1
0
mirror of https://github.com/sqlite/sqlite.git synced 2025-08-07 02:42:48 +03:00

Move some test logic out of tclsqlite.c and into auxiliary test_*.c files.

This is a work in progress.

FossilOrigin-Name: 95b7687fed75b32a62a0c62d397f4f543bf40095e13c22e15938d5dcfd71fcdf
This commit is contained in:
drh
2017-10-13 15:06:06 +00:00
parent 88dd668942
commit c318f730a4
8 changed files with 697 additions and 617 deletions

View File

@@ -3546,443 +3546,16 @@ int Sqlite_Unload(Tcl_Interp *interp, int flags){ return TCL_OK; }
int Tclsqlite_Unload(Tcl_Interp *interp, int flags){ return TCL_OK; }
#endif
/*
** If the TCLSH macro is defined to be either 1 or 2, then a main()
** routine is inserted that starts up a Tcl interpreter. When TCLSH==1
** the interpreter works like an ordinary tclsh. When TCLSH==2 then the
** startup script is supplied by an routine named "tclsh_main_loop()"
** that must be linked separately. The TCLSH==2 technique is used to
** generate stand-alone executables based on TCL, such as
** sqlite3_analyzer.exe.
*/
#ifdef TCLSH
/*****************************************************************************
** All of the code that follows is used to build standalone TCL interpreters
** that are statically linked with SQLite. Enable these by compiling
** with -DTCLSH=n where n can be 1 or 2. An n of 1 generates a standard
** tclsh but with SQLite built in. An n of 2 generates the SQLite space
** analysis program.
*/
#if defined(SQLITE_TEST) || defined(SQLITE_TCLMD5)
/*
* This code implements the MD5 message-digest algorithm.
* The algorithm is due to Ron Rivest. This code was
* written by Colin Plumb in 1993, no copyright is claimed.
* This code is in the public domain; do with it what you wish.
*
* Equivalent code is available from RSA Data Security, Inc.
* This code has been tested against that, and is equivalent,
* except that you don't need to include two pages of legalese
* with every copy.
*
* To compute the message digest of a chunk of bytes, declare an
* MD5Context structure, pass it to MD5Init, call MD5Update as
* needed on buffers full of bytes, and then call MD5Final, which
* will fill a supplied 16-byte array with the digest.
*/
/*
* If compiled on a machine that doesn't have a 32-bit integer,
* you just set "uint32" to the appropriate datatype for an
* unsigned 32-bit integer. For example:
*
* cc -Duint32='unsigned long' md5.c
*
*/
#ifndef uint32
# define uint32 unsigned int
#endif
struct MD5Context {
int isInit;
uint32 buf[4];
uint32 bits[2];
unsigned char in[64];
};
typedef struct MD5Context MD5Context;
/*
* Note: this code is harmless on little-endian machines.
*/
static void byteReverse (unsigned char *buf, unsigned longs){
uint32 t;
do {
t = (uint32)((unsigned)buf[3]<<8 | buf[2]) << 16 |
((unsigned)buf[1]<<8 | buf[0]);
*(uint32 *)buf = t;
buf += 4;
} while (--longs);
}
/* The four core functions - F1 is optimized somewhat */
/* #define F1(x, y, z) (x & y | ~x & z) */
#define F1(x, y, z) (z ^ (x & (y ^ z)))
#define F2(x, y, z) F1(z, x, y)
#define F3(x, y, z) (x ^ y ^ z)
#define F4(x, y, z) (y ^ (x | ~z))
/* This is the central step in the MD5 algorithm. */
#define MD5STEP(f, w, x, y, z, data, s) \
( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x )
/*
* The core of the MD5 algorithm, this alters an existing MD5 hash to
* reflect the addition of 16 longwords of new data. MD5Update blocks
* the data and converts bytes into longwords for this routine.
