1
0
mirror of https://github.com/sqlite/sqlite.git synced 2025-10-31 18:11:01 +03:00

Fix the allocator in mem5.c so that it can be enabled at run time using the sqlite3_config() function. (CVS 5304)

FossilOrigin-Name: 30ff6bb0b2d1068d28e86ac90bb9f454e4537a2d
This commit is contained in:
danielk1977
2008-06-25 14:26:07 +00:00
parent 32155ef0ff
commit c66c0e14a6
8 changed files with 286 additions and 258 deletions

View File

@@ -13,14 +13,17 @@
** allocation subsystem for use by SQLite.
**
** This version of the memory allocation subsystem omits all
** use of malloc(). All dynamically allocatable memory is
** contained in a static array, mem.aPool[]. The size of this
** fixed memory pool is SQLITE_POW2_MEMORY_SIZE bytes.
** use of malloc(). The SQLite user supplies a block of memory
** before calling sqlite3_initialize() from which allocations
** are made and returned by the xMalloc() and xRealloc()
** implementations. Once sqlite3_initialize() has been called,
** the amount of memory available to SQLite is fixed and cannot
** be changed.
**
** This version of the memory allocation subsystem is used if
** and only if SQLITE_POW2_MEMORY_SIZE is defined.
** This version of the memory allocation subsystem is included
** in the build only if SQLITE_ENABLE_MEMSYS5 is defined.
**
** $Id: mem5.c,v 1.6 2008/06/18 17:09:10 danielk1977 Exp $
** $Id: mem5.c,v 1.7 2008/06/25 14:26:08 danielk1977 Exp $
*/
#include "sqliteInt.h"
@@ -28,7 +31,7 @@
** This version of the memory allocator is used only when
** SQLITE_POW2_MEMORY_SIZE is defined.
*/
#ifdef SQLITE_POW2_MEMORY_SIZE
#ifdef SQLITE_ENABLE_MEMSYS5
/*
** Log2 of the minimum size of an allocation. For example, if
@@ -63,37 +66,32 @@ struct Mem5Block {
union {
char aData[POW2_MIN];
struct {
int next; /* Index in mem.aPool[] of next free chunk */
int prev; /* Index in mem.aPool[] of previous free chunk */
int next; /* Index in mem5.aPool[] of next free chunk */
int prev; /* Index in mem5.aPool[] of previous free chunk */
} list;
} u;
};
/*
** Number of blocks of memory available for allocation.
*/
#define NBLOCK (SQLITE_POW2_MEMORY_SIZE/POW2_MIN)
/*
** The size in blocks of an POW2_MAX allocation
*/
#define SZ_MAX (1<<(NSIZE-1))
/*
** Masks used for mem.aCtrl[] elements.
** Masks used for mem5.aCtrl[] elements.
*/
#define CTRL_LOGSIZE 0x1f /* Log2 Size of this block relative to POW2_MIN */
#define CTRL_FREE 0x20 /* True if not checked out */
/*
** All of the static variables used by this module are collected
** into a single structure named "mem". This is to keep the
** into a single structure named "mem5". This is to keep the
** static variables organized and to reduce namespace pollution
** when this module is combined with other in the amalgamation.
*/
static struct {
/*
** The alarm callback and its arguments. The mem.mutex lock will
** The alarm callback and its arguments. The mem5.mutex lock will
** be held while the callback is running. Recursive calls into
** the memory subsystem are allowed, but no new callbacks will be
** issued. The alarmBusy variable is set to prevent recursive
@@ -130,142 +128,67 @@ static struct {
** Space for tracking which blocks are checked out and the size
** of each block. One byte per block.
*/
u8 aCtrl[NBLOCK];
u8 *aCtrl;
/*
** Memory available for allocation
*/
Mem5Block aPool[NBLOCK];
} mem;
int nBlock;
Mem5Block *aPool;
} mem5;
