mirror of
https://github.com/sqlite/sqlite.git
synced 2026-01-13 20:39:27 +03:00
647 lines
22 KiB
C
647 lines
22 KiB
C
/*
|
|
** 2005 July 8
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** This file contains code associated with the ANALYZE command.
|
|
*/
|
|
#ifndef SQLITE_OMIT_ANALYZE
|
|
#include "sqliteInt.h"
|
|
|
|
/*
|
|
** This routine generates code that opens the sqlite_stat1 table for
|
|
** writing with cursor iStatCur. If the library was built with the
|
|
** SQLITE_ENABLE_STAT2 macro defined, then the sqlite_stat2 table is
|
|
** opened for writing using cursor (iStatCur+1)
|
|
**
|
|
** If the sqlite_stat1 tables does not previously exist, it is created.
|
|
** Similarly, if the sqlite_stat2 table does not exist and the library
|
|
** is compiled with SQLITE_ENABLE_STAT2 defined, it is created.
|
|
**
|
|
** Argument zWhere may be a pointer to a buffer containing a table name,
|
|
** or it may be a NULL pointer. If it is not NULL, then all entries in
|
|
** the sqlite_stat1 and (if applicable) sqlite_stat2 tables associated
|
|
** with the named table are deleted. If zWhere==0, then code is generated
|
|
** to delete all stat table entries.
|
|
*/
|
|
static void openStatTable(
|
|
Parse *pParse, /* Parsing context */
|
|
int iDb, /* The database we are looking in */
|
|
int iStatCur, /* Open the sqlite_stat1 table on this cursor */
|
|
const char *zWhere /* Delete entries associated with this table */
|
|
){
|
|
static const struct {
|
|
const char *zName;
|
|
const char *zCols;
|
|
} aTable[] = {
|
|
{ "sqlite_stat1", "tbl,idx,stat" },
|
|
#ifdef SQLITE_ENABLE_STAT2
|
|
{ "sqlite_stat2", "tbl,idx,sampleno,sample" },
|
|
#endif
|
|
};
|
|
|
|
int aRoot[] = {0, 0};
|
|
u8 aCreateTbl[] = {0, 0};
|
|
|
|
int i;
|
|
sqlite3 *db = pParse->db;
|
|
Db *pDb;
|
|
Vdbe *v = sqlite3GetVdbe(pParse);
|
|
if( v==0 ) return;
|
|
assert( sqlite3BtreeHoldsAllMutexes(db) );
|
|
assert( sqlite3VdbeDb(v)==db );
|
|
pDb = &db->aDb[iDb];
|
|
|
|
for(i=0; i<ArraySize(aTable); i++){
|
|
const char *zTab = aTable[i].zName;
|
|
Table *pStat;
|
|
if( (pStat = sqlite3FindTable(db, zTab, pDb->zName))==0 ){
|
|
/* The sqlite_stat[12] table does not exist. Create it. Note that a
|
|
** side-effect of the CREATE TABLE statement is to leave the rootpage
|
|
** of the new table in register pParse->regRoot. This is important
|
|
** because the OpenWrite opcode below will be needing it. */
|
|
sqlite3NestedParse(pParse,
|
|
"CREATE TABLE %Q.%s(%s)", pDb->zName, zTab, aTable[i].zCols
|
|
);
|
|
aRoot[i] = pParse->regRoot;
|
|
aCreateTbl[i] = 1;
|
|
}else{
|
|
/* The table already exists. If zWhere is not NULL, delete all entries
|
|
** associated with the table zWhere. If zWhere is NULL, delete the
|
|
** entire contents of the table. */
|
|
aRoot[i] = pStat->tnum;
|
|
sqlite3TableLock(pParse, iDb, aRoot[i], 1, zTab);
|
|
if( zWhere ){
|
|
sqlite3NestedParse(pParse,
|
|
"DELETE FROM %Q.%s WHERE tbl=%Q", pDb->zName, zTab, zWhere
|
|
);
|
|
}else{
|
|
/* The sqlite_stat[12] table already exists. Delete all rows. */
|
|
sqlite3VdbeAddOp2(v, OP_Clear, aRoot[i], iDb);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Open the sqlite_stat[12] tables for writing. */
|
|
for(i=0; i<ArraySize(aTable); i++){
|
|
sqlite3VdbeAddOp3(v, OP_OpenWrite, iStatCur+i, aRoot[i], iDb);
|
|
sqlite3VdbeChangeP4(v, -1, (char *)3, P4_INT32);
|
|
sqlite3VdbeChangeP5(v, aCreateTbl[i]);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Generate code to do an analysis of all indices associated with