*/
static void MD5Transform(uint32 buf[4], const uint32 in[16]){
register uint32 a, b, c, d;
a = buf[0];
b = buf[1];
c = buf[2];
d = buf[3];
MD5STEP(F1, a, b, c, d, in[ 0]+0xd76aa478, 7);
MD5STEP(F1, d, a, b, c, in[ 1]+0xe8c7b756, 12);
MD5STEP(F1, c, d, a, b, in[ 2]+0x242070db, 17);
MD5STEP(F1, b, c, d, a, in[ 3]+0xc1bdceee, 22);
MD5STEP(F1, a, b, c, d, in[ 4]+0xf57c0faf, 7);
MD5STEP(F1, d, a, b, c, in[ 5]+0x4787c62a, 12);
MD5STEP(F1, c, d, a, b, in[ 6]+0xa8304613, 17);
MD5STEP(F1, b, c, d, a, in[ 7]+0xfd469501, 22);
MD5STEP(F1, a, b, c, d, in[ 8]+0x698098d8, 7);
MD5STEP(F1, d, a, b, c, in[ 9]+0x8b44f7af, 12);
MD5STEP(F1, c, d, a, b, in[10]+0xffff5bb1, 17);
MD5STEP(F1, b, c, d, a, in[11]+0x895cd7be, 22);
MD5STEP(F1, a, b, c, d, in[12]+0x6b901122, 7);
MD5STEP(F1, d, a, b, c, in[13]+0xfd987193, 12);
MD5STEP(F1, c, d, a, b, in[14]+0xa679438e, 17);
MD5STEP(F1, b, c, d, a, in[15]+0x49b40821, 22);
MD5STEP(F2, a, b, c, d, in[ 1]+0xf61e2562, 5);
MD5STEP(F2, d, a, b, c, in[ 6]+0xc040b340, 9);
MD5STEP(F2, c, d, a, b, in[11]+0x265e5a51, 14);
MD5STEP(F2, b, c, d, a, in[ 0]+0xe9b6c7aa, 20);
MD5STEP(F2, a, b, c, d, in[ 5]+0xd62f105d, 5);
MD5STEP(F2, d, a, b, c, in[10]+0x02441453, 9);
MD5STEP(F2, c, d, a, b, in[15]+0xd8a1e681, 14);
MD5STEP(F2, b, c, d, a, in[ 4]+0xe7d3fbc8, 20);
MD5STEP(F2, a, b, c, d, in[ 9]+0x21e1cde6, 5);
MD5STEP(F2, d, a, b, c, in[14]+0xc33707d6, 9);
MD5STEP(F2, c, d, a, b, in[ 3]+0xf4d50d87, 14);
MD5STEP(F2, b, c, d, a, in[ 8]+0x455a14ed, 20);
MD5STEP(F2, a, b, c, d, in[13]+0xa9e3e905, 5);
MD5STEP(F2, d, a, b, c, in[ 2]+0xfcefa3f8, 9);
MD5STEP(F2, c, d, a, b, in[ 7]+0x676f02d9, 14);
MD5STEP(F2, b, c, d, a, in[12]+0x8d2a4c8a, 20);
MD5STEP(F3, a, b, c, d, in[ 5]+0xfffa3942, 4);
MD5STEP(F3, d, a, b, c, in[ 8]+0x8771f681, 11);
MD5STEP(F3, c, d, a, b, in[11]+0x6d9d6122, 16);
MD5STEP(F3, b, c, d, a, in[14]+0xfde5380c, 23);
MD5STEP(F3, a, b, c, d, in[ 1]+0xa4beea44, 4);
MD5STEP(F3, d, a, b, c, in[ 4]+0x4bdecfa9, 11);
MD5STEP(F3, c, d, a, b, in[ 7]+0xf6bb4b60, 16);
MD5STEP(F3, b, c, d, a, in[10]+0xbebfbc70, 23);
MD5STEP(F3, a, b, c, d, in[13]+0x289b7ec6, 4);
MD5STEP(F3, d, a, b, c, in[ 0]+0xeaa127fa, 11);
MD5STEP(F3, c, d, a, b, in[ 3]+0xd4ef3085, 16);
MD5STEP(F3, b, c, d, a, in[ 6]+0x04881d05, 23);
MD5STEP(F3, a, b, c, d, in[ 9]+0xd9d4d039, 4);
MD5STEP(F3, d, a, b, c, in[12]+0xe6db99e5, 11);
MD5STEP(F3, c, d, a, b, in[15]+0x1fa27cf8, 16);
MD5STEP(F3, b, c, d, a, in[ 2]+0xc4ac5665, 23);
MD5STEP(F4, a, b, c, d, in[ 0]+0xf4292244, 6);
MD5STEP(F4, d, a, b, c, in[ 7]+0x432aff97, 10);
MD5STEP(F4, c, d, a, b, in[14]+0xab9423a7, 15);
MD5STEP(F4, b, c, d, a, in[ 5]+0xfc93a039, 21);
MD5STEP(F4, a, b, c, d, in[12]+0x655b59c3, 6);
MD5STEP(F4, d, a, b, c, in[ 3]+0x8f0ccc92, 10);
MD5STEP(F4, c, d, a, b, in[10]+0xffeff47d, 15);