/*
** Unlink the chunk at mem.aPool[i] from list it is currently
** on. It should be found on mem.aiFreelist[iLogsize].
** Unlink the chunk at mem5.aPool[i] from list it is currently
** on. It should be found on mem5.aiFreelist[iLogsize].
*/
static void memsys5Unlink(int i, int iLogsize){
int next, prev;
assert( i>=0 && i<NBLOCK );
assert( i>=0 && i<mem5.nBlock );
assert( iLogsize>=0 && iLogsize<NSIZE );
assert( (mem.aCtrl[i] & CTRL_LOGSIZE)==iLogsize );
assert( sqlite3_mutex_held(mem.mutex) );
assert( (mem5.aCtrl[i] & CTRL_LOGSIZE)==iLogsize );
next = mem.aPool[i].u.list.next;
prev = mem.aPool[i].u.list.prev;
next = mem5.aPool[i].u.list.next;
prev = mem5.aPool[i].u.list.prev;
if( prev<0 ){
mem.aiFreelist[iLogsize] = next;
mem5.aiFreelist[iLogsize] = next;
}else{
mem.aPool[prev].u.list.next = next;
mem5.aPool[prev].u.list.next = next;
}
if( next>=0 ){
mem.aPool[next].u.list.prev = prev;
mem5.aPool[next].u.list.prev = prev;
}
}
/*
** Link the chunk at mem.aPool[i] so that is on the iLogsize
** Link the chunk at mem5.aPool[i] so that is on the iLogsize
** free list.
*/
static void memsys5Link(int i, int iLogsize){
int x;
assert( sqlite3_mutex_held(mem.mutex) );
assert( i>=0 && i<NBLOCK );
assert( sqlite3_mutex_held(mem5.mutex) );
assert( i>=0 && i<mem5.nBlock );
assert( iLogsize>=0 && iLogsize<NSIZE );
assert( (mem.aCtrl[i] & CTRL_LOGSIZE)==iLogsize );
assert( (mem5.aCtrl[i] & CTRL_LOGSIZE)==iLogsize );
mem.aPool[i].u.list.next = x = mem.aiFreelist[iLogsize];
mem.aPool[i].u.list.prev = -1;
mem5.aPool[i].u.list.next = x = mem5.aiFreelist[iLogsize];
mem5.aPool[i].u.list.prev = -1;
if( x>=0 ){
assert( x<NBLOCK );
mem.aPool[x].u.list.prev = i;
assert( x<mem5.nBlock );
mem5.aPool[x].u.list.prev = i;
}
mem.aiFreelist[iLogsize] = i;
mem5.aiFreelist[iLogsize] = i;
}
/*
** Enter the mutex mem.mutex. Allocate it if it is not already allocated.
** Enter the mutex mem5.mutex. Allocate it if it is not already allocated.
**
** Also: Initialize the memory allocation subsystem the first time
** this routine is called.
*/
static void memsys5Enter(void){
if( mem.mutex==0 ){
int i;
assert( sizeof(Mem5Block)==POW2_MIN );
assert( (SQLITE_POW2_MEMORY_SIZE % POW2_MAX)==0 );
assert( SQLITE_POW2_MEMORY_SIZE>=POW2_MAX );
mem.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
sqlite3_mutex_enter(mem.mutex);
for(i=0; i<NSIZE; i++) mem.aiFreelist[i] = -1;
for(i=0; i<=NBLOCK-SZ_MAX; i += SZ_MAX){
mem.aCtrl[i] = (NSIZE-1) | CTRL_FREE;
memsys5Link(i, NSIZE-1);
}
}else{
sqlite3_mutex_enter(mem.mutex);
}
}
/*
** Return the amount of memory currently checked out.
*/
sqlite3_int64 sqlite3_memory_used(void){
return mem.currentOut;
