1
0
mirror of https://github.com/sqlite/sqlite.git synced 2025-08-05 15:55:57 +03:00

Remove the BtreeMutexArray object - use the Vdbe.btreeMask field to accomplish

the same result.  Add a generation counter to btree mutexes in order to assert
that mutexes are never temporarily dropped over a range of instructions in order
to do deadlock avoidance in some subroutine.  Lock all btrees in any Vdbe
program that uses OP_ParseSchema.

FossilOrigin-Name: d81708f7d1eee399bfe76f6b8dac950a85dc2582
This commit is contained in:
drh
2011-04-04 00:14:43 +00:00
parent dddd779b2b
commit bdaec52c62
8 changed files with 242 additions and 198 deletions

View File

@@ -1,5 +1,5 @@
C Make\ssure\sthat\sthe\sconstant\s1\sis\scast\sto\syDbType\sbefore\sshifting\sto\screate\nan\sattached\sdatabase\smask.\s\sThis\scheck-in\sis\sa\sfollow-up\sand\sfix\sto\sthe\n[7aaf8772274422]\schange\sthat\sincreases\sthe\smaximum\snumber\sof\sattached\sdatabases\nfrom\s30\sto\s62.
D 2011-04-03T18:19:25.822
C Remove\sthe\sBtreeMutexArray\sobject\s-\suse\sthe\sVdbe.btreeMask\sfield\sto\saccomplish\nthe\ssame\sresult.\s\sAdd\sa\sgeneration\scounter\sto\sbtree\smutexes\sin\sorder\sto\sassert\nthat\smutexes\sare\snever\stemporarily\sdropped\sover\sa\srange\sof\sinstructions\sin\sorder\nto\sdo\sdeadlock\savoidance\sin\ssome\ssubroutine.\s\sLock\sall\sbtrees\sin\sany\sVdbe\nprogram\sthat\suses\sOP_ParseSchema.
D 2011-04-04T00:14:43.936
F Makefile.arm-wince-mingw32ce-gcc d6df77f1f48d690bd73162294bbba7f59507c72f
F Makefile.in 7a4d9524721d40ef9ee26f93f9bd6a51dba106f2
F Makefile.linux-gcc 91d710bdc4998cb015f39edf3cb314ec4f4d7e23
@@ -120,10 +120,10 @@ F src/attach.c 438ea6f6b5d5961c1f49b737f2ce0f14ce7c6877
F src/auth.c 523da7fb4979469955d822ff9298352d6b31de34
F src/backup.c 537f89c7ef5021cb580f31f782e556ffffcb2ed1
F src/bitvec.c af50f1c8c0ff54d6bdb7a80e2fceca5a93670bef
F src/btmutex.c 5ba4ca0216bd9406eccbf50aaf35fef6912c4e2c
F src/btmutex.c 3e595ee1bb99e3a1f16824137b435ffc97c98e5f
F src/btree.c 107723ed4f9bdb55213ba6164c30c49af75f4bf9
F src/btree.h 8d36f774ec4b1d0027b8966f8c03d9a72a518c14
F src/btreeInt.h 29ab8a4172f12b04fac34c5a0b76d0df750ddc34
F src/btree.h a840a20c1969391f98ee06960d5ee2dc460186b3
F src/btreeInt.h 6714ce2f5e879eb9a904a6a4575dc4faa4f29991
F src/build.c 3a8c6c4b1e16798755d46e699b7fcc12b9f27b2b
F src/callback.c 5069f224882cbdccd559f591271d28d7f37745bc
F src/complete.c dc1d136c0feee03c2f7550bafc0d29075e36deac
@@ -235,11 +235,11 @@ F src/update.c 81911be16ece3c3e7716aa18565b4814ec41f8b9
F src/utf.c d83650c3ea08f7407bd9d0839d9885241c209c60
F src/util.c cd997077bad039efc0597eb027c929658f93c018
F src/vacuum.c 924bd1bcee2dfb05376f79845bd3b4cec7b54b2f
F src/vdbe.c d975adcef86051b6b51c5d2394dd2288e0b0ca81
F src/vdbe.c e4d83957b4d102d542fb249bb46c7b55cbb67e4f
F src/vdbe.h 4de0efb4b0fdaaa900cf419b35c458933ef1c6d2
F src/vdbeInt.h 8ee9302ecc1036509956df8aceea6b0b5e0e231c
F src/vdbeInt.h 7e2f028ecc1a9faa6f253e7aa8d89cae03662bae
F src/vdbeapi.c a09ad9164cafc505250d5dd6b69660c960f1308c
F src/vdbeaux.c ad921cf58e8c20e1c0a9ef0b7e0f557eabdc7d07
F src/vdbeaux.c 1a98cc953a316739c3e9a2930ae0eee517d37def
F src/vdbeblob.c c3ccb7c8732858c680f442932e66ad06bb036562
F src/vdbemem.c 0498796b6ffbe45e32960d6a1f5adfb6e419883b
F src/vdbetrace.c 3ba13bc32bdf16d2bdea523245fd16736bed67b5
@@ -926,7 +926,7 @@ F tool/speedtest8.c 2902c46588c40b55661e471d7a86e4dd71a18224
F tool/speedtest8inst1.c 293327bc76823f473684d589a8160bde1f52c14e
F tool/split-sqlite3c.tcl d9be87f1c340285a3e081eb19b4a247981ed290c
F tool/vdbe-compress.tcl d70ea6d8a19e3571d7ab8c9b75cba86d1173ff0f
P 28c5f12e98655d5c6167b13e8a15085eca43dd5b
R 62a2deace5cc72cdc4511f7f5b5d9fa5
P e2a09ea73c76a0bec1e09d1fc11092517e3ebdf9
R 5eec5b6c06a45dcfcec6cc2765ee2ab8
U drh
Z 905bef73ef8c243b27a93f7a5f38565e
Z 9f8e37bd1010a379addad04d1c835970