MD5STEP(F4, b, c, d, a, in[ 1]+0x85845dd1, 21);
MD5STEP(F4, a, b, c, d, in[ 8]+0x6fa87e4f, 6);
MD5STEP(F4, d, a, b, c, in[15]+0xfe2ce6e0, 10);
MD5STEP(F4, c, d, a, b, in[ 6]+0xa3014314, 15);
MD5STEP(F4, b, c, d, a, in[13]+0x4e0811a1, 21);
MD5STEP(F4, a, b, c, d, in[ 4]+0xf7537e82, 6);
MD5STEP(F4, d, a, b, c, in[11]+0xbd3af235, 10);
MD5STEP(F4, c, d, a, b, in[ 2]+0x2ad7d2bb, 15);
MD5STEP(F4, b, c, d, a, in[ 9]+0xeb86d391, 21);
buf[0] += a;
buf[1] += b;
buf[2] += c;
buf[3] += d;
}
/*
* Start MD5 accumulation. Set bit count to 0 and buffer to mysterious
* initialization constants.
*/
static void MD5Init(MD5Context *ctx){
ctx->isInit = 1;
ctx->buf[0] = 0x67452301;
ctx->buf[1] = 0xefcdab89;
ctx->buf[2] = 0x98badcfe;
ctx->buf[3] = 0x10325476;
ctx->bits[0] = 0;
ctx->bits[1] = 0;
}
/*
* Update context to reflect the concatenation of another buffer full
* of bytes.
*/
static
void MD5Update(MD5Context *ctx, const unsigned char *buf, unsigned int len){
uint32 t;
/* Update bitcount */
t = ctx->bits[0];
if ((ctx->bits[0] = t + ((uint32)len << 3)) < t)
ctx->bits[1]++; /* Carry from low to high */
ctx->bits[1] += len >> 29;
t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */
/* Handle any leading odd-sized chunks */
if ( t ) {
unsigned char *p = (unsigned char *)ctx->in + t;
t = 64-t;
if (len < t) {
memcpy(p, buf, len);
return;
}
memcpy(p, buf, t);
byteReverse(ctx->in, 16);
MD5Transform(ctx->buf, (uint32 *)ctx->in);
buf += t;
len -= t;
}
/* Process data in 64-byte chunks */
while (len >= 64) {
memcpy(ctx->in, buf, 64);
byteReverse(ctx->in, 16);
MD5Transform(ctx->buf, (uint32 *)ctx->in);
buf += 64;
len -= 64;
}
/* Handle any remaining bytes of data. */
memcpy(ctx->in, buf, len);
}
/*
* Final wrapup - pad to 64-byte boundary with the bit pattern
* 1 0* (64-bit count of bits processed, MSB-first)
*/
static void MD5Final(unsigned char digest[16], MD5Context *ctx){
unsigned count;
unsigned char *p;
/* Compute number of bytes mod 64 */
count = (ctx->bits[0] >> 3) & 0x3F;
/* Set the first char of padding to 0x80. This is safe since there is
always at least one byte free */
p = ctx->in + count;
*p++ = 0x80;
/* Bytes of padding needed to make 64 bytes */
count = 64 - 1 - count;
/* Pad out to 56 mod 64 */
if (count < 8) {
/* Two lots of padding: Pad the first block to 64 bytes */
memset(p, 0, count);
byteReverse(ctx->in, 16);
MD5Transform(ctx->buf, (uint32 *)ctx->in);
/* Now fill the next block with 56 bytes */
memset(ctx->in, 0, 56);
} else {
/* Pad block to 56 bytes */
memset(p, 0, count-8);
}
byteReverse(ctx->in, 14);
/* Append length in bits and transform */
memcpy(ctx->in + 14*4, ctx->bits, 8);
MD5Transform(ctx->buf, (uint32 *)ctx->in);
byteReverse((unsigned char *)ctx->buf, 4);
memcpy(digest, ctx->buf, 16);