}
/*
** Return the maximum amount of memory that has ever been
** checked out since either the beginning of this process
** or since the most recent reset.
*/
sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
sqlite3_int64 n;
memsys5Enter();
n = mem.maxOut;
if( resetFlag ){
mem.maxOut = mem.currentOut;
}
sqlite3_mutex_leave(mem.mutex);
return n;
}
/*
** Trigger the alarm
*/
static void memsys5Alarm(int nByte){
void (*xCallback)(void*,sqlite3_int64,int);
sqlite3_int64 nowUsed;
void *pArg;
if( mem.alarmCallback==0 || mem.alarmBusy ) return;
mem.alarmBusy = 1;
xCallback = mem.alarmCallback;
nowUsed = mem.currentOut;
pArg = mem.alarmArg;
sqlite3_mutex_leave(mem.mutex);
xCallback(pArg, nowUsed, nByte);
sqlite3_mutex_enter(mem.mutex);
mem.alarmBusy = 0;
}
/*
** Change the alarm callback.
**
** This is a no-op for the static memory allocator. The purpose
** of the memory alarm is to support sqlite3_soft_heap_limit().
** But with this memory allocator, the soft_heap_limit is really
** a hard limit that is fixed at SQLITE_POW2_MEMORY_SIZE.
*/
int sqlite3_memory_alarm(
void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
void *pArg,
sqlite3_int64 iThreshold
){
memsys5Enter();
mem.alarmCallback = xCallback;
mem.alarmArg = pArg;
mem.alarmThreshold = iThreshold;
sqlite3_mutex_leave(mem.mutex);
return SQLITE_OK;
static void memsys5Leave(void){
}
/*
@@ -273,23 +196,16 @@ int sqlite3_memory_alarm(
** size returned omits the 8-byte header overhead. This only
** works for chunks that are currently checked out.
*/
int sqlite3MallocSize(void *p){
static int memsys5Size(void *p){
int iSize = 0;
if( p ){
int i = ((Mem5Block*)p) - mem.aPool;
assert( i>=0 && i<NBLOCK );
iSize = 1 << ((mem.aCtrl[i]&CTRL_LOGSIZE) + SQLITE_POW2_LOGMIN);
int i = ((Mem5Block*)p) - mem5.aPool;
assert( i>=0 && i<mem5.nBlock );
iSize = 1 << ((mem5.aCtrl[i]&CTRL_LOGSIZE) + SQLITE_POW2_LOGMIN);
}
return iSize;
}
/*
** Initialize the memmory allocation subsystem.
*/
int sqlite3MallocInit(void){
return SQLITE_OK;
}
/*
** Find the first entry on the freelist iLogsize. Unlink that
** entry and return its index.
@@ -299,11 +215,11 @@ static int memsys5UnlinkFirst(int iLogsize){
int iFirst;
assert( iLogsize>=0 && iLogsize<NSIZE );
i = iFirst = mem.aiFreelist[iLogsize];
i = iFirst = mem5.aiFreelist[iLogsize];
assert( iFirst>=0 );
while( i>0 ){
if( i<iFirst ) iFirst = i;
i = mem.aPool[i].u.list.next;
i = mem5.aPool[i].u.list.next;
}
memsys5Unlink(iFirst, iLogsize);
return iFirst;
@@ -313,38 +229,27 @@ static int memsys5UnlinkFirst(int iLogsize){
** Return a block of memory of at least nBytes in size.
** Return NULL if unable.
*/
static void *memsys5Malloc(int nByte){
int i; /* Index of a mem.aPool[] slot */
int iBin; /* Index into mem.aiFreelist[] */
static void *memsys5MallocUnsafe(int nByte){
int i; /* Index of a mem5.aPool[] slot */
int iBin; /* Index into mem5.aiFreelist[] */
int iFullSz; /* Size of allocation rounded up to power of 2 */
int iLogsize; /* Log2 of iFullSz/POW2_MIN */
assert( sqlite3_mutex_held(mem.mutex) );
/* Keep track of the maximum allocation request. Even unfulfilled
** requests are counted */
if( nByte>mem.maxRequest ){
mem.maxRequest = nByte;
if( nByte>mem5.maxRequest ){
mem5.maxRequest = nByte;
}
/* Simulate a memory allocation fault */
if( sqlite3FaultStep(SQLITE_FAULTINJECTOR_MALLOC) ) return 0;
/* Round nByte up to the next valid power of two */
if( nByte>POW2_MAX ) return 0;
for(iFullSz=POW2_MIN, iLogsize=0; iFullSz<nByte; iFullSz *= 2, iLogsize++){}
/* If we will be over the memory alarm threshold after this allocation,
** then trigger the memory overflow alarm */
if( mem.alarmCallback!=0 && mem.currentOut+iFullSz>=mem.alarmThreshold ){
memsys5Alarm(iFullSz);