|
|
** a single table.
|
|
*/
|
|
static void analyzeOneTable(
|
|
Parse *pParse, /* Parser context */
|
|
Table *pTab, /* Table whose indices are to be analyzed */
|
|
int iStatCur, /* Index of VdbeCursor that writes the sqlite_stat1 table */
|
|
int iMem /* Available memory locations begin here */
|
|
){
|
|
sqlite3 *db = pParse->db; /* Database handle */
|
|
Index *pIdx; /* An index to being analyzed */
|
|
int iIdxCur; /* Cursor open on index being analyzed */
|
|
Vdbe *v; /* The virtual machine being built up */
|
|
int i; /* Loop counter */
|
|
int topOfLoop; /* The top of the loop */
|
|
int endOfLoop; /* The end of the loop */
|
|
int addr; /* The address of an instruction */
|
|
int iDb; /* Index of database containing pTab */
|
|
int regTabname = iMem++; /* Register containing table name */
|
|
int regIdxname = iMem++; /* Register containing index name */
|
|
int regSampleno = iMem++; /* Register containing next sample number */
|
|
int regCol = iMem++; /* Content of a column analyzed table */
|
|
int regRec = iMem++; /* Register holding completed record */
|
|
int regTemp = iMem++; /* Temporary use register */
|
|
int regRowid = iMem++; /* Rowid for the inserted record */
|
|
|
|
#ifdef SQLITE_ENABLE_STAT2
|
|
int regTemp2 = iMem++; /* Temporary use register */
|
|
int regSamplerecno = iMem++; /* Index of next sample to record */
|
|
int regRecno = iMem++; /* Current sample index */
|
|
int regLast = iMem++; /* Index of last sample to record */
|
|
int regFirst = iMem++; /* Index of first sample to record */
|
|
#endif
|
|
|
|
v = sqlite3GetVdbe(pParse);
|
|
if( v==0 || NEVER(pTab==0) || pTab->pIndex==0 ){
|
|
/* Do no analysis for tables that have no indices */
|
|
return;
|
|
}
|
|
assert( sqlite3BtreeHoldsAllMutexes(db) );
|
|
iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
|
|
assert( iDb>=0 );
|
|
#ifndef SQLITE_OMIT_AUTHORIZATION
|
|
if( sqlite3AuthCheck(pParse, SQLITE_ANALYZE, pTab->zName, 0,
|
|
db->aDb[iDb].zName ) ){
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
/* Establish a read-lock on the table at the shared-cache level. */
|
|
sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
|
|
|
|
iIdxCur = pParse->nTab++;
|
|
for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
|
|
int nCol = pIdx->nColumn;
|
|
KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
|
|
|
|
if( iMem+1+(nCol*2)>pParse->nMem ){
|
|
pParse->nMem = iMem+1+(nCol*2);
|
|
}
|
|
|
|
/* Open a cursor to the index to be analyzed. */
|
|
assert( iDb==sqlite3SchemaToIndex(db, pIdx->pSchema) );
|
|
sqlite3VdbeAddOp4(v, OP_OpenRead, iIdxCur, pIdx->tnum, iDb,
|
|
(char *)pKey, P4_KEYINFO_HANDOFF);
|
|
VdbeComment((v, "%s", pIdx->zName));
|
|
|
|
/* Populate the registers containing the table and index names. */
|
|
if( pTab->pIndex==pIdx ){
|
|
sqlite3VdbeAddOp4(v, OP_String8, 0, regTabname, 0, pTab->zName, 0);
|
|
}
|
|
sqlite3VdbeAddOp4(v, OP_String8, 0, regIdxname, 0, pIdx->zName, 0);
|
|
|
|
#ifdef SQLITE_ENABLE_STAT2
|
|
|
|