}
/*
** Convert a 128-bit MD5 digest into a 32-digit base-16 number.
*/
static void MD5DigestToBase16(unsigned char *digest, char *zBuf){
static char const zEncode[] = "0123456789abcdef";
int i, j;
for(j=i=0; i<16; i++){
int a = digest[i];
zBuf[j++] = zEncode[(a>>4)&0xf];
zBuf[j++] = zEncode[a & 0xf];
}
zBuf[j] = 0;
}
/*
** Convert a 128-bit MD5 digest into sequency of eight 5-digit integers
** each representing 16 bits of the digest and separated from each
** other by a "-" character.
*/
static void MD5DigestToBase10x8(unsigned char digest[16], char zDigest[50]){
int i, j;
unsigned int x;
for(i=j=0; i<16; i+=2){
x = digest[i]*256 + digest[i+1];
if( i>0 ) zDigest[j++] = '-';
sqlite3_snprintf(50-j, &zDigest[j], "%05u", x);
j += 5;
}
zDigest[j] = 0;
}
/*
** A TCL command for md5. The argument is the text to be hashed. The
** Result is the hash in base64.
*/
static int SQLITE_TCLAPI md5_cmd(
void*cd,
Tcl_Interp *interp,
int argc,
const char **argv
){
MD5Context ctx;
unsigned char digest[16];
char zBuf[50];
void (*converter)(unsigned char*, char*);
if( argc!=2 ){
Tcl_AppendResult(interp,"wrong # args: should be \"", argv[0],
" TEXT\"", (char*)0);
return TCL_ERROR;
}
MD5Init(&ctx);
MD5Update(&ctx, (unsigned char*)argv[1], (unsigned)strlen(argv[1]));
MD5Final(digest, &ctx);
converter = (void(*)(unsigned char*,char*))cd;
converter(digest, zBuf);
Tcl_AppendResult(interp, zBuf, (char*)0);
return TCL_OK;
}
/*
** A TCL command to take the md5 hash of a file. The argument is the
** name of the file.
*/
static int SQLITE_TCLAPI md5file_cmd(
void*cd,
Tcl_Interp *interp,
int argc,
const char **argv
){
FILE *in;
int ofst;
int amt;
MD5Context ctx;
void (*converter)(unsigned char*, char*);
unsigned char digest[16];
char zBuf[10240];
if( argc!=2 && argc!=4 ){
Tcl_AppendResult(interp,"wrong # args: should be \"", argv[0],
" FILENAME [OFFSET AMT]\"", (char*)0);
return TCL_ERROR;
}
if( argc==4 ){
ofst = atoi(argv[2]);
amt = atoi(argv[3]);
}else{
ofst = 0;
amt = 2147483647;
}
in = fopen(argv[1],"rb");
if( in==0 ){
Tcl_AppendResult(interp,"unable to open file \"", argv[1],
"\" for reading", (char*)0);
return TCL_ERROR;
}
fseek(in, ofst, SEEK_SET);
MD5Init(&ctx);
while( amt>0 ){
int n;
n = (int)fread(zBuf, 1, sizeof(zBuf)<=amt ? sizeof(zBuf) : amt, in);
if( n<=0 ) break;
MD5Update(&ctx, (unsigned char*)zBuf, (unsigned)n);
amt -= n;
}
fclose(in);
MD5Final(digest, &ctx);
converter = (void(*)(unsigned char*,char*))cd;
converter(digest, zBuf);
Tcl_AppendResult(interp, zBuf, (char*)0);
return TCL_OK;
