lm
|
|
*/
|
|
#ifdef SQLITE_ENABLE_MATH_FUNCTIONS
|
|
/*
|
|
** Implementation SQL functions:
|
|
**
|
|
** ceil(X)
|
|
** ceiling(X)
|
|
** floor(X)
|
|
**
|
|
** The sqlite3_user_data() pointer is a pointer to the libm implementation
|
|
** of the underlying C function.
|
|
*/
|
|
static void ceilingFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
assert( argc==1 );
|
|
switch( sqlite3_value_numeric_type(argv[0]) ){
|
|
case SQLITE_INTEGER: {
|
|
sqlite3_result_int64(context, sqlite3_value_int64(argv[0]));
|
|
break;
|
|
}
|
|
case SQLITE_FLOAT: {
|
|
double (*x)(double) = (double(*)(double))sqlite3_user_data(context);
|
|
sqlite3_result_double(context, x(sqlite3_value_double(argv[0])));
|
|
break;
|
|
}
|
|
default: {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** On some systems, ceil() and floor() are intrinsic function. You are
|
|
** unable to take a pointer to these functions. Hence, we here wrap them
|
|
** in our own actual functions.
|
|
*/
|
|
static double xCeil(double x){ return ceil(x); }
|
|
static double xFloor(double x){ return floor(x); }
|
|
|
|
/*
|
|
** Some systems do not have log2() and log10() in their standard math
|
|
** libraries.
|
|
*/
|
|
#if defined(HAVE_LOG10) && HAVE_LOG10==0
|
|
# define log10(X) (0.4342944819032517867*log(X))
|
|
#endif
|
|
#if defined(HAVE_LOG2) && HAVE_LOG2==0
|
|
# define log2(X) (1.442695040888963456*log(X))
|
|
#endif
|
|
|
|
|
|
/*
|
|
** Implementation of SQL functions:
|
|
**
|
|
** ln(X) - natural logarithm
|
|
** log(X) - log X base 10
|
|
** log10(X) - log X base 10
|
|
** log(B,X) - log X base B
|
|
*/
|
|
static void logFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
double x, b, ans;
|
|
assert( argc==1 || argc==2 );
|
|
switch( sqlite3_value_numeric_type(argv[0]) ){
|
|
case SQLITE_INTEGER:
|
|
case SQLITE_FLOAT:
|
|
x = sqlite3_value_double(argv[0]);
|
|
if( x<=0.0 ) return;
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
if( argc==2 ){
|
|
switch( sqlite3_value_numeric_type(argv[0]) ){
|
|
case SQLITE_INTEGER:
|
|
case SQLITE_FLOAT:
|
|
b = log(x);
|
|
if( b<=0.0 ) return;
|
|
x = sqlite3_value_double(argv[1]);
|
|
if( x<=0.0 ) return;
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
ans = log(x)/b;
|
|
}else{
|
|
switch( SQLITE_PTR_TO_INT(sqlite3_user_data(context)) ){
|
|
case 1:
|
|
ans = log10(x);
|
|
break;
|
|
case 2:
|
|
ans = log2(x);
|
|
break;
|
|
default:
|
|
ans = log(x);
|
|
break;
|
|
}
|
|
}
|
|
sqlite3_result_double(context, ans);
|
|
}
|
|
|
|
/*
|
|
** Functions to converts degrees to radians and radians to degrees.
|
|
*/
|
|
static double degToRad(double x){ return x*(M_PI/180.0); }
|
|
static double radToDeg(double x){ return x*(180.0/M_PI); }
|
|
|
|
/*
|
|
** Implementation of 1-argument SQL math functions:
|
|
**
|
|
** exp(X) - Compute e to the X-th power
|
|
*/
|
|
static void math1Func(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
int type0;
|
|
double v0, ans;
|
|
double (*x)(double);
|
|
assert( argc==1 );
|
|
type0 = sqlite3_value_numeric_type(argv[0]);
|
|
if( type0!=SQLITE_INTEGER && type0!=SQLITE_FLOAT ) return;
|
|
v0 = sqlite3_value_double(argv[0]);
|
|
x = (double(*)(double))sqlite3_user_data(context);
|
|
ans = x(v0);
|
|
sqlite3_result_double(context, ans);
|
|
}
|
|
|
|
/*
|
|
** Implementation of 2-argument SQL math functions:
|
|
**
|
|
** power(X,Y) - Compute X to the Y-th power
|
|
*/
|
|
static void math2Func(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
int type0, type1;
|
|
double v0, v1, ans;
|
|
double (*x)(double,double);
|
|
assert( argc==2 );
|
|
type0 = sqlite3_value_numeric_type(argv[0]);
|
|
if( type0!=SQLITE_INTEGER && type0!=SQLITE_FLOAT ) return;
|
|
type1 = sqlite3_value_numeric_type(argv[1]);
|
|
if( type1!=SQLITE_INTEGER && type1!=SQLITE_FLOAT ) return;
|
|
v0 = sqlite3_value_double(argv[0]);
|
|
v1 = sqlite3_value_double(argv[1]);
|
|
x = (double(*)(double,double))sqlite3_user_data(context);
|
|
ans = x(v0, v1);
|
|
sqlite3_result_double(context, ans);
|
|
}
|
|
|
|
/*
|
|
** Implementation of 0-argument pi() function.
|
|
*/
|
|
static void piFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
assert( argc==0 );
|
|
(void)argv;
|
|
sqlite3_result_double(context, M_PI);