/* If this iteration of the loop is generating code to analyze the
|
|
** first index in the pTab->pIndex list, then register regLast has
|
|
** not been populated. In this case populate it now. */
|
|
if( pTab->pIndex==pIdx ){
|
|
sqlite3VdbeAddOp2(v, OP_Integer, SQLITE_INDEX_SAMPLES, regSamplerecno);
|
|
sqlite3VdbeAddOp2(v, OP_Integer, SQLITE_INDEX_SAMPLES*2-1, regTemp);
|
|
sqlite3VdbeAddOp2(v, OP_Integer, SQLITE_INDEX_SAMPLES*2, regTemp2);
|
|
|
|
sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regLast);
|
|
sqlite3VdbeAddOp2(v, OP_Null, 0, regFirst);
|
|
addr = sqlite3VdbeAddOp3(v, OP_Lt, regSamplerecno, 0, regLast);
|
|
sqlite3VdbeAddOp3(v, OP_Divide, regTemp2, regLast, regFirst);
|
|
sqlite3VdbeAddOp3(v, OP_Multiply, regLast, regTemp, regLast);
|
|
sqlite3VdbeAddOp2(v, OP_AddImm, regLast, SQLITE_INDEX_SAMPLES*2-2);
|
|
sqlite3VdbeAddOp3(v, OP_Divide, regTemp2, regLast, regLast);
|
|
sqlite3VdbeJumpHere(v, addr);
|
|
}
|
|
|
|
/* Zero the regSampleno and regRecno registers. */
|
|
sqlite3VdbeAddOp2(v, OP_Integer, 0, regSampleno);
|
|
sqlite3VdbeAddOp2(v, OP_Integer, 0, regRecno);
|
|
sqlite3VdbeAddOp2(v, OP_Copy, regFirst, regSamplerecno);
|
|
#endif
|
|
|
|
/* The block of memory cells initialized here is used as follows.
|
|
**
|
|
** iMem:
|
|
** The total number of rows in the table.
|
|
**
|
|
** iMem+1 .. iMem+nCol:
|
|
** Number of distinct entries in index considering the
|
|
** left-most N columns only, where N is between 1 and nCol,
|
|
** inclusive.
|
|
**
|
|
** iMem+nCol+1 .. Mem+2*nCol:
|
|
** Previous value of indexed columns, from left to right.
|
|
**
|
|
** Cells iMem through iMem+nCol are initialized to 0. The others are
|
|
** initialized to contain an SQL NULL.
|
|
*/
|
|
for(i=0; i<=nCol; i++){
|
|
sqlite3VdbeAddOp2(v, OP_Integer, 0, iMem+i);
|
|
}
|
|
for(i=0; i<nCol; i++){
|
|
sqlite3VdbeAddOp2(v, OP_Null, 0, iMem+nCol+i+1);
|
|
}
|
|
|
|
/* Start the analysis loop. This loop runs through all the entries in
|
|
** the index b-tree. */
|
|
endOfLoop = sqlite3VdbeMakeLabel(v);
|
|
sqlite3VdbeAddOp2(v, OP_Rewind, iIdxCur, endOfLoop);
|
|
topOfLoop = sqlite3VdbeCurrentAddr(v);
|
|
sqlite3VdbeAddOp2(v, OP_AddImm, iMem, 1);
|
|
|
|
for(i=0; i<nCol; i++){
|
|
sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regCol);
|
|
#ifdef SQLITE_ENABLE_STAT2
|
|
if( i==0 ){
|
|
/* Check if the record that cursor iIdxCur points to contains a
|
|
** value that should be stored in the sqlite_stat2 table. If so,
|
|
** store it. */
|
|
int ne = sqlite3VdbeAddOp3(v, OP_Ne, regRecno, 0, regSamplerecno);
|
|
assert( regTabname+1==regIdxname
|
|
&& regTabname+2==regSampleno
|
|
&& regTabname+3==regCol
|
|
);
|
|
sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL);
|
|
sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 4, regRec, "aaab", 0);
|
|
sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur+1, regRowid);
|
|
sqlite3VdbeAddOp3(v, OP_Insert, iStatCur+1, regRec, regRowid);
|
|
|
|
/* Calculate new values for regSamplerecno and regSampleno.
