1
0
mirror of https://github.com/sqlite/sqlite.git synced 2025-08-07 02:42:48 +03:00

2.0.3 (CVS 287)

FossilOrigin-Name: 75e90cf09b64ee1fcb39a711fc9ac6d3d2b849a5
This commit is contained in:
drh
2001-10-13 02:59:08 +00:00
parent 99fcd718e1
commit bf4133cba1
15 changed files with 350 additions and 116 deletions

View File

@@ -30,7 +30,7 @@
** But other routines are also provided to help in building up
** a program instruction by instruction.
**
** $Id: vdbe.c,v 1.83 2001/10/13 01:06:48 drh Exp $
** $Id: vdbe.c,v 1.84 2001/10/13 02:59:09 drh Exp $
*/
#include "sqliteInt.h"
#include <ctype.h>
@@ -814,7 +814,9 @@ static char *zOpName[] = { 0,
"ColumnName", "Callback", "Integer", "String",
"Null", "Pop", "Dup", "Pull",
"Add", "AddImm", "Subtract", "Multiply",
"Divide", "Min", "Max", "Like",
"Divide", "Remainder", "BitAnd", "BitOr",
"BitNot", "ShiftLeft", "ShiftRight", "AbsValue",
"Precision", "Min", "Max", "Like",
"Glob", "Eq", "Ne", "Lt",
"Le", "Gt", "Ge", "IsNull",
"NotNull", "Negative", "And", "Or",
@@ -1322,10 +1324,20 @@ case OP_Concat: {
** is a string then it is converted to a double using the atof()
** function before the division. Division by zero returns NULL.
*/
/* Opcode: Remainder * * *
**
** Pop the top two elements from the stack, divide the
** first (what was on top of the stack) from the second (the
** next on stack)
** and push the remainder after division onto the stack. If either element
** is a string then it is converted to a double using the atof()
** function before the division. Division by zero returns NULL.
*/
case OP_Add:
case OP_Subtract:
case OP_Multiply:
case OP_Divide: {
case OP_Divide:
case OP_Remainder: {
int tos = p->tos;
int nos = tos - 1;
VERIFY( if( nos<0 ) goto not_enough_stack; )
@@ -1337,11 +1349,16 @@ case OP_Divide: {
case OP_Add: b += a; break;
case OP_Subtract: b -= a; break;
case OP_Multiply: b *= a; break;
default: {
case OP_Divide: {
if( a==0 ) goto divide_by_zero;
b /= a;
break;
}
default: {
if( a==0 ) goto divide_by_zero;
b %= a;
break;
}
}
POPSTACK;
Release(p, nos);
@@ -1357,11 +1374,18 @@ case OP_Divide: {
case OP_Add: b += a; break;
case OP_Subtract: b -= a; break;
case OP_Multiply: b *= a; break;
default: {
case OP_Divide: {
if( a==0.0 ) goto divide_by_zero;
b /= a;
break;
}
default: {
int ia = a;
int ib = b;
if( ia==0.0 ) goto divide_by_zero;
b = ib % ia;
break;
}
}
POPSTACK;
Release(p, nos);
@@ -1377,6 +1401,37 @@ divide_by_zero:
break;
}
/*
** Opcode: Precision * * *
**
** The top of stack is a floating-point number and the next on stack is
** an integer. Truncate the floating-point number to a number of digits
** specified by the integer and push the floating-point number back onto
** the stack.
*/
case OP_Precision: {
int tos = p->tos;
int nos = tos - 1;
int nDigit;
double v;
char zBuf[100];
VERIFY( if( nos<0 ) goto not_enough_stack; )
Realify(p, tos);
Integerify(p, nos);
nDigit = aStack[nos].i;
if( nDigit<0 ) nDigit = 0;
if( nDigit>30 ) nDigit = 30;
v = aStack[tos].r;
sprintf(zBuf, "%.*f", nDigit, v);
POPSTACK;
Release(p, nos);
zStack[nos] = sqliteStrDup(zBuf);