|
|
}
|
|
|
|
#endif /* SQLITE_ENABLE_MATH_FUNCTIONS */
|
|
|
|
/*
|
|
** Implementation of sign(X) function.
|
|
*/
|
|
static void signFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
int type0;
|
|
double x;
|
|
UNUSED_PARAMETER(argc);
|
|
assert( argc==1 );
|
|
type0 = sqlite3_value_numeric_type(argv[0]);
|
|
if( type0!=SQLITE_INTEGER && type0!=SQLITE_FLOAT ) return;
|
|
x = sqlite3_value_double(argv[0]);
|
|
sqlite3_result_int(context, x<0.0 ? -1 : x>0.0 ? +1 : 0);
|
|
}
|
|
|
|
#if defined(SQLITE_ENABLE_PERCENTILE)
|
|
/***********************************************************************
|
|
** This section implements the percentile(Y,P) SQL function and similar.
|
|
** Requirements:
|
|
**
|
|
** (1) The percentile(Y,P) function is an aggregate function taking
|
|
** exactly two arguments.
|
|
**
|
|
** (2) If the P argument to percentile(Y,P) is not the same for every
|
|
** row in the aggregate then an error is thrown. The word "same"
|
|
** in the previous sentence means that the value differ by less
|
|
** than 0.001.
|
|
**
|
|
** (3) If the P argument to percentile(Y,P) evaluates to anything other
|
|
** than a number in the range of 0.0 to 100.0 inclusive then an
|
|
** error is thrown.
|
|
**
|
|
** (4) If any Y argument to percentile(Y,P) evaluates to a value that
|
|
** is not NULL and is not numeric then an error is thrown.
|
|
**
|
|
** (5) If any Y argument to percentile(Y,P) evaluates to plus or minus
|
|
** infinity then an error is thrown. (SQLite always interprets NaN
|
|
** values as NULL.)
|
|
**
|
|
** (6) Both Y and P in percentile(Y,P) can be arbitrary expressions,
|
|
** including CASE WHEN expressions.
|
|
**
|
|
** (7) The percentile(Y,P) aggregate is able to handle inputs of at least
|
|
** one million (1,000,000) rows.
|
|
**
|
|
** (8) If there are no non-NULL values for Y, then percentile(Y,P)
|
|
** returns NULL.
|
|
**
|
|
** (9) If there is exactly one non-NULL value for Y, the percentile(Y,P)
|
|
** returns the one Y value.
|
|
**
|
|
** (10) If there N non-NULL values of Y where N is two or more and
|
|
** the Y values are ordered from least to greatest and a graph is
|
|
** drawn from 0 to N-1 such that the height of the graph at J is
|
|
** the J-th Y value and such that straight lines are drawn between
|
|
** adjacent Y values, then the percentile(Y,P) function returns
|
|
** the height of the graph at P*(N-1)/100.
|
|
**
|
|
** (11) The percentile(Y,P) function always returns either a floating
|
|
** point number or NULL.
|
|
**
|
|
** (12) The percentile(Y,P) is implemented as a single C99 source-code
|
|
** file that compiles into a shared-library or DLL that can be loaded
|
|
** into SQLite using the sqlite3_load_extension() interface.
|
|
**
|
|
** (13) A separate median(Y) function is the equivalent percentile(Y,50).
|
|
**
|
|
** (14) A separate percentile_cont(Y,P) function is equivalent to
|
|
** percentile(Y,P/100.0). In other words, the fraction value in
|
|
** the second argument is in the range of 0 to 1 instead of 0 to 100.
|
|
**
|
|
** (15) A separate percentile_disc(Y,P) function is like
|
|
** percentile_cont(Y,P) except that instead of returning the weighted
|
|
** average of the nearest two input values, it returns the next lower
|
|
** value. So the percentile_disc(Y,P) will always return a value
|
|
** that was one of the inputs.
|
|
**
|
|
** (16) All of median(), percentile(Y,P), percentile_cont(Y,P) and
|
|
** percentile_disc(Y,P) can be used as window functions.
|
|
**
|
|
** Differences from standard SQL:
|
|
**
|
|
** * The percentile_cont(X,P) function is equivalent to the following in
|
|
** standard SQL:
|
|
**
|
|
** (percentile_cont(P) WITHIN GROUP (ORDER BY X))
|
|
**
|
|
** The SQLite syntax is much more compact. The standard SQL syntax
|
|
** is also supported if SQLite is compiled with the
|
|
** -DSQLITE_ENABLE_ORDERED_SET_AGGREGATES option.
|
|
**
|
|
** * No median(X) function exists in the SQL standard. App developers
|
|
** are expected to write "percentile_cont(0.5)WITHIN GROUP(ORDER BY X)".
|
|
**
|
|
** * No percentile(Y,P) function exists in the SQL standard. Instead of
|
|
** percential(Y,P), developers must write this:
|
|
** "percentile_cont(P/100.0) WITHIN GROUP (ORDER BY Y)". Note that
|
|
** the fraction parameter to percentile() goes from 0 to 100 whereas
|
|
** the fraction parameter in SQL standard percentile_cont() goes from
|
|
** 0 to 1.
|
|
**
|
|
** Implementation notes as of 2024-08-31:
|
|
**
|
|
** * The regular aggregate-function versions of these routines work
|
|
** by accumulating all values in an array of doubles, then sorting
|
|
** that array using quicksort before computing the answer. Thus
|
|
** the runtime is O(NlogN) where N is the number of rows of input.
|
|
**
|
|
** * For the window-function versions of these routines, the array of
|
|
** inputs is sorted as soon as the first value is computed. Thereafter,
|
|
** the array is kept in sorted order using an insert-sort. This
|