}
/* Make sure mem.aiFreelist[iLogsize] contains at least one free
/* Make sure mem5.aiFreelist[iLogsize] contains at least one free
** block. If not, then split a block of the next larger power of
** two in order to create a new free block of size iLogsize.
*/
for(iBin=iLogsize; mem.aiFreelist[iBin]<0 && iBin<NSIZE; iBin++){}
for(iBin=iLogsize; mem5.aiFreelist[iBin]<0 && iBin<NSIZE; iBin++){}
if( iBin>=NSIZE ) return 0;
i = memsys5UnlinkFirst(iBin);
while( iBin>iLogsize ){
@@ -352,48 +257,47 @@ static void *memsys5Malloc(int nByte){
iBin--;
newSize = 1 << iBin;
mem.aCtrl[i+newSize] = CTRL_FREE | iBin;
mem5.aCtrl[i+newSize] = CTRL_FREE | iBin;
memsys5Link(i+newSize, iBin);
}
mem.aCtrl[i] = iLogsize;
mem5.aCtrl[i] = iLogsize;
/* Update allocator performance statistics. */
mem.nAlloc++;
mem.totalAlloc += iFullSz;
mem.totalExcess += iFullSz - nByte;
mem.currentCount++;
mem.currentOut += iFullSz;
if( mem.maxCount<mem.currentCount ) mem.maxCount = mem.currentCount;
if( mem.maxOut<mem.currentOut ) mem.maxOut = mem.currentOut;
mem5.nAlloc++;
mem5.totalAlloc += iFullSz;
mem5.totalExcess += iFullSz - nByte;
mem5.currentCount++;
mem5.currentOut += iFullSz;
if( mem5.maxCount<mem5.currentCount ) mem5.maxCount = mem5.currentCount;
if( mem5.maxOut<mem5.currentOut ) mem5.maxOut = mem5.currentOut;
/* Return a pointer to the allocated memory. */
return (void*)&mem.aPool[i];
return (void*)&mem5.aPool[i];
}
/*
** Free an outstanding memory allocation.
*/
void memsys5Free(void *pOld){
static void memsys5FreeUnsafe(void *pOld){
u32 size, iLogsize;
int i;
i = ((Mem5Block*)pOld) - mem.aPool;
assert( sqlite3_mutex_held(mem.mutex) );
assert( i>=0 && i<NBLOCK );
assert( (mem.aCtrl[i] & CTRL_FREE)==0 );
iLogsize = mem.aCtrl[i] & CTRL_LOGSIZE;
i = ((Mem5Block*)pOld) - mem5.aPool;
assert( i>=0 && i<mem5.nBlock );
assert( (mem5.aCtrl[i] & CTRL_FREE)==0 );
iLogsize = mem5.aCtrl[i] & CTRL_LOGSIZE;
size = 1<<iLogsize;
assert( i+size-1<NBLOCK );
mem.aCtrl[i] |= CTRL_FREE;
mem.aCtrl[i+size-1] |= CTRL_FREE;
assert( mem.currentCount>0 );
assert( mem.currentOut>=0 );
mem.currentCount--;
mem.currentOut -= size*POW2_MIN;
assert( mem.currentOut>0 || mem.currentCount==0 );
assert( mem.currentCount>0 || mem.currentOut==0 );
assert( i+size-1<mem5.nBlock );
mem5.aCtrl[i] |= CTRL_FREE;
mem5.aCtrl[i+size-1] |= CTRL_FREE;
assert( mem5.currentCount>0 );
assert( mem5.currentOut>=0 );
mem5.currentCount--;
mem5.currentOut -= size*POW2_MIN;
assert( mem5.currentOut>0 || mem5.currentCount==0 );
