1
0
mirror of https://github.com/sqlite/sqlite.git synced 2025-08-07 02:42:48 +03:00

Multiple overflow cells are always adjacent and sequential. Exploit this

invariant for a small size reduction and performance increase and add
assert()s to prove the invariant.

FossilOrigin-Name: f77f2f48f48e374a72b6c054142f7a3ec0b1483c
This commit is contained in:
drh
2015-06-23 18:24:25 +00:00
parent 4f4bf7747a
commit fe647dc9ee
3 changed files with 38 additions and 40 deletions

View File

@@ -957,25 +957,6 @@ static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
#define findCell(P,I) \
((P)->aData + ((P)->maskPage & get2byte(&(P)->aCellIdx[2*(I)])))
/*
** Sort the overflow cells of a page into index order.
**
** An O(N*N) algorithm is used. But that should not be a problem
** since N is only very rarely more than 1.
*/
static void btreeSortOverflow(MemPage *p){
int j, k;
for(j=0; j<p->nOverflow-1; j++){
for(k=j+1; k<p->nOverflow; k++){
if( p->aiOvfl[j]>p->aiOvfl[k] ){
SWAP(u16, p->aiOvfl[j], p->aiOvfl[k]);
SWAP(u8*, p->apOvfl[j], p->apOvfl[k]);
}
}
}
}
/*
** This is common tail processing for btreeParseCellPtr() and
** btreeParseCellPtrIndex() for the case when the cell does not fit entirely
@@ -6243,6 +6224,14 @@ static void insertCell(
assert( j<(int)(sizeof(pPage->apOvfl)/sizeof(pPage->apOvfl[0])) );
pPage->apOvfl[j] = pCell;
pPage->aiOvfl[j] = (u16)i;
/* When multiple overflows occur, they are always sequential and in
** sorted order. This invariants arise because multiple overflows can
** only occur when inserting divider cells into the parent page during
** balancing, and the dividers are adjacent and sorted.
*/
assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */
assert( j==0 || i==pPage->aiOvfl[j-1]+1 ); /* Overflows are sequential */
}else{
int rc = sqlite3PagerWrite(pPage->pDbPage);
if( rc!=SQLITE_OK ){
@@ -7054,6 +7043,7 @@ static int balance_nonroot(
u8 *aData = pOld->aData;
u16 maskPage = pOld->maskPage;
u8 *piCell = aData + pOld->cellOffset;
u8 *piEnd;
/* Verify that all sibling pages are of the same "type" (table-leaf,
** table-interior, index-leaf, or index-interior).
@@ -7063,8 +7053,17 @@ static int balance_nonroot(
goto balance_cleanup;
}
/* Load b.apCell[] with pointers to all cells in pOld. Intersperse
** overflow cells in the correct sequence.
/* Load b.apCell[] with pointers to all cells in pOld. If pOld
** constains overflow cells, include them in the b.apCell[] array
** in the correct spot.
**
** Note that when there are multiple overflow cells, it is always the
** case that they are sequential and adjacent. This invariant arises
** because multiple overflows can only occurs when inserting divider
** cells into a parent on a prior balance, and divider cells are always
** adjacent and are inserted in order. There is an assert() tagged
** with "NOTE 1" in the overflow cell insertion loop to prove this
** invariant.
**
** This must be done in advance. Once the balance starts, the cell
** offset section of the btree page will be overwritten and we will no
@@ -7074,22 +7073,21 @@ static int balance_nonroot(
memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*limit);
if( pOld->nOverflow>0 ){
memset(&b.szCell[b.nCell+limit], 0, sizeof(b.szCell[0])*pOld->nOverflow);
btreeSortOverflow(pOld);
for(j=k=0; k<pOld->nOverflow; k++){
limit = pOld->aiOvfl[k] - k;
while( j<limit ){
b.apCell[b.nCell] = aData + (maskPage & get2byte(piCell));
piCell += 2;
b.nCell++;
j++;
}
limit = pOld->aiOvfl[0];
for(j=0; j<limit; j++){
b.apCell[b.nCell] = aData + (maskPage & get2byte(piCell));
piCell += 2;
b.nCell++;
}
for(k=0; k<pOld->nOverflow; k++){
assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */
b.apCell[b.nCell] = pOld->apOvfl[k];
b.nCell++;
}
limit = pOld->nCell - j;
limit = pOld->nCell - pOld->aiOvfl[0];
}
limit += b.nCell;
while( b.nCell<limit ){
piEnd = aData + pOld->cellOffset + 2*pOld->nCell;
while( piCell<piEnd ){
assert( b.nCell<nMaxCells );
b.apCell[b.nCell] = aData + (maskPage & get2byte(piCell));
piCell += 2;