View File

@@ -1 +1 @@
e2a09ea73c76a0bec1e09d1fc11092517e3ebdf9
d81708f7d1eee399bfe76f6b8dac950a85dc2582

View File

@@ -39,15 +39,34 @@ static void lockBtreeMutex(Btree *p){
** clear the p->locked boolean.
*/
static void unlockBtreeMutex(Btree *p){
BtShared *pBt = p->pBt;
assert( p->locked==1 );
assert( sqlite3_mutex_held(p->pBt->mutex) );
assert( sqlite3_mutex_held(pBt->mutex) );
assert( sqlite3_mutex_held(p->db->mutex) );
assert( p->db==p->pBt->db );
assert( p->db==pBt->db );
sqlite3_mutex_leave(p->pBt->mutex);
pBt->iMutexCounter++;
sqlite3_mutex_leave(pBt->mutex);
p->locked = 0;
}
#ifdef SQLITE_DEBUG
/*
** Return the number of times that the mutex has been exited for
** the given btree.
**
** This is a small circular counter that wraps around to zero on
** overflow. It is used only for sanity checking - to verify that
** mutexes are held continously by asserting that the value of
** this counter at the beginning of a region is the same as at
** the end.
*/
u32 sqlite3BtreeMutexCounter(Btree *p){
assert( p->locked==1 || p->sharable==0 );
return p->pBt->iMutexCounter;
}
#endif
/*
** Enter a mutex on the given BTree object.
**
@@ -92,6 +111,24 @@ void sqlite3BtreeEnter(Btree *p){
p->wantToLock++;
if( p->locked ) return;
/* Increment the mutex counter on all locked btrees in the same
** database connection. This simulates the unlocking that would
** occur on a worst-case mutex dead-lock avoidance scenario.
*/
#ifdef SQLITE_DEBUG
{
int ii;
sqlite3 *db = p->db;
Btree *pOther;
for(ii=0; ii<db->nDb; ii++){
if( ii==1 ) continue;
pOther = db->aDb[ii].pBt;
if( pOther==0 || pOther->sharable==0 || pOther->locked==0 ) continue;
pOther->pBt->iMutexCounter++;
}
}
#endif
/* In most cases, we should be able to acquire the lock we
** want without having to go throught the ascending lock
** procedure that follows. Just be sure not to block.
@@ -251,97 +288,17 @@ int sqlite3BtreeHoldsAllMutexes(sqlite3 *db){
}
#endif /* NDEBUG */
#else /* SQLITE_THREADSAFE>0 above. SQLITE_THREADSAFE==0 below */
/*
** Add a new Btree pointer to a BtreeMutexArray.
** if the pointer can possibly be shared with
** another database connection.
** The following are special cases for mutex enter routines for use
** in single threaded applications that use shared cache. Except for
** these two routines, all mutex operations are no-ops in that case and
** are null #defines in btree.h.
**
** The pointers are kept in sorted order by pBtree->pBt. That
** way when we go to enter all the mutexes, we can enter them
** in order without every having to backup and retry and without
** worrying about deadlock.
**
** The number of shared btrees will always be small (usually 0 or 1)
** so an insertion sort is an adequate algorithm here.
** If shared cache is disabled, then all btree mutex routines, including
** the ones below, are no-ops and are null #defines in btree.h.
*/
void sqlite3BtreeMutexArrayInsert(BtreeMutexArray *pArray, Btree *pBtree){
int i, j;
BtShared *pBt;
if( pBtree==0 || pBtree->sharable==0 ) return;
#ifndef NDEBUG
{
for(i=0; i<pArray->nMutex; i++){
assert( pArray->aBtree[i]!=pBtree );
}
}
#endif
assert( pArray->nMutex>=0 );
assert( pArray->nMutex<ArraySize(pArray->aBtree)-1 );
pBt = pBtree->pBt;
for(i=0; i<pArray->nMutex; i++){
assert( pArray->aBtree[i]!=pBtree );
if( pArray->aBtree[i]->pBt>pBt ){
for(j=pArray->nMutex; j>i; j--){
pArray->aBtree[j] = pArray->aBtree[j-1];
}
pArray->aBtree[i] = pBtree;
pArray->nMutex++;
return;
}
}
pArray->aBtree[pArray->nMutex++] = pBtree;
}
/*
** Enter the mutex of every btree in the array. This routine is
** called at the beginning of sqlite3VdbeExec(). The mutexes are
** exited at the end of the same function.
*/
void sqlite3BtreeMutexArrayEnter(BtreeMutexArray *pArray){
int i;
for(i=0; i<pArray->nMutex; i++){
Btree *p = pArray->aBtree[i];
/* Some basic sanity checking */
assert( i==0 || pArray->aBtree[i-1]->pBt<p->pBt );
assert( !p->locked || p->wantToLock>0 );
/* We should already hold a lock on the database connection */
assert( sqlite3_mutex_held(p->db->mutex) );
/* The Btree is sharable because only sharable Btrees are entered
** into the array in the first place. */
assert( p->sharable );
p->wantToLock++;
if( !p->locked ){
lockBtreeMutex(p);
}
}
}
/*
** Leave the mutex of every btree in the group.
*/
void sqlite3BtreeMutexArrayLeave(BtreeMutexArray *pArray){
int i;
for(i=0; i<pArray->nMutex; i++){
Btree *p = pArray->aBtree[i];
/* Some basic sanity checking */
assert( i==0 || pArray->aBtree[i-1]->pBt<p->pBt );
assert( p->locked );
assert( p->wantToLock>0 );
/* We should already hold a lock on the database connection */
assert( sqlite3_mutex_held(p->db->mutex) );
p->wantToLock--;
if( p->wantToLock==0 ){
unlockBtreeMutex(p);
}
}
}
#else
void sqlite3BtreeEnter(Btree *p){
p->pBt->db = p->db;
}