|
** results in O(N*K) performance where K is the size of the window.
|
|
** One can imagine alternative implementations that give O(N*logN*logK)
|
|
** performance, but they require more complex logic and data structures.
|
|
** The developers have elected to keep the asymptotically slower
|
|
** algorithm for now, for simplicity, under the theory that window
|
|
** functions are seldom used and when they are, the window size K is
|
|
** often small. The developers might revisit that decision later,
|
|
** should the need arise.
|
|
*/
|
|
|
|
/* The following object is the group context for a single percentile()
|
|
** aggregate. Remember all input Y values until the very end.
|
|
** Those values are accumulated in the Percentile.a[] array.
|
|
*/
|
|
typedef struct Percentile Percentile;
|
|
struct Percentile {
|
|
u64 nAlloc; /* Number of slots allocated for a[] */
|
|
u64 nUsed; /* Number of slots actually used in a[] */
|
|
char bSorted; /* True if a[] is already in sorted order */
|
|
char bKeepSorted; /* True if advantageous to keep a[] sorted */
|
|
char bPctValid; /* True if rPct is valid */
|
|
double rPct; /* Fraction. 0.0 to 1.0 */
|
|
double *a; /* Array of Y values */
|
|
};
|
|
|
|
/*
|
|
** Return TRUE if the input floating-point number is an infinity.
|
|
*/
|
|
static int percentIsInfinity(double r){
|
|
sqlite3_uint64 u;
|
|
assert( sizeof(u)==sizeof(r) );
|
|
memcpy(&u, &r, sizeof(u));
|
|
return ((u>>52)&0x7ff)==0x7ff;
|
|
}
|
|
|
|
/*
|
|
** Return TRUE if two doubles differ by 0.001 or less.
|
|
*/
|
|
static int percentSameValue(double a, double b){
|
|
a -= b;
|
|
return a>=-0.001 && a<=0.001;
|
|
}
|
|
|
|
/*
|
|
** Search p (which must have p->bSorted) looking for an entry with
|
|
** value y. Return the index of that entry.
|
|
**
|
|
** If bExact is true, return -1 if the entry is not found.
|
|
**
|
|
** If bExact is false, return the index at which a new entry with
|
|
** value y should be insert in order to keep the values in sorted
|
|
** order. The smallest return value in this case will be 0, and
|
|
** the largest return value will be p->nUsed.
|
|
*/
|
|
static i64 percentBinarySearch(Percentile *p, double y, int bExact){
|
|
i64 iFirst = 0; /* First element of search range */
|
|
i64 iLast = (i64)p->nUsed - 1; /* Last element of search range */
|
|
while( iLast>=iFirst ){
|
|
i64 iMid = (iFirst+iLast)/2;
|
|
double x = p->a[iMid];
|
|
if( x<y ){
|
|
iFirst = iMid + 1;
|
|
}else if( x>y ){
|
|
iLast = iMid - 1;
|
|
}else{
|
|
return iMid;
|
|
}
|
|
}
|
|
if( bExact ) return -1;
|
|
return iFirst;
|
|
}
|
|
|
|
/*
|
|
** Generate an error for a percentile function.
|
|
**
|
|
** The error format string must have exactly one occurrence of "%%s()"
|
|
** (with two '%' characters). That substring will be replaced by the name
|
|
** of the function.
|
|
*/
|
|
static void percentError(sqlite3_context *pCtx, const char *zFormat, ...){
|
|
char *zMsg1;
|
|
char *zMsg2;
|
|
va_list ap;
|
|
|
|
va_start(ap, zFormat);
|
|
zMsg1 = sqlite3_vmprintf(zFormat, ap);
|
|
va_end(ap);
|
|
zMsg2 = zMsg1 ? sqlite3_mprintf(zMsg1, sqlite3VdbeFuncName(pCtx)) : 0;
|
|
sqlite3_result_error(pCtx, zMsg2, -1);
|
|
sqlite3_free(zMsg1);
|
|
sqlite3_free(zMsg2);
|
|
}
|
|
|
|
/*
|
|
** The "step" function for percentile(Y,P) is called once for each
|
|
** input row.
|
|
*/
|
|
static void percentStep(sqlite3_context *pCtx, int argc, sqlite3_value **argv){
|
|
Percentile *p;
|
|
double rPct;
|
|
int eType;
|
|
double y;
|
|
assert( argc==2 || argc==1 );
|
|
|
|
if( argc==1 ){
|
|
/* Requirement 13: median(Y) is the same as percentile(Y,50). */
|
|
rPct = 0.5;
|
|
}else{
|
|
/* P must be a number between 0 and 100 for percentile() or between
|
|
** 0.0 and 1.0 for percentile_cont() and percentile_disc().
|
|
**
|
|
** The user-data is an integer which is 10 times the upper bound.
|
|
*/
|
|
double mxFrac = (SQLITE_PTR_TO_INT(sqlite3_user_data(pCtx))&2)? 100.0 : 1.0;
|
|
eType = sqlite3_value_numeric_type(argv[1]);
|
|
rPct = sqlite3_value_double(argv[1])/mxFrac;
|
|
if( (eType!=SQLITE_INTEGER && eType!=SQLITE_FLOAT)
|
|
|| rPct<0.0 || rPct>1.0
|
|
){
|
|
percentError(pCtx, "the fraction argument to %%s()"
|
|
" is not between 0.0 and %.1f",
|
|
(double)mxFrac);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* Allocate the session context. */
|
|
p = (Percentile*)sqlite3_aggregate_context(pCtx, sizeof(*p));
|
|
if( p==0 ) return;
|
|
|
|
/* Remember the P value. Throw an error if the P value is different
|
|
** from any prior row, per Requirement (2). */
|
|
if( !p->bPctValid ){
|
|
p->rPct = rPct;
|
|
p->bPctValid = 1;
|
|
}else if( !percentSameValue(p->rPct,rPct) ){
|
|
percentError(pCtx, "the fraction argument to %%s()"
|
|
" is not the same for all input rows");
|
|
return;
|
|
}
|
|
|
|
/* Ignore rows for which Y is NULL */
|
|
eType = sqlite3_value_type(argv[0]);
|
|
if( eType==SQLITE_NULL ) return;
|
|
|
|
/* If not NULL, then Y must be numeric. Otherwise throw an error.