}
/*
** Register the four new TCL commands for generating MD5 checksums
** with the TCL interpreter.
*/
int Md5_Init(Tcl_Interp *interp){
Tcl_CreateCommand(interp, "md5", (Tcl_CmdProc*)md5_cmd,
MD5DigestToBase16, 0);
Tcl_CreateCommand(interp, "md5-10x8", (Tcl_CmdProc*)md5_cmd,
MD5DigestToBase10x8, 0);
Tcl_CreateCommand(interp, "md5file", (Tcl_CmdProc*)md5file_cmd,
MD5DigestToBase16, 0);
Tcl_CreateCommand(interp, "md5file-10x8", (Tcl_CmdProc*)md5file_cmd,
MD5DigestToBase10x8, 0);
return TCL_OK;
}
#endif /* defined(SQLITE_TEST) || defined(SQLITE_TCLMD5) */
#if defined(SQLITE_TEST)
/*
** During testing, the special md5sum() aggregate function is available.
** inside SQLite. The following routines implement that function.
*/
static void md5step(sqlite3_context *context, int argc, sqlite3_value **argv){
MD5Context *p;
int i;
if( argc<1 ) return;
p = sqlite3_aggregate_context(context, sizeof(*p));
if( p==0 ) return;
if( !p->isInit ){
MD5Init(p);
}
for(i=0; i<argc; i++){
const char *zData = (char*)sqlite3_value_text(argv[i]);
if( zData ){
MD5Update(p, (unsigned char*)zData, (int)strlen(zData));
}
}
}
static void md5finalize(sqlite3_context *context){
MD5Context *p;
unsigned char digest[16];
char zBuf[33];
p = sqlite3_aggregate_context(context, sizeof(*p));
MD5Final(digest,p);
MD5DigestToBase16(digest, zBuf);
sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
}
int Md5_Register(
sqlite3 *db,
char **pzErrMsg,
const sqlite3_api_routines *pThunk
){
int rc = sqlite3_create_function(db, "md5sum", -1, SQLITE_UTF8, 0, 0,
md5step, md5finalize);
sqlite3_overload_function(db, "md5sum", -1); /* To exercise this API */
return rc;
}
#endif /* defined(SQLITE_TEST) */
/*
** If the macro TCLSH is one, then put in code this for the
@@ -4021,30 +3594,11 @@ static const char *tclsh_main_loop(void){
static const char *tclsh_main_loop(void);
#endif
/* The following to TCL commands used for testing must appear in this
** file (they cannot be factored out into one of the test_*.c files where
** they belong) because they require access to the SqliteDb object.
*/
#ifdef SQLITE_TEST
static void init_all(Tcl_Interp *);
static int SQLITE_TCLAPI init_all_cmd(
ClientData cd,
Tcl_Interp *interp,
int objc,
Tcl_Obj *CONST objv[]
){
Tcl_Interp *slave;
if( objc!=2 ){
Tcl_WrongNumArgs(interp, 1, objv, "SLAVE");
return TCL_ERROR;
}
slave = Tcl_GetSlave(interp, Tcl_GetString(objv[1]));
if( !slave ){
return TCL_ERROR;
}
init_all(slave);
return TCL_OK;