aStack[nos].n = strlen(zStack[tos]) + 1;
aStack[nos].flags = STK_Str | STK_Dyn;
break;
}
/* Opcode: Max * * *
**
** Pop the top two elements from the stack then push back the
@@ -1455,6 +1510,56 @@ case OP_Min: {
break;
}
/* Opcode: BitAnd * * *
**
** Pop the top two elements from the stack. Convert both elements
** to integers. Push back onto the stack the bit-wise AND of the
** two elements.
*/
/* Opcode: BitOr * * *
**
** Pop the top two elements from the stack. Convert both elements
** to integers. Push back onto the stack the bit-wise OR of the
** two elements.
*/
/* Opcode: ShiftLeft * * *
**
** Pop the top two elements from the stack. Convert both elements
** to integers. Push back onto the stack the top element shifted
** left by N bits where N is the second element on the stack.
*/
/* Opcode: ShiftRight * * *
**
** Pop the top two elements from the stack. Convert both elements
** to integers. Push back onto the stack the top element shifted
** right by N bits where N is the second element on the stack.
*/
case OP_BitAnd:
case OP_BitOr:
case OP_ShiftLeft:
case OP_ShiftRight: {
int tos = p->tos;
int nos = tos - 1;
int a, b;
VERIFY( if( nos<0 ) goto not_enough_stack; )
Integerify(p, tos);
Integerify(p, nos);
a = aStack[tos].i;
b = aStack[nos].i;
switch( pOp->opcode ){
case OP_BitAnd: a &= b; break;
case OP_BitOr: a |= b; break;
case OP_ShiftLeft: a <<= b; break;
case OP_ShiftRight: a >>= b; break;
default: /* CANT HAPPEN */ break;
}
POPSTACK;
Release(p, nos);
aStack[nos].i = a;
aStack[nos].flags = STK_Int;
break;
}
/* Opcode: AddImm P1 * *
**
** Add the value P1 to whatever is on top of the stack.
@@ -1633,21 +1738,33 @@ case OP_Or: {
** Treat the top of the stack as a numeric quantity. Replace it
** with its additive inverse.
*/
case OP_Negative: {
/* Opcode: AbsValue * * *
**
** Treat the top of the stack as a numeric quantity. Replace it
** with its absolute value.
*/
case OP_Negative:
case OP_AbsValue: {
int tos = p->tos;
VERIFY( if( tos<0 ) goto not_enough_stack; )
if( aStack[tos].flags & STK_Real ){
Release(p, tos);
aStack[tos].r = -aStack[tos].r;
if( pOp->opcode==OP_Negative || aStack[tos].r<0.0 ){
aStack[tos].r = -aStack[tos].r;
}
aStack[tos].flags = STK_Real;
}else if( aStack[tos].flags & STK_Int ){
Release(p, tos);
aStack[tos].i = -aStack[tos].i;
if( pOp->opcode==OP_Negative || aStack[tos].i<0 ){
aStack[tos].i = -aStack[tos].i;
}
aStack[tos].flags = STK_Int;
}else{
Realify(p, tos);
Release(p, tos);
aStack[tos].r = -aStack[tos].r;
if( pOp->opcode==OP_Negative || aStack[tos].r<0.0 ){
aStack[tos].r = -aStack[tos].r;
}
aStack[tos].flags = STK_Real;
}
break;
@@ -1668,6 +1785,21 @@ case OP_Not: {
break;
}
/* Opcode: * * *
**
** Interpret the top of the stack as an value. Replace it
** with its ones-complement.
*/
case OP_BitNot: {
int tos = p->tos;
VERIFY( if( p->tos<0 ) goto not_enough_stack; )
Integerify(p, tos);
Release(p, tos);
aStack[tos].i = ~aStack[tos].i;
aStack[tos].flags = STK_Int;
break;
}
/* Opcode: Noop * * *
**
** Do nothing. This instruction is often useful as a jump