assert( mem5.currentCount>0 || mem5.currentOut==0 );
mem.aCtrl[i] = CTRL_FREE | iLogsize;
mem5.aCtrl[i] = CTRL_FREE | iLogsize;
while( iLogsize<NSIZE-1 ){
int iBuddy;
@@ -402,17 +306,17 @@ void memsys5Free(void *pOld){
}else{
iBuddy = i + size;
}
assert( iBuddy>=0 && iBuddy<NBLOCK );
if( mem.aCtrl[iBuddy]!=(CTRL_FREE | iLogsize) ) break;
assert( iBuddy>=0 && iBuddy<mem5.nBlock );
if( mem5.aCtrl[iBuddy]!=(CTRL_FREE | iLogsize) ) break;
memsys5Unlink(iBuddy, iLogsize);
iLogsize++;
if( iBuddy<i ){
mem.aCtrl[iBuddy] = CTRL_FREE | iLogsize;
mem.aCtrl[i] = 0;
mem5.aCtrl[iBuddy] = CTRL_FREE | iLogsize;
mem5.aCtrl[i] = 0;
i = iBuddy;
}else{
mem.aCtrl[i] = CTRL_FREE | iLogsize;
mem.aCtrl[iBuddy] = 0;
mem5.aCtrl[i] = CTRL_FREE | iLogsize;
mem5.aCtrl[iBuddy] = 0;
}
size *= 2;
}
@@ -422,12 +326,12 @@ void memsys5Free(void *pOld){
/*
** Allocate nBytes of memory
*/
void *sqlite3_malloc(int nBytes){
static void *memsys5Malloc(int nBytes){
sqlite3_int64 *p = 0;
if( nBytes>0 ){
memsys5Enter();
p = memsys5Malloc(nBytes);
sqlite3_mutex_leave(mem.mutex);
p = memsys5MallocUnsafe(nBytes);
memsys5Leave();
}
return (void*)p;
}
@@ -435,49 +339,70 @@ void *sqlite3_malloc(int nBytes){
/*
** Free memory.
*/
void sqlite3_free(void *pPrior){
static void memsys5Free(void *pPrior){
if( pPrior==0 ){
return;
}
assert( mem.mutex!=0 );
sqlite3_mutex_enter(mem.mutex);
memsys5Free(pPrior);
sqlite3_mutex_leave(mem.mutex);
memsys5Enter();
memsys5FreeUnsafe(pPrior);
memsys5Leave();
}
/*
** Change the size of an existing memory allocation
*/
void *sqlite3_realloc(void *pPrior, int nBytes){
static void *memsys5Realloc(void *pPrior, int nBytes){
int nOld;
void *p;
if( pPrior==0 ){
return sqlite3_malloc(nBytes);
return memsys5Malloc(nBytes);
}
if( nBytes<=0 ){
sqlite3_free(pPrior);
memsys5Free(pPrior);
return 0;
}
assert( mem.mutex!=0 );
nOld = sqlite3MallocSize(pPrior);
nOld = memsys5Size(pPrior);
if( nBytes<=nOld ){
return pPrior;
}
sqlite3_mutex_enter(mem.mutex);
p = memsys5Malloc(nBytes);
memsys5Enter();
p = memsys5MallocUnsafe(nBytes);
if( p ){
memcpy(p, pPrior, nOld);
memsys5Free(pPrior);
memsys5FreeUnsafe(pPrior);
}
sqlite3_mutex_leave(mem.mutex);
memsys5Leave();
return p;
}
/*
** Round up a request size to the next valid allocation size.
*/
static int memsys5Roundup(int n){
int iFullSz;
for(iFullSz=POW2_MIN; iFullSz<n; iFullSz *= 2);
return iFullSz;
}
/*
** Initialize this module.
*/
static int memsys5Init(void *NotUsed){
return SQLITE_OK;
}
/*
** Deinitialize this module.
*/
static void memsys5Shutdown(void *NotUsed){
return;
}
/*
** Open the file indicated and write a log of all unfreed memory
** allocations into that log.
*/
void sqlite3MemdebugDump(const char *zFilename){
void sqlite3Memsys5Dump(const char *zFilename){
#ifdef SQLITE_DEBUG
FILE *out;
int i, j, n;
@@ -494,18 +419,18 @@ void sqlite3MemdebugDump(const char *zFilename){
}
memsys5Enter();
for(i=0; i<NSIZE; i++){
for(n=0, j=mem.aiFreelist[i]; j>=0; j = mem.aPool[j].u.list.next, n++){}
for(n=0, j=mem5.aiFreelist[i]; j>=0; j = mem5.aPool[j].u.list.next, n++){}
fprintf(out, "freelist items of size %d: %d\n", POW2_MIN << i, n);
}
fprintf(out, "mem.nAlloc = %llu\n", mem.nAlloc);
fprintf(out, "mem.totalAlloc = %llu\n", mem.totalAlloc);
fprintf(out, "mem.totalExcess = %llu\n", mem.totalExcess);
fprintf(out, "mem.currentOut = %u\n", mem.currentOut);
fprintf(out, "mem.currentCount = %u\n", mem.currentCount);
fprintf(out, "mem.maxOut = %u\n", mem.maxOut);
fprintf(out, "mem.maxCount = %u\n", mem.maxCount);
fprintf(out, "mem.maxRequest = %u\n", mem.maxRequest);
sqlite3_mutex_leave(mem.mutex);
fprintf(out, "mem5.nAlloc = %llu\n", mem5.nAlloc);
fprintf(out, "mem5.totalAlloc = %llu\n", mem5.totalAlloc);
fprintf(out, "mem5.totalExcess = %llu\n", mem5.totalExcess);
fprintf(out, "mem5.currentOut = %u\n", mem5.currentOut);
fprintf(out, "mem5.currentCount = %u\n", mem5.currentCount);
fprintf(out, "mem5.maxOut = %u\n", mem5.maxOut);
fprintf(out, "mem5.maxCount = %u\n", mem5.maxCount);
fprintf(out, "mem5.maxRequest = %u\n", mem5.maxRequest);
memsys5Leave();
if( out==stdout ){
fflush(stdout);
}else{
@@ -514,5 +439,47 @@ void sqlite3MemdebugDump(const char *zFilename){
#endif
}
/*
** This routine is the only routine in this file with external
** linkage.
**
** Populate the low-level memory allocation function pointers in
** sqlite3Config.m with pointers to the routines in this file. The
** arguments specify the block of memory to manage.
**
** This routine is only called by sqlite3_config(), and therefore
** is not required to be threadsafe (it is not).
*/
void sqlite3MemSetMemsys5(u8 *zByte, int nByte){
static const sqlite3_mem_methods memsys5Methods = {
memsys5Malloc,
memsys5Free,
memsys5Realloc,
memsys5Size,
memsys5Roundup,
memsys5Init,
memsys5Shutdown,
0
};
int i;
#endif /* !SQLITE_POW2_MEMORY_SIZE */
mem5.nBlock = (nByte / (sizeof(Mem5Block)+sizeof(u8)));
mem5.nBlock -= (mem5.nBlock%SZ_MAX);
mem5.aPool = (Mem5Block *)zByte;
mem5.aCtrl = (u8 *)&mem5.aPool[mem5.nBlock];
assert( sizeof(Mem5Block)==POW2_MIN );
assert( mem5.nBlock>=SZ_MAX );
assert( (mem5.nBlock%SZ_MAX)==0 );
for(i=0; i<NSIZE; i++) mem5.aiFreelist[i] = -1;
for(i=0; i<=mem5.nBlock-SZ_MAX; i += SZ_MAX){
mem5.aCtrl[i] = (NSIZE-1) | CTRL_FREE;
memsys5Link(i, NSIZE-1);
}
/* Configure the functions to call to allocate memory. */
sqlite3_config(SQLITE_CONFIG_MALLOC, &memsys5Methods);
}
#endif /* SQLITE_ENABLE_MEMSYS5 */