}
/*
** Tclcmd: db_use_legacy_prepare DB BOOLEAN
**
@@ -4123,141 +3677,6 @@ static int SQLITE_TCLAPI db_last_stmt_ptr(
}
#endif /* SQLITE_TEST */
/*
** Configure the interpreter passed as the first argument to have access
** to the commands and linked variables that make up:
**
** * the [sqlite3] extension itself,
**
** * If SQLITE_TCLMD5 or SQLITE_TEST is defined, the Md5 commands, and
**
** * If SQLITE_TEST is set, the various test interfaces used by the Tcl
** test suite.
*/
static void init_all(Tcl_Interp *interp){
Sqlite3_Init(interp);
#if defined(SQLITE_TEST) || defined(SQLITE_TCLMD5)
Md5_Init(interp);
#endif
#ifdef SQLITE_TEST
{
extern int Sqliteconfig_Init(Tcl_Interp*);
extern int Sqlitetest1_Init(Tcl_Interp*);
extern int Sqlitetest2_Init(Tcl_Interp*);
extern int Sqlitetest3_Init(Tcl_Interp*);
extern int Sqlitetest4_Init(Tcl_Interp*);
extern int Sqlitetest5_Init(Tcl_Interp*);
extern int Sqlitetest6_Init(Tcl_Interp*);
extern int Sqlitetest7_Init(Tcl_Interp*);
extern int Sqlitetest8_Init(Tcl_Interp*);
extern int Sqlitetest9_Init(Tcl_Interp*);
extern int Sqlitetestasync_Init(Tcl_Interp*);
extern int Sqlitetest_autoext_Init(Tcl_Interp*);
extern int Sqlitetest_blob_Init(Tcl_Interp*);
extern int Sqlitetest_demovfs_Init(Tcl_Interp *);
extern int Sqlitetest_func_Init(Tcl_Interp*);
extern int Sqlitetest_hexio_Init(Tcl_Interp*);
extern int Sqlitetest_init_Init(Tcl_Interp*);
extern int Sqlitetest_malloc_Init(Tcl_Interp*);
extern int Sqlitetest_mutex_Init(Tcl_Interp*);
extern int Sqlitetestschema_Init(Tcl_Interp*);
extern int Sqlitetestsse_Init(Tcl_Interp*);
extern int Sqlitetesttclvar_Init(Tcl_Interp*);
extern int Sqlitetestfs_Init(Tcl_Interp*);
extern int SqlitetestThread_Init(Tcl_Interp*);
extern int SqlitetestOnefile_Init();
extern int SqlitetestOsinst_Init(Tcl_Interp*);
extern int Sqlitetestbackup_Init(Tcl_Interp*);
extern int Sqlitetestintarray_Init(Tcl_Interp*);
extern int Sqlitetestvfs_Init(Tcl_Interp *);
extern int Sqlitetestrtree_Init(Tcl_Interp*);
extern int Sqlitequota_Init(Tcl_Interp*);
extern int Sqlitemultiplex_Init(Tcl_Interp*);
extern int SqliteSuperlock_Init(Tcl_Interp*);
extern int SqlitetestSyscall_Init(Tcl_Interp*);
#if defined(SQLITE_ENABLE_SESSION) && defined(SQLITE_ENABLE_PREUPDATE_HOOK)
extern int TestSession_Init(Tcl_Interp*);
#endif
extern int Fts5tcl_Init(Tcl_Interp *);
extern int SqliteRbu_Init(Tcl_Interp*);
extern int Sqlitetesttcl_Init(Tcl_Interp*);
#if defined(SQLITE_ENABLE_FTS3) || defined(SQLITE_ENABLE_FTS4)
extern int Sqlitetestfts3_Init(Tcl_Interp *interp);
#endif
#ifdef SQLITE_ENABLE_ZIPVFS
extern int Zipvfs_Init(Tcl_Interp*);
Zipvfs_Init(interp);
#endif
Sqliteconfig_Init(interp);
Sqlitetest1_Init(interp);
Sqlitetest2_Init(interp);
Sqlitetest3_Init(interp);
Sqlitetest4_Init(interp);
Sqlitetest5_Init(interp);
Sqlitetest6_Init(interp);
Sqlitetest7_Init(interp);
Sqlitetest8_Init(interp);
Sqlitetest9_Init(interp);
Sqlitetestasync_Init(interp);
Sqlitetest_autoext_Init(interp);
Sqlitetest_blob_Init(interp);
Sqlitetest_demovfs_Init(interp);
Sqlitetest_func_Init(interp);
Sqlitetest_hexio_Init(interp);
Sqlitetest_init_Init(interp);
Sqlitetest_malloc_Init(interp);
Sqlitetest_mutex_Init(interp);
Sqlitetestschema_Init(interp);
Sqlitetesttclvar_Init(interp);
Sqlitetestfs_Init(interp);
SqlitetestThread_Init(interp);
SqlitetestOnefile_Init();
SqlitetestOsinst_Init(interp);
Sqlitetestbackup_Init(interp);
Sqlitetestintarray_Init(interp);
Sqlitetestvfs_Init(interp);
Sqlitetestrtree_Init(interp);
Sqlitequota_Init(interp);
Sqlitemultiplex_Init(interp);
SqliteSuperlock_Init(interp);
SqlitetestSyscall_Init(interp);
#if defined(SQLITE_ENABLE_SESSION) && defined(SQLITE_ENABLE_PREUPDATE_HOOK)
TestSession_Init(interp);
#endif
Fts5tcl_Init(interp);
SqliteRbu_Init(interp);
Sqlitetesttcl_Init(interp);
#if defined(SQLITE_ENABLE_FTS3) || defined(SQLITE_ENABLE_FTS4)
Sqlitetestfts3_Init(interp);
#endif
Tcl_CreateObjCommand(
interp, "load_testfixture_extensions", init_all_cmd, 0, 0
);
Tcl_CreateObjCommand(
interp, "db_use_legacy_prepare", db_use_legacy_prepare_cmd, 0, 0
);
Tcl_CreateObjCommand(
interp, "db_last_stmt_ptr", db_last_stmt_ptr, 0, 0
);
#ifdef SQLITE_SSE
Sqlitetestsse_Init(interp);
#endif
}
#endif
}
/* Needed for the setrlimit() system call on unix */
#if defined(unix)
#include <sys/resource.h>
#endif
#define TCLSH_MAIN main /* Needed to fake out mktclapp */
int SQLITE_CDECL TCLSH_MAIN(int argc, char **argv){
Tcl_Interp *interp;
@@ -4271,17 +3690,6 @@ int SQLITE_CDECL TCLSH_MAIN(int argc, char **argv){
}
#endif
/* Since the primary use case for this binary is testing of SQLite,
** be sure to generate core files if we crash */
#if defined(SQLITE_TEST) && defined(unix)
{ struct rlimit x;
getrlimit(RLIMIT_CORE, &x);
x.rlim_cur = x.rlim_max;
setrlimit(RLIMIT_CORE, &x);
}
#endif /* SQLITE_TEST && unix */
/* Call sqlite3_shutdown() once before doing anything else. This is to
** test that sqlite3_shutdown() can be safely called by a process before
** sqlite3_initialize() is. */
@@ -4295,7 +3703,23 @@ int SQLITE_CDECL TCLSH_MAIN(int argc, char **argv){
sqlite3_config(SQLITE_CONFIG_SINGLETHREAD);
#endif
init_all(interp);
/* Add extensions */
#if !defined(SQLITE_TEST)
/* Normally we only initialize the TCL extension */
Sqlite3_Init(interp);
#else
/* For testing, do lots of extra initialization */
{
extern void sqlite3InitTclTestLogic(Tcl_Interp*);
sqlite3InitTclTestLogic(interp);
Tcl_CreateObjCommand(
interp, "db_use_legacy_prepare", db_use_legacy_prepare_cmd, 0, 0
);
Tcl_CreateObjCommand(
interp, "db_last_stmt_ptr", db_last_stmt_ptr, 0, 0
);
}
#endif /* SQLITE_TEST */
if( argc>=2 ){
int i;
char zArgc[32];