|
|
**
|
|
** sampleno = sampleno + 1
|
|
** samplerecno = samplerecno+(remaining records)/(remaining samples)
|
|
*/
|
|
sqlite3VdbeAddOp2(v, OP_AddImm, regSampleno, 1);
|
|
sqlite3VdbeAddOp3(v, OP_Subtract, regRecno, regLast, regTemp);
|
|
sqlite3VdbeAddOp2(v, OP_AddImm, regTemp, -1);
|
|
sqlite3VdbeAddOp2(v, OP_Integer, SQLITE_INDEX_SAMPLES, regTemp2);
|
|
sqlite3VdbeAddOp3(v, OP_Subtract, regSampleno, regTemp2, regTemp2);
|
|
sqlite3VdbeAddOp3(v, OP_Divide, regTemp2, regTemp, regTemp);
|
|
sqlite3VdbeAddOp3(v, OP_Add, regSamplerecno, regTemp, regSamplerecno);
|
|
|
|
sqlite3VdbeJumpHere(v, ne);
|
|
sqlite3VdbeAddOp2(v, OP_AddImm, regRecno, 1);
|
|
}
|
|
#endif
|
|
|
|
sqlite3VdbeAddOp3(v, OP_Ne, regCol, 0, iMem+nCol+i+1);
|
|
/**** TODO: add collating sequence *****/
|
|
sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL);
|
|
}
|
|
if( db->mallocFailed ){
|
|
/* If a malloc failure has occurred, then the result of the expression
|
|
** passed as the second argument to the call to sqlite3VdbeJumpHere()
|
|
** below may be negative. Which causes an assert() to fail (or an
|
|
** out-of-bounds write if SQLITE_DEBUG is not defined). */
|
|
return;
|
|
}
|
|
sqlite3VdbeAddOp2(v, OP_Goto, 0, endOfLoop);
|
|
for(i=0; i<nCol; i++){
|
|
sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-(nCol*2));
|
|
sqlite3VdbeAddOp2(v, OP_AddImm, iMem+i+1, 1);
|
|
sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, iMem+nCol+i+1);
|
|
}
|
|
|
|
/* End of the analysis loop. */
|
|
sqlite3VdbeResolveLabel(v, endOfLoop);
|
|
sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, topOfLoop);
|
|
sqlite3VdbeAddOp1(v, OP_Close, iIdxCur);
|
|
|
|
/* Store the results in sqlite_stat1.
|
|
**
|
|
** The result is a single row of the sqlite_stat1 table. The first
|
|
** two columns are the names of the table and index. The third column
|
|
** is a string composed of a list of integer statistics about the
|
|
** index. The first integer in the list is the total number of entries
|
|
** in the index. There is one additional integer in the list for each
|
|
** column of the table. This additional integer is a guess of how many
|
|
** rows of the table the index will select. If D is the count of distinct
|
|
** values and K is the total number of rows, then the integer is computed
|
|
** as:
|
|
**
|
|
** I = (K+D-1)/D
|
|
**
|
|
** If K==0 then no entry is made into the sqlite_stat1 table.
|
|
** If K>0 then it is always the case the D>0 so division by zero
|
|
** is never possible.
|
|
*/
|
|
addr = sqlite3VdbeAddOp1(v, OP_IfNot, iMem);
|
|
sqlite3VdbeAddOp2(v, OP_SCopy, iMem, regSampleno);
|
|
for(i=0; i<nCol; i++){
|
|
sqlite3VdbeAddOp4(v, OP_String8, 0, regTemp, 0, " ", 0);
|
|
sqlite3VdbeAddOp3(v, OP_Concat, regTemp, regSampleno, regSampleno);
|
|
sqlite3VdbeAddOp3(v, OP_Add, iMem, iMem+i+1, regTemp);
|
|
sqlite3VdbeAddOp2(v, OP_AddImm, regTemp, -1);
|
|
sqlite3VdbeAddOp3(v, OP_Divide, iMem+i+1, regTemp, regTemp);
|
|
sqlite3VdbeAddOp1(v, OP_ToInt, regTemp);
|
|
sqlite3VdbeAddOp3(v, OP_Concat, regTemp, regSampleno, regSampleno);
|
|
}
|
|
sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regRec, "aaa", 0);
|
|
sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regRowid);
|
|
sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regRec, regRowid);
|
|
sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
|
|
sqlite3VdbeJumpHere(v, addr);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Generate code that will cause the most recent index analysis to