|
|
** Requirement 4 */
|
|
if( eType!=SQLITE_INTEGER && eType!=SQLITE_FLOAT ){
|
|
percentError(pCtx, "input to %%s() is not numeric");
|
|
return;
|
|
}
|
|
|
|
/* Throw an error if the Y value is infinity or NaN */
|
|
y = sqlite3_value_double(argv[0]);
|
|
if( percentIsInfinity(y) ){
|
|
percentError(pCtx, "Inf input to %%s()");
|
|
return;
|
|
}
|
|
|
|
/* Allocate and store the Y */
|
|
if( p->nUsed>=p->nAlloc ){
|
|
u64 n = p->nAlloc*2 + 250;
|
|
double *a = sqlite3_realloc64(p->a, sizeof(double)*n);
|
|
if( a==0 ){
|
|
sqlite3_free(p->a);
|
|
memset(p, 0, sizeof(*p));
|
|
sqlite3_result_error_nomem(pCtx);
|
|
return;
|
|
}
|
|
p->nAlloc = n;
|
|
p->a = a;
|
|
}
|
|
if( p->nUsed==0 ){
|
|
p->a[p->nUsed++] = y;
|
|
p->bSorted = 1;
|
|
}else if( !p->bSorted || y>=p->a[p->nUsed-1] ){
|
|
p->a[p->nUsed++] = y;
|
|
}else if( p->bKeepSorted ){
|
|
i64 i;
|
|
i = percentBinarySearch(p, y, 0);
|
|
if( i<(int)p->nUsed ){
|
|
memmove(&p->a[i+1], &p->a[i], (p->nUsed-i)*sizeof(p->a[0]));
|
|
}
|
|
p->a[i] = y;
|
|
p->nUsed++;
|
|
}else{
|
|
p->a[p->nUsed++] = y;
|
|
p->bSorted = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Interchange two doubles.
|
|
*/
|
|
#define SWAP_DOUBLE(X,Y) {double ttt=(X);(X)=(Y);(Y)=ttt;}
|
|
|
|
/*
|
|
** Sort an array of doubles.
|
|
**
|
|
** Algorithm: quicksort
|
|
**
|
|
** This is implemented separately rather than using the qsort() routine
|
|
** from the standard library because:
|
|
**
|
|
** (1) To avoid a dependency on qsort()
|
|
** (2) To avoid the function call to the comparison routine for each
|
|
** comparison.
|
|
*/
|
|
static void percentSort(double *a, unsigned int n){
|
|
int iLt; /* Entries before a[iLt] are less than rPivot */
|
|
int iGt; /* Entries at or after a[iGt] are greater than rPivot */
|
|
int i; /* Loop counter */
|
|
double rPivot; /* The pivot value */
|
|
|
|
assert( n>=2 );
|
|
if( a[0]>a[n-1] ){
|
|
SWAP_DOUBLE(a[0],a[n-1])
|
|
}
|
|
if( n==2 ) return;
|
|
iGt = n-1;
|
|
i = n/2;
|
|
if( a[0]>a[i] ){
|
|
SWAP_DOUBLE(a[0],a[i])
|
|
}else if( a[i]>a[iGt] ){
|
|
SWAP_DOUBLE(a[i],a[iGt])
|
|
}
|
|
if( n==3 ) return;
|
|
rPivot = a[i];
|
|
iLt = i = 1;
|
|
do{
|
|
if( a[i]<rPivot ){
|
|
if( i>iLt ) SWAP_DOUBLE(a[i],a[iLt])
|
|
iLt++;
|
|
i++;
|
|
}else if( a[i]>rPivot ){
|
|
do{
|
|
iGt--;
|
|
}while( iGt>i && a[iGt]>rPivot );
|
|
SWAP_DOUBLE(a[i],a[iGt])
|
|
}else{
|
|
i++;
|
|
}
|
|
}while( i<iGt );
|
|
if( iLt>=2 ) percentSort(a, iLt);
|
|
if( n-iGt>=2 ) percentSort(a+iGt, n-iGt);
|
|
|
|
/* Uncomment for testing */
|
|
#if 0
|
|
for(i=0; i<n-1; i++){
|
|
assert( a[i]<=a[i+1] );
|
|
}
|
|
#endif
|
|
}
|
|
|
|
|
|
/*
|
|
** The "inverse" function for percentile(Y,P) is called to remove a
|
|
** row that was previously inserted by "step".
|
|
*/
|
|
static void percentInverse(sqlite3_context *pCtx,int argc,sqlite3_value **argv){
|
|
Percentile *p;
|
|
int eType;
|
|
double y;
|
|
i64 i;
|
|
assert( argc==2 || argc==1 );
|
|
|
|
/* Allocate the session context. */
|
|
p = (Percentile*)sqlite3_aggregate_context(pCtx, sizeof(*p));
|
|
assert( p!=0 );
|
|
|
|
/* Ignore rows for which Y is NULL */
|
|
eType = sqlite3_value_type(argv[0]);
|
|
if( eType==SQLITE_NULL ) return;
|
|
|
|
/* If not NULL, then Y must be numeric. Otherwise throw an error.