View File

@@ -39,18 +39,6 @@
typedef struct Btree Btree;
typedef struct BtCursor BtCursor;
typedef struct BtShared BtShared;
typedef struct BtreeMutexArray BtreeMutexArray;
/*
** This structure records all of the Btrees that need to hold
** a mutex before we enter sqlite3VdbeExec(). The Btrees are
** are placed in aBtree[] in order of aBtree[]->pBt. That way,
** we can always lock and unlock them all quickly.
*/
struct BtreeMutexArray {
int nMutex;
Btree *aBtree[SQLITE_MAX_ATTACHED+1];
};
int sqlite3BtreeOpen(
@@ -228,23 +216,19 @@ void sqlite3BtreeCursorList(Btree*);
void sqlite3BtreeEnterCursor(BtCursor*);
void sqlite3BtreeLeaveCursor(BtCursor*);
void sqlite3BtreeLeaveAll(sqlite3*);
void sqlite3BtreeMutexArrayEnter(BtreeMutexArray*);
void sqlite3BtreeMutexArrayLeave(BtreeMutexArray*);
void sqlite3BtreeMutexArrayInsert(BtreeMutexArray*, Btree*);
#ifndef NDEBUG
/* These routines are used inside assert() statements only. */
int sqlite3BtreeHoldsMutex(Btree*);
int sqlite3BtreeHoldsAllMutexes(sqlite3*);
u32 sqlite3BtreeMutexCounter(Btree*);
#endif
#else
# define sqlite3BtreeLeave(X)
# define sqlite3BtreeMutexCounter(X) 0
# define sqlite3BtreeEnterCursor(X)
# define sqlite3BtreeLeaveCursor(X)
# define sqlite3BtreeLeaveAll(X)
# define sqlite3BtreeMutexArrayEnter(X)
# define sqlite3BtreeMutexArrayLeave(X)
# define sqlite3BtreeMutexArrayInsert(X,Y)
# define sqlite3BtreeHoldsMutex(X) 1
# define sqlite3BtreeHoldsAllMutexes(X) 1

View File

@@ -426,7 +426,7 @@ struct BtShared {
u32 nPage; /* Number of pages in the database */
void *pSchema; /* Pointer to space allocated by sqlite3BtreeSchema() */
void (*xFreeSchema)(void*); /* Destructor for BtShared.pSchema */
sqlite3_mutex *mutex; /* Non-recursive mutex required to access this struct */
sqlite3_mutex *mutex; /* Non-recursive mutex required to access this object */
Bitvec *pHasContent; /* Set of pages moved to free-list this transaction */
#ifndef SQLITE_OMIT_SHARED_CACHE
int nRef; /* Number of references to this structure */
@@ -435,6 +435,7 @@ struct BtShared {
Btree *pWriter; /* Btree with currently open write transaction */
u8 isExclusive; /* True if pWriter has an EXCLUSIVE lock on the db */
u8 isPending; /* If waiting for read-locks to clear */
u16 iMutexCounter; /* The number of mutex_leave(mutex) calls */
#endif
u8 *pTmpSpace; /* BtShared.pageSize bytes of space for tmp use */
};