|
|
** be laoded into internal hash tables where is can be used.
|
|
*/
|
|
static void loadAnalysis(Parse *pParse, int iDb){
|
|
Vdbe *v = sqlite3GetVdbe(pParse);
|
|
if( v ){
|
|
sqlite3VdbeAddOp1(v, OP_LoadAnalysis, iDb);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Generate code that will do an analysis of an entire database
|
|
*/
|
|
static void analyzeDatabase(Parse *pParse, int iDb){
|
|
sqlite3 *db = pParse->db;
|
|
Schema *pSchema = db->aDb[iDb].pSchema; /* Schema of database iDb */
|
|
HashElem *k;
|
|
int iStatCur;
|
|
int iMem;
|
|
|
|
sqlite3BeginWriteOperation(pParse, 0, iDb);
|
|
iStatCur = pParse->nTab;
|
|
pParse->nTab += 2;
|
|
openStatTable(pParse, iDb, iStatCur, 0);
|
|
iMem = pParse->nMem+1;
|
|
for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){
|
|
Table *pTab = (Table*)sqliteHashData(k);
|
|
analyzeOneTable(pParse, pTab, iStatCur, iMem);
|
|
}
|
|
loadAnalysis(pParse, iDb);
|
|
}
|
|
|
|
/*
|
|
** Generate code that will do an analysis of a single table in
|
|
** a database.
|
|
*/
|
|
static void analyzeTable(Parse *pParse, Table *pTab){
|
|
int iDb;
|
|
int iStatCur;
|
|
|
|
assert( pTab!=0 );
|
|
assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
|
|
iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
|
|
sqlite3BeginWriteOperation(pParse, 0, iDb);
|
|
iStatCur = pParse->nTab;
|
|
pParse->nTab += 2;
|
|
openStatTable(pParse, iDb, iStatCur, pTab->zName);
|
|
analyzeOneTable(pParse, pTab, iStatCur, pParse->nMem+1);
|
|
loadAnalysis(pParse, iDb);
|
|
}
|
|
|
|
/*
|
|
** Generate code for the ANALYZE command. The parser calls this routine
|
|
** when it recognizes an ANALYZE command.
|
|
**
|
|
** ANALYZE -- 1
|
|
** ANALYZE <database> -- 2
|
|
** ANALYZE ?<database>.?<tablename> -- 3
|
|
**
|
|
** Form 1 causes all indices in all attached databases to be analyzed.
|
|
** Form 2 analyzes all indices the single database named.
|
|
** Form 3 analyzes all indices associated with the named table.
|
|
*/
|
|
void sqlite3Analyze(Parse *pParse, Token *pName1, Token *pName2){
|
|
sqlite3 *db = pParse->db;
|
|
int iDb;
|
|
int i;
|
|
char *z, *zDb;
|
|
Table *pTab;
|
|
Token *pTableName;
|
|
|
|
/* Read the database schema. If an error occurs, leave an error message
|
|
** and code in pParse and return NULL. */
|
|
assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
|
|
if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
|
|
return;
|
|
}
|
|
|
|
assert( pName2!=0 || pName1==0 );
|
|
if( pName1==0 ){
|
|
/* Form 1: Analyze everything */
|
|
for(i=0; i<db->nDb; i++){
|
|
if( i==1 ) continue; /* Do not analyze the TEMP database */
|
|
analyzeDatabase(pParse, i);
|
|
}
|
|
}else if( pName2->n==0 ){
|
|
/* Form 2: Analyze the database or table named */
|
|
iDb = sqlite3FindDb(db, pName1);
|
|
if( iDb>=0 ){
|
|
analyzeDatabase(pParse, iDb);
|
|
}else{
|
|
z = sqlite3NameFromToken(db, pName1);
|
|
if( z ){
|
|
pTab = sqlite3LocateTable(pParse, 0, z, 0);
|
|
sqlite3DbFree(db, z);
|
|
if( pTab ){
|
|
analyzeTable(pParse, pTab);
|
|
}
|
|
}
|
|
}
|
|
}else{
|
|
/* Form 3: Analyze the fully qualified table name */
|
|
iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pTableName);
|
|
if( iDb>=0 ){
|
|
zDb = db->aDb[iDb].zName;
|
|
z = sqlite3NameFromToken(db, pTableName);
|
|
if( z ){
|
|
pTab = sqlite3LocateTable(pParse, 0, z, zDb);
|
|
sqlite3DbFree(db, z);
|
|
if( pTab ){
|
|
analyzeTable(pParse, pTab);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Used to pass information from the analyzer reader through to the