|
|
** Requirement 4 */
|
|
if( eType!=SQLITE_INTEGER && eType!=SQLITE_FLOAT ){
|
|
return;
|
|
}
|
|
|
|
/* Ignore the Y value if it is infinity or NaN */
|
|
y = sqlite3_value_double(argv[0]);
|
|
if( percentIsInfinity(y) ){
|
|
return;
|
|
}
|
|
if( p->bSorted==0 ){
|
|
assert( p->nUsed>1 );
|
|
percentSort(p->a, p->nUsed);
|
|
p->bSorted = 1;
|
|
}
|
|
p->bKeepSorted = 1;
|
|
|
|
/* Find and remove the row */
|
|
i = percentBinarySearch(p, y, 1);
|
|
if( i>=0 ){
|
|
p->nUsed--;
|
|
if( i<(int)p->nUsed ){
|
|
memmove(&p->a[i], &p->a[i+1], (p->nUsed - i)*sizeof(p->a[0]));
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Compute the final output of percentile(). Clean up all allocated
|
|
** memory if and only if bIsFinal is true.
|
|
*/
|
|
static void percentCompute(sqlite3_context *pCtx, int bIsFinal){
|
|
Percentile *p;
|
|
int settings = SQLITE_PTR_TO_INT(sqlite3_user_data(pCtx))&1; /* Discrete? */
|
|
unsigned i1, i2;
|
|
double v1, v2;
|
|
double ix, vx;
|
|
p = (Percentile*)sqlite3_aggregate_context(pCtx, 0);
|
|
if( p==0 ) return;
|
|
if( p->a==0 ) return;
|
|
if( p->nUsed ){
|
|
if( p->bSorted==0 ){
|
|
assert( p->nUsed>1 );
|
|
percentSort(p->a, p->nUsed);
|
|
p->bSorted = 1;
|
|
}
|
|
ix = p->rPct*(p->nUsed-1);
|
|
i1 = (unsigned)ix;
|
|
if( settings & 1 ){
|
|
vx = p->a[i1];
|
|
}else{
|
|
i2 = ix==(double)i1 || i1==p->nUsed-1 ? i1 : i1+1;
|
|
v1 = p->a[i1];
|
|
v2 = p->a[i2];
|
|
vx = v1 + (v2-v1)*(ix-i1);
|
|
}
|
|
sqlite3_result_double(pCtx, vx);
|
|
}
|
|
if( bIsFinal ){
|
|
sqlite3_free(p->a);
|
|
memset(p, 0, sizeof(*p));
|
|
}else{
|
|
p->bKeepSorted = 1;
|
|
}
|
|
}
|
|
static void percentFinal(sqlite3_context *pCtx){
|
|
percentCompute(pCtx, 1);
|
|
}
|
|
static void percentValue(sqlite3_context *pCtx){
|
|
percentCompute(pCtx, 0);
|
|
}
|
|
/****** End of percentile family of functions ******/
|
|
#endif /* SQLITE_ENABLE_PERCENTILE */
|
|
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
/*
|
|
** Implementation of fpdecode(x,y,z) function.
|
|
**
|
|
** x is a real number that is to be decoded. y is the precision.
|
|
** z is the maximum real precision. Return a string that shows the
|
|
** results of the sqlite3FpDecode() function.
|
|
**
|
|
** Used for testing and debugging only, specifically testing and debugging
|
|
** of the sqlite3FpDecode() function. This SQL function does not appear
|
|
** in production builds. This function is not an API and is subject to
|
|
** modification or removal in future versions of SQLite.
|
|
*/
|
|
static void fpdecodeFunc(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
FpDecode s;
|
|
double x;
|
|
int y, z;
|
|
char zBuf[100];
|
|
UNUSED_PARAMETER(argc);
|
|
assert( argc==3 );
|
|
x = sqlite3_value_double(argv[0]);
|
|
y = sqlite3_value_int(argv[1]);
|
|
z = sqlite3_value_int(argv[2]);
|
|
if( z<=0 ) z = 1;
|
|
sqlite3FpDecode(&s, x, y, z);
|
|
if( s.isSpecial==2 ){
|
|
sqlite3_snprintf(sizeof(zBuf), zBuf, "NaN");
|
|
}else{
|
|
sqlite3_snprintf(sizeof(zBuf), zBuf, "%c%.*s/%d", s.sign, s.n, s.z, s.iDP);
|
|
}
|
|
sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
|
|
}
|
|
#endif /* SQLITE_DEBUG */
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
/*
|
|
** Implementation of parseuri(uri,flags) function.
|
|
**
|
|
** Required Arguments:
|
|
** "uri" The URI to parse.
|
|
** "flags" Bitmask of flags, as if to sqlite3_open_v2().
|
|
**
|
|
** Additional arguments beyond the first two make calls to
|
|
** sqlite3_uri_key() for integers and sqlite3_uri_parameter for
|
|
** anything else.
|
|
**
|
|
** The result is a string showing the results of calling sqlite3ParseUri().
|
|
**
|
|
** Used for testing and debugging only, specifically testing and debugging
|
|
** of the sqlite3ParseUri() function. This SQL function does not appear
|
|
** in production builds. This function is not an API and is subject to
|
|
** modification or removal in future versions of SQLite.
|
|
*/
|
|
static void parseuriFunc(
|
|
sqlite3_context *ctx,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
sqlite3_str *pResult;
|
|
const char *zVfs;
|
|
const char *zUri;
|
|
unsigned int flgs;
|
|
int rc;
|
|
sqlite3_vfs *pVfs = 0;
|
|
char *zFile = 0;
|
|
char *zErr = 0;
|
|
|
|
if( argc<2 ) return;
|
|
pVfs = sqlite3_vfs_find(0);
|
|
assert( pVfs );
|
|
zVfs = pVfs->zName;
|
|
zUri = (const char*)sqlite3_value_text(argv[0]);
|
|
if( zUri==0 ) return;
|
|
flgs = (unsigned int)sqlite3_value_int(argv[1]);
|
|
rc = sqlite3ParseUri(zVfs, zUri, &flgs, &pVfs, &zFile, &zErr);
|
|
pResult = sqlite3_str_new(0);
|
|
if( pResult ){
|
|
int i;
|
|
sqlite3_str_appendf(pResult, "rc=%d", rc);
|
|
sqlite3_str_appendf(pResult, ", flags=0x%x", flgs);
|
|
sqlite3_str_appendf(pResult, ", vfs=%Q", pVfs ? pVfs->zName: 0);
|
|
sqlite3_str_appendf(pResult, ", err=%Q", zErr);
|
|
sqlite3_str_appendf(pResult, ", file=%Q", zFile);
|
|
if( zFile ){
|
|
const char *z = zFile;
|
|
z += sqlite3Strlen30(z)+1;
|
|
while( z[0] ){
|
|
sqlite3_str_appendf(pResult, ", %Q", z);
|
|
z += sqlite3Strlen30(z)+1;
|
|
}
|
|
for(i=2; i<argc; i++){
|
|
const char *zArg;
|
|
if( sqlite3_value_type(argv[i])==SQLITE_INTEGER ){
|
|
int k = sqlite3_value_int(argv[i]);
|
|
sqlite3_str_appendf(pResult, ", '%d:%q'",k,sqlite3_uri_key(zFile, k));
|
|
}else if( (zArg = (const char*)sqlite3_value_text(argv[i]))!=0 ){
|
|
sqlite3_str_appendf(pResult, ", '%q:%q'",
|
|
zArg, sqlite3_uri_parameter(zFile,zArg));
|
|
}else{
|
|
sqlite3_str_appendf(pResult, ", NULL");
|
|
}
|
|
}
|
|
}
|
|
sqlite3_result_text(ctx, sqlite3_str_finish(pResult), -1, sqlite3_free);
|
|
}
|
|
sqlite3_free_filename(zFile);
|
|
sqlite3_free(zErr);
|
|
}
|
|
#endif /* SQLITE_DEBUG */
|
|
|
|
/*
|
|
** All of the FuncDef structures in the aBuiltinFunc[] array above
|
|
** to the global function hash table. This occurs at start-time (as
|
|
** a consequence of calling sqlite3_initialize()).
|
|
**
|
|
** After this routine runs
|
|
*/
|
|
void sqlite3RegisterBuiltinFunctions(void){
|
|
/*
|
|
** The following array holds FuncDef structures for all of the functions
|
|
** defined in this file.
|
|
**
|
|
** The array cannot be constant since changes are made to the
|
|
** FuncDef.pHash elements at start-time. The elements of this array
|
|
** are read-only after initialization is complete.
|
|
**
|
|
** For peak efficiency, put the most frequently used function last.
|
|
*/
|
|
static FuncDef aBuiltinFunc[] = {
|
|
/***** Functions only available with SQLITE_TESTCTRL_INTERNAL_FUNCTIONS *****/
|
|
#if !defined(SQLITE_UNTESTABLE)
|
|
TEST_FUNC(implies_nonnull_row, 2, INLINEFUNC_implies_nonnull_row, 0),
|
|
TEST_FUNC(expr_compare, 2, INLINEFUNC_expr_compare, 0),
|
|
TEST_FUNC(expr_implies_expr, 2, INLINEFUNC_expr_implies_expr, 0),
|
|
TEST_FUNC(affinity, 1, INLINEFUNC_affinity, 0),
|
|
#endif /* !defined(SQLITE_UNTESTABLE) */
|
|
/***** Regular functions *****/
|
|
#ifdef SQLITE_SOUNDEX
|
|
FUNCTION(soundex, 1, 0, 0, soundexFunc ),