View File

@@ -571,7 +571,7 @@ int sqlite3VdbeExec(
/*** INSERT STACK UNION HERE ***/
assert( p->magic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */
sqlite3VdbeMutexArrayEnter(p);
sqlite3VdbeEnter(p);
if( p->rc==SQLITE_NOMEM ){
/* This happens if a malloc() inside a call to sqlite3_column_text() or
** sqlite3_column_text16() failed. */
@@ -1394,6 +1394,7 @@ case OP_Function: {
ctx.pColl = pOp[-1].p4.pColl;
}
(*ctx.pFunc->xFunc)(&ctx, n, apVal); /* IMP: R-24505-23230 */
sqlite3VdbeMutexResync(p);
if( db->mallocFailed ){
/* Even though a malloc() has failed, the implementation of the
** user function may have called an sqlite3_result_XXX() function
@@ -1404,6 +1405,17 @@ case OP_Function: {
goto no_mem;
}
/* The app-defined function has done something that as caused this
** statement to expire. (Perhaps the function called sqlite3_exec()
** with a CREATE TABLE statement.)
*/
#if 0
if( p->expired ){
rc = SQLITE_ABORT;
break;
}
#endif
/* If any auxiliary data functions have been called by this user function,
** immediately call the destructor for any non-static values.
*/
@@ -2650,6 +2662,7 @@ case OP_Savepoint: {
if( p1==SAVEPOINT_ROLLBACK && (db->flags&SQLITE_InternChanges)!=0 ){
sqlite3ExpirePreparedStatements(db);
sqlite3ResetInternalSchema(db, 0);
sqlite3VdbeMutexResync(p);
db->flags = (db->flags | SQLITE_InternChanges);
}
}
@@ -2940,6 +2953,7 @@ case OP_VerifyCookie: {
*/
if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
sqlite3ResetInternalSchema(db, pOp->p1);
sqlite3VdbeMutexResync(p);
}
p->expired = 1;
@@ -4622,29 +4636,22 @@ case OP_ParseSchema: {
char *zSql;
InitData initData;
/* Any prepared statement that invokes this opcode will hold mutexes
** on every btree. This is a prerequisite for invoking
** sqlite3InitCallback().
*/
#ifdef SQLITE_DEBUG
for(iDb=0; iDb<db->nDb; iDb++){
assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
}
#endif
assert( p->btreeMask == ~(yDbMask)0 );
iDb = pOp->p1;
assert( iDb>=0 && iDb<db->nDb );
/* When this opcode is invoked, it is guaranteed that the b-tree mutex
** is held and the schema is loaded for database iDb. However, at the
** start of the sqlite3_exec() call below, SQLite will invoke
** sqlite3BtreeEnterAll(). If all mutexes are not already held, the iDb
** mutex may be temporarily released to avoid deadlock. If this happens,
** then some other thread may delete the in-memory schema of database iDb
** before the SQL statement runs. The schema will not be reloaded because
** the db->init.busy flag is set. This can result in a "no such table:
** sqlite_master" or "malformed database schema" error being returned to
** the user.
**
** To avoid this, obtain all mutexes and check that no other thread has
** deleted the schema before calling sqlite3_exec(). If we find that the
** another thread has deleted the schema, there is no need to update it.
** The updated schema will be loaded from disk when it is next required.
*/