|
|
** callback routine.
|
|
*/
|
|
typedef struct analysisInfo analysisInfo;
|
|
struct analysisInfo {
|
|
sqlite3 *db;
|
|
const char *zDatabase;
|
|
};
|
|
|
|
/*
|
|
** This callback is invoked once for each index when reading the
|
|
** sqlite_stat1 table.
|
|
**
|
|
** argv[0] = name of the index
|
|
** argv[1] = results of analysis - on integer for each column
|
|
*/
|
|
static int analysisLoader(void *pData, int argc, char **argv, char **NotUsed){
|
|
analysisInfo *pInfo = (analysisInfo*)pData;
|
|
Index *pIndex;
|
|
int i, c;
|
|
unsigned int v;
|
|
const char *z;
|
|
|
|
assert( argc==2 );
|
|
UNUSED_PARAMETER2(NotUsed, argc);
|
|
|
|
if( argv==0 || argv[0]==0 || argv[1]==0 ){
|
|
return 0;
|
|
}
|
|
pIndex = sqlite3FindIndex(pInfo->db, argv[0], pInfo->zDatabase);
|
|
if( pIndex==0 ){
|
|
return 0;
|
|
}
|
|
z = argv[1];
|
|
for(i=0; *z && i<=pIndex->nColumn; i++){
|
|
v = 0;
|
|
while( (c=z[0])>='0' && c<='9' ){
|
|
v = v*10 + c - '0';
|
|
z++;
|
|
}
|
|
pIndex->aiRowEst[i] = v;
|
|
if( *z==' ' ) z++;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** If the Index.aSample variable is not NULL, delete the aSample[] array
|
|
** and its contents.
|
|
*/
|
|
void sqlite3DeleteIndexSamples(sqlite3 *db, Index *pIdx){
|
|
#ifdef SQLITE_ENABLE_STAT2
|
|
if( pIdx->aSample ){
|
|
int j;
|
|
for(j=0; j<SQLITE_INDEX_SAMPLES; j++){
|
|
IndexSample *p = &pIdx->aSample[j];
|
|
if( p->eType==SQLITE_TEXT || p->eType==SQLITE_BLOB ){
|
|
sqlite3DbFree(db, p->u.z);
|
|
}
|
|
}
|
|
sqlite3DbFree(db, pIdx->aSample);
|
|
}
|
|
#else
|
|
UNUSED_PARAMETER(db);
|
|
UNUSED_PARAMETER(pIdx);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
** Load the content of the sqlite_stat1 and sqlite_stat2 tables. The
|
|
** contents of sqlite_stat1 are used to populate the Index.aiRowEst[]
|
|
** arrays. The contents of sqlite_stat2 are used to populate the
|
|
** Index.aSample[] arrays.
|
|
**
|
|
** If the sqlite_stat1 table is not present in the database, SQLITE_ERROR
|
|
** is returned. In this case, even if SQLITE_ENABLE_STAT2 was defined
|
|
** during compilation and the sqlite_stat2 table is present, no data is
|
|
** read from it.
|
|
**
|
|
** If SQLITE_ENABLE_STAT2 was defined during compilation and the
|
|
** sqlite_stat2 table is not present in the database, SQLITE_ERROR is
|
|
** returned. However, in this case, data is read from the sqlite_stat1
|
|
** table (if it is present) before returning.
|
|
**
|
|
** If an OOM error occurs, this function always sets db->mallocFailed.
|
|
** This means if the caller does not care about other errors, the return
|
|
** code may be ignored.
|
|
*/
|
|
int sqlite3AnalysisLoad(sqlite3 *db, int iDb){
|
|
analysisInfo sInfo;
|
|
HashElem *i;
|
|
char *zSql;
|
|
int rc;
|
|
|
|
assert( iDb>=0 && iDb<db->nDb );
|
|
assert( db->aDb[iDb].pBt!=0 );
|
|
assert( sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
|
|
|
|
/* Clear any prior statistics */
|
|
for(i=sqliteHashFirst(&db->aDb[iDb].pSchema->idxHash);i;i=sqliteHashNext(i)){
|
|
Index *pIdx = sqliteHashData(i);
|
|
sqlite3DefaultRowEst(pIdx);
|
|
sqlite3DeleteIndexSamples(db, pIdx);
|
|
pIdx->aSample = 0;
|
|
}
|
|
|
|
/* Check to make sure the sqlite_stat1 table exists */
|
|
sInfo.db = db;
|
|
sInfo.zDatabase = db->aDb[iDb].zName;
|
|
if( sqlite3FindTable(db, "sqlite_stat1", sInfo.zDatabase)==0 ){
|
|
return SQLITE_ERROR;
|
|
}
|
|
|
|
/* Load new statistics out of the sqlite_stat1 table */
|
|
zSql = sqlite3MPrintf(db,
|
|
"SELECT idx, stat FROM %Q.sqlite_stat1", sInfo.zDatabase);
|
|
if( zSql==0 ){
|
|
rc = SQLITE_NOMEM;
|
|
}else{
|
|
rc = sqlite3_exec(db, zSql, analysisLoader, &sInfo, 0);
|
|
sqlite3DbFree(db, zSql);
|
|
}
|
|
|
|
|
|
/* Load the statistics from the sqlite_stat2 table. */
|
|
#ifdef SQLITE_ENABLE_STAT2
|
|
if( rc==SQLITE_OK && !sqlite3FindTable(db, "sqlite_stat2", sInfo.zDatabase) ){
|
|
rc = SQLITE_ERROR;
|
|
}
|
|
if( rc==SQLITE_OK ){
|
|
sqlite3_stmt *pStmt = 0;
|
|
|
|
zSql = sqlite3MPrintf(db,
|
|
"SELECT idx,sampleno,sample FROM %Q.sqlite_stat2", sInfo.zDatabase);
|
|
if( !zSql ){
|
|
rc = SQLITE_NOMEM;
|
|
}else{
|
|
rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
|
|
sqlite3DbFree(db, zSql);
|
|
}
|
|
|
|
if( rc==SQLITE_OK ){
|
|
while( sqlite3_step(pStmt)==SQLITE_ROW ){
|
|
char *zIndex = (char *)sqlite3_column_text(pStmt, 0);
|
|
Index *pIdx = sqlite3FindIndex(db, zIndex, sInfo.zDatabase);
|
|
if( pIdx ){
|
|
int iSample = sqlite3_column_int(pStmt, 1);
|
|
if( iSample<SQLITE_INDEX_SAMPLES && iSample>=0 ){
|
|
int eType = sqlite3_column_type(pStmt, 2);
|
|
|
|
if( pIdx->aSample==0 ){
|
|
static const int sz = sizeof(IndexSample)*SQLITE_INDEX_SAMPLES;
|
|
pIdx->aSample = (IndexSample *)sqlite3DbMallocRaw(0, sz);
|
|
if( pIdx->aSample==0 ){
|
|
db->mallocFailed = 1;
|
|
break;
|
|
}
|
|
memset(pIdx->aSample, 0, sz);
|
|
}
|
|
|
|
assert( pIdx->aSample );
|
|
{
|
|
IndexSample *pSample = &pIdx->aSample[iSample];
|
|
pSample->eType = (u8)eType;
|
|
if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){
|
|
pSample->u.r = sqlite3_column_double(pStmt, 2);
|
|
}else if( eType==SQLITE_TEXT || eType==SQLITE_BLOB ){
|
|
const char *z = (const char *)(
|
|
(eType==SQLITE_BLOB) ?
|
|
sqlite3_column_blob(pStmt, 2):
|
|
sqlite3_column_text(pStmt, 2)
|
|
);
|
|
int n = sqlite3_column_bytes(pStmt, 2);
|
|
if( n>24 ){
|
|
n = 24;
|
|
}
|
|
pSample->nByte = (u8)n;
|
|
if( n < 1){
|
|
pSample->u.z = 0;
|
|
}else{
|
|
pSample->u.z = sqlite3DbStrNDup(0, z, n);
|
|
if( pSample->u.z==0 ){
|
|
db->mallocFailed = 1;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
rc = sqlite3_finalize(pStmt);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if( rc==SQLITE_NOMEM ){
|
|
db->mallocFailed = 1;
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
|
|
#endif /* SQLITE_OMIT_ANALYZE */
|