|
|
#endif
|
|
#ifndef SQLITE_OMIT_LOAD_EXTENSION
|
|
SFUNCTION(load_extension, 1, 0, 0, loadExt ),
|
|
SFUNCTION(load_extension, 2, 0, 0, loadExt ),
|
|
#endif
|
|
#ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
|
|
DFUNCTION(sqlite_compileoption_used,1, 0, 0, compileoptionusedFunc ),
|
|
DFUNCTION(sqlite_compileoption_get, 1, 0, 0, compileoptiongetFunc ),
|
|
#endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
|
|
INLINE_FUNC(unlikely, 1, INLINEFUNC_unlikely, SQLITE_FUNC_UNLIKELY),
|
|
INLINE_FUNC(likelihood, 2, INLINEFUNC_unlikely, SQLITE_FUNC_UNLIKELY),
|
|
INLINE_FUNC(likely, 1, INLINEFUNC_unlikely, SQLITE_FUNC_UNLIKELY),
|
|
#ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
|
|
INLINE_FUNC(sqlite_offset, 1, INLINEFUNC_sqlite_offset, 0 ),
|
|
#endif
|
|
FUNCTION(ltrim, 1, 1, 0, trimFunc ),
|
|
FUNCTION(ltrim, 2, 1, 0, trimFunc ),
|
|
FUNCTION(rtrim, 1, 2, 0, trimFunc ),
|
|
FUNCTION(rtrim, 2, 2, 0, trimFunc ),
|
|
FUNCTION(trim, 1, 3, 0, trimFunc ),
|
|
FUNCTION(trim, 2, 3, 0, trimFunc ),
|
|
FUNCTION(min, -3, 0, 1, minmaxFunc ),
|
|
WAGGREGATE(min, 1, 0, 1, minmaxStep, minMaxFinalize, minMaxValue, 0,
|
|
SQLITE_FUNC_MINMAX|SQLITE_FUNC_ANYORDER ),
|
|
FUNCTION(max, -3, 1, 1, minmaxFunc ),
|
|
WAGGREGATE(max, 1, 1, 1, minmaxStep, minMaxFinalize, minMaxValue, 0,
|
|
SQLITE_FUNC_MINMAX|SQLITE_FUNC_ANYORDER ),
|
|
FUNCTION2(typeof, 1, 0, 0, typeofFunc, SQLITE_FUNC_TYPEOF),
|
|
FUNCTION2(subtype, 1, 0, 0, subtypeFunc,
|
|
SQLITE_FUNC_TYPEOF|SQLITE_SUBTYPE),
|
|
FUNCTION2(length, 1, 0, 0, lengthFunc, SQLITE_FUNC_LENGTH),
|
|
FUNCTION2(octet_length, 1, 0, 0, bytelengthFunc,SQLITE_FUNC_BYTELEN),
|
|
FUNCTION(instr, 2, 0, 0, instrFunc ),
|
|
FUNCTION(printf, -1, 0, 0, printfFunc ),
|
|
FUNCTION(format, -1, 0, 0, printfFunc ),
|
|
FUNCTION(unicode, 1, 0, 0, unicodeFunc ),
|
|
FUNCTION(char, -1, 0, 0, charFunc ),
|
|
FUNCTION(abs, 1, 0, 0, absFunc ),
|
|
#ifdef SQLITE_DEBUG
|
|
FUNCTION(fpdecode, 3, 0, 0, fpdecodeFunc ),
|
|
FUNCTION(parseuri, -1, 0, 0, parseuriFunc ),
|
|
#endif
|
|
#ifndef SQLITE_OMIT_FLOATING_POINT
|
|
FUNCTION(round, 1, 0, 0, roundFunc ),
|
|
FUNCTION(round, 2, 0, 0, roundFunc ),
|
|
#endif
|
|
FUNCTION(upper, 1, 0, 0, upperFunc ),
|
|
FUNCTION(lower, 1, 0, 0, lowerFunc ),
|
|
FUNCTION(hex, 1, 0, 0, hexFunc ),
|
|
FUNCTION(unhex, 1, 0, 0, unhexFunc ),
|
|
FUNCTION(unhex, 2, 0, 0, unhexFunc ),
|
|
FUNCTION(concat, -3, 0, 0, concatFunc ),
|
|
FUNCTION(concat_ws, -4, 0, 0, concatwsFunc ),
|
|
INLINE_FUNC(ifnull, 2, INLINEFUNC_coalesce, 0 ),
|
|
VFUNCTION(random, 0, 0, 0, randomFunc ),
|
|
VFUNCTION(randomblob, 1, 0, 0, randomBlob ),
|
|
FUNCTION(nullif, 2, 0, 1, nullifFunc ),
|
|
DFUNCTION(sqlite_version, 0, 0, 0, versionFunc ),
|
|
DFUNCTION(sqlite_source_id, 0, 0, 0, sourceidFunc ),
|
|
FUNCTION(sqlite_log, 2, 0, 0, errlogFunc ),
|
|
FUNCTION(unistr, 1, 0, 0, unistrFunc ),
|
|
FUNCTION(quote, 1, 0, 0, quoteFunc ),
|
|
FUNCTION(unistr_quote, 1, 1, 0, quoteFunc ),
|
|
VFUNCTION(last_insert_rowid, 0, 0, 0, last_insert_rowid),
|
|
VFUNCTION(changes, 0, 0, 0, changes ),
|
|
VFUNCTION(total_changes, 0, 0, 0, total_changes ),
|
|
FUNCTION(replace, 3, 0, 0, replaceFunc ),
|
|
FUNCTION(zeroblob, 1, 0, 0, zeroblobFunc ),
|
|
FUNCTION(substr, 2, 0, 0, substrFunc ),
|
|
FUNCTION(substr, 3, 0, 0, substrFunc ),
|
|
FUNCTION(substring, 2, 0, 0, substrFunc ),
|
|
FUNCTION(substring, 3, 0, 0, substrFunc ),
|
|
WAGGREGATE(sum, 1,0,0, sumStep, sumFinalize, sumFinalize, sumInverse, 0),
|
|
WAGGREGATE(total, 1,0,0, sumStep,totalFinalize,totalFinalize,sumInverse, 0),
|
|
WAGGREGATE(avg, 1,0,0, sumStep, avgFinalize, avgFinalize, sumInverse, 0),
|
|
WAGGREGATE(count, 0,0,0, countStep,
|
|
countFinalize, countFinalize, countInverse,
|
|
SQLITE_FUNC_COUNT|SQLITE_FUNC_ANYORDER ),
|
|
WAGGREGATE(count, 1,0,0, countStep,
|
|
countFinalize, countFinalize, countInverse, SQLITE_FUNC_ANYORDER ),
|
|
WAGGREGATE(group_concat, 1, 0, 0, groupConcatStep,
|
|
groupConcatFinalize, groupConcatValue, groupConcatInverse, 0),
|
|
WAGGREGATE(group_concat, 2, 0, 0, groupConcatStep,
|
|
groupConcatFinalize, groupConcatValue, groupConcatInverse, 0),
|
|
WAGGREGATE(string_agg, 2, 0, 0, groupConcatStep,
|
|
groupConcatFinalize, groupConcatValue, groupConcatInverse, 0),
|
|
|
|
#ifdef SQLITE_ENABLE_PERCENTILE
|
|
WAGGREGATE(median, 1, 0,0, percentStep,
|
|
percentFinal, percentValue, percentInverse,
|
|
SQLITE_INNOCUOUS|SQLITE_SELFORDER1),
|
|
WAGGREGATE(percentile, 2, 0x2,0, percentStep,
|
|
percentFinal, percentValue, percentInverse,
|
|
SQLITE_INNOCUOUS|SQLITE_SELFORDER1),
|
|
WAGGREGATE(percentile_cont, 2, 0,0, percentStep,
|
|
percentFinal, percentValue, percentInverse,
|
|
SQLITE_INNOCUOUS|SQLITE_SELFORDER1),
|
|
WAGGREGATE(percentile_disc, 2, 0x1,0, percentStep,
|
|
percentFinal, percentValue, percentInverse,
|
|
SQLITE_INNOCUOUS|SQLITE_SELFORDER1),
|
|
#endif /* SQLITE_ENABLE_PERCENTILE */
|
|
|
|
LIKEFUNC(glob, 2, &globInfo, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE),
|
|
#ifdef SQLITE_CASE_SENSITIVE_LIKE
|
|
LIKEFUNC(like, 2, &likeInfoAlt, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE),
|
|
LIKEFUNC(like, 3, &likeInfoAlt, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE),
|
|
#else
|
|
LIKEFUNC(like, 2, &likeInfoNorm, SQLITE_FUNC_LIKE),
|
|
LIKEFUNC(like, 3, &likeInfoNorm, SQLITE_FUNC_LIKE),
|
|
#endif
|
|
#ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
|
|
FUNCTION(unknown, -1, 0, 0, unknownFunc ),
|
|
#endif
|
|
#ifdef SQLITE_ENABLE_MATH_FUNCTIONS
|
|
MFUNCTION(ceil, 1, xCeil, ceilingFunc ),
|
|
MFUNCTION(ceiling, 1, xCeil, ceilingFunc ),
|
|
MFUNCTION(floor, 1, xFloor, ceilingFunc ),
|
|
#if SQLITE_HAVE_C99_MATH_FUNCS
|
|
MFUNCTION(trunc, 1, trunc, ceilingFunc ),
|
|
#endif
|
|
FUNCTION(ln, 1, 0, 0, logFunc ),
|
|
FUNCTION(log, 1, 1, 0, logFunc ),
|
|
FUNCTION(log10, 1, 1, 0, logFunc ),
|
|
FUNCTION(log2, 1, 2, 0, logFunc ),
|
|
FUNCTION(log, 2, 0, 0, logFunc ),
|
|
MFUNCTION(exp, 1, exp, math1Func ),
|
|
MFUNCTION(pow, 2, pow, math2Func ),
|
|
MFUNCTION(power, 2, pow, math2Func ),
|
|
MFUNCTION(mod, 2, fmod, math2Func ),
|
|
MFUNCTION(acos, 1, acos, math1Func ),
|
|
MFUNCTION(asin, 1, asin, math1Func ),
|
|
MFUNCTION(atan, 1, atan, math1Func ),
|
|
MFUNCTION(atan2, 2, atan2, math2Func ),
|
|
MFUNCTION(cos, 1, cos, math1Func ),
|
|
MFUNCTION(sin, 1, sin, math1Func ),
|
|
MFUNCTION(tan, 1, tan, math1Func ),
|
|
MFUNCTION(cosh, 1, cosh, math1Func ),
|
|
MFUNCTION(sinh, 1, sinh, math1Func ),
|
|
MFUNCTION(tanh, 1, tanh, math1Func ),
|
|
#if SQLITE_HAVE_C99_MATH_FUNCS
|
|
MFUNCTION(acosh, 1, acosh, math1Func ),
|
|
MFUNCTION(asinh, 1, asinh, math1Func ),
|
|
MFUNCTION(atanh, 1, atanh, math1Func ),
|
|
#endif
|
|
MFUNCTION(sqrt, 1, sqrt, math1Func ),
|
|
MFUNCTION(radians, 1, degToRad, math1Func ),
|
|
MFUNCTION(degrees, 1, radToDeg, math1Func ),
|
|
MFUNCTION(pi, 0, 0, piFunc ),
|
|
#endif /* SQLITE_ENABLE_MATH_FUNCTIONS */
|
|
FUNCTION(sign, 1, 0, 0, signFunc ),
|
|
INLINE_FUNC(coalesce, -4, INLINEFUNC_coalesce, 0 ),
|
|
INLINE_FUNC(iif, -4, INLINEFUNC_iif, 0 ),
|
|
INLINE_FUNC(if, -4, INLINEFUNC_iif, 0 ),
|
|
};
|
|
#ifndef SQLITE_OMIT_ALTERTABLE
|
|
sqlite3AlterFunctions();
|
|
#endif
|
|
sqlite3WindowFunctions();
|
|
sqlite3RegisterDateTimeFunctions();
|
|
sqlite3RegisterJsonFunctions();
|
|
sqlite3InsertBuiltinFuncs(aBuiltinFunc, ArraySize(aBuiltinFunc));
|
|
|
|
#if 0 /* Enable to print out how the built-in functions are hashed */
|
|
{
|
|
int i;
|
|
FuncDef *p;
|
|
for(i=0; i<SQLITE_FUNC_HASH_SZ; i++){
|
|
printf("FUNC-HASH %02d:", i);
|
|
for(p=sqlite3BuiltinFunctions.a[i]; p; p=p->u.pHash){
|
|
int n = sqlite3Strlen30(p->zName);
|
|
int h = p->zName[0] + n;
|
|
assert( p->funcFlags & SQLITE_FUNC_BUILTIN );
|
|
printf(" %s(%d)", p->zName, h);
|
|
}
|
|
printf("\n");
|
|
}
|
|
}
|
|
#endif
|
|
}
|