assert( sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
assert( DbHasProperty(db, iDb, DB_SchemaLoaded) );
sqlite3BtreeEnterAll(db);
if( DbHasProperty(db, iDb, DB_SchemaLoaded) ){
/* Used to be a conditional */ {
zMaster = SCHEMA_TABLE(iDb);
initData.db = db;
initData.iDb = pOp->p1;
@@ -4665,7 +4672,6 @@ case OP_ParseSchema: {
db->init.busy = 0;
}
}
sqlite3BtreeLeaveAll(db);
if( rc==SQLITE_NOMEM ){
goto no_mem;
}
@@ -5190,11 +5196,25 @@ case OP_AggStep: {
ctx.pColl = pOp[-1].p4.pColl;
}
(ctx.pFunc->xStep)(&ctx, n, apVal); /* IMP: R-24505-23230 */
sqlite3VdbeMutexResync(p);
if( ctx.isError ){
sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&ctx.s));
rc = ctx.isError;
}
/* The app-defined function has done something that as caused this
** statement to expire. (Perhaps the function called sqlite3_exec()
** with a CREATE TABLE statement.)
*/
#if 0
if( p->expired ){
rc = SQLITE_ABORT;
break;
}
#endif
sqlite3VdbeMemRelease(&ctx.s);
break;
}
@@ -5216,8 +5236,11 @@ case OP_AggFinal: {
pMem = &aMem[pOp->p1];
assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
sqlite3VdbeMutexResync(p);
if( rc ){
sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(pMem));
}else if( p->expired ){
rc = SQLITE_ABORT;
}
sqlite3VdbeChangeEncoding(pMem, encoding);
UPDATE_MAX_BLOBSIZE(pMem);
@@ -5294,7 +5317,7 @@ case OP_JournalMode: { /* out2-prerelease */
/* This opcode is used in two places: PRAGMA journal_mode and ATTACH.
** In PRAGMA journal_mode, the sqlite3VdbeUsesBtree() routine is called
** when the statment is prepared and so p->aMutex.nMutex>0. All mutexes
** when the statement is prepared and so p->btreeMask!=0. All mutexes
** are already acquired. But when used in ATTACH, sqlite3VdbeUsesBtree()
** is not called when the statement is prepared because it requires the
** iDb index of the database as a parameter, and the database has not
@@ -5303,12 +5326,11 @@ case OP_JournalMode: { /* out2-prerelease */
** No other mutexes are required by the ATTACH command so this is safe
** to do.
*/
assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 || p->aMutex.nMutex==0 );
if( p->aMutex.nMutex==0 ){
if( p->btreeMask==0 ){
/* This occurs right after ATTACH. Get a mutex on the newly ATTACHed
** database. */
sqlite3VdbeUsesBtree(p, pOp->p1);
sqlite3VdbeMutexArrayEnter(p);
sqlite3VdbeEnter(p);
}
pBt = db->aDb[pOp->p1].pBt;
@@ -5946,13 +5968,16 @@ vdbe_error_halt:
sqlite3VdbeHalt(p);
if( rc==SQLITE_IOERR_NOMEM ) db->mallocFailed = 1;
rc = SQLITE_ERROR;
if( resetSchemaOnFault ) sqlite3ResetInternalSchema(db, 0);
if( resetSchemaOnFault ){
sqlite3ResetInternalSchema(db, 0);
sqlite3VdbeMutexResync(p);
}
/* This is the only way out of this procedure. We have to
** release the mutexes on btrees that were acquired at the
** top. */
vdbe_return:
sqlite3BtreeMutexArrayLeave(&p->aMutex);
sqlite3VdbeLeave(p);
return rc;
/* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH

View File

@@ -303,9 +303,9 @@ struct Vdbe {
u8 isPrepareV2; /* True if prepared with prepare_v2() */
int nChange; /* Number of db changes made since last reset */
yDbMask btreeMask; /* Bitmask of db->aDb[] entries referenced */
u32 iMutexCounter; /* Mutex counter upon sqlite3VdbeEnter() */
int iStatement; /* Statement number (or 0 if has not opened stmt) */
int aCounter[3]; /* Counters used by sqlite3_stmt_status() */
BtreeMutexArray aMutex; /* An array of Btree used here and needing locks */
#ifndef SQLITE_OMIT_TRACE
i64 startTime; /* Time when query started - used for profiling */
#endif
@@ -387,6 +387,9 @@ int sqlite3VdbeCloseStatement(Vdbe *, int);
void sqlite3VdbeFrameDelete(VdbeFrame*);
int sqlite3VdbeFrameRestore(VdbeFrame *);
void sqlite3VdbeMemStoreType(Mem *pMem);
void sqlite3VdbeEnter(Vdbe*);
void sqlite3VdbeLeave(Vdbe*);
void sqlite3VdbeMutexResync(Vdbe*);
#ifdef SQLITE_DEBUG
void sqlite3VdbeMemPrepareToChange(Vdbe*,Mem*);
@@ -398,12 +401,6 @@ int sqlite3VdbeCheckFk(Vdbe *, int);
# define sqlite3VdbeCheckFk(p,i) 0
#endif
#ifndef SQLITE_OMIT_SHARED_CACHE
void sqlite3VdbeMutexArrayEnter(Vdbe *p);
#else
# define sqlite3VdbeMutexArrayEnter(p)
#endif
int sqlite3VdbeMemTranslate(Mem*, u8);
#ifdef SQLITE_DEBUG
void sqlite3VdbePrintSql(Vdbe*);

View File

@@ -157,6 +157,11 @@ int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
pOp->p4.p = 0;
pOp->p4type = P4_NOTUSED;
p->expired = 0;
if( op==OP_ParseSchema ){
/* Any program that uses the OP_ParseSchema opcode needs to lock
** all btrees. */
p->btreeMask = ~(yDbMask)0;
}
#ifdef SQLITE_DEBUG
pOp->zComment = 0;
if( sqlite3VdbeAddopTrace ) sqlite3VdbePrintOp(0, i, &p->aOp[i]);
@@ -457,7 +462,7 @@ VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){
assert( aOp && !p->db->mallocFailed );
/* Check that sqlite3VdbeUsesBtree() was not called on this VM */
assert( p->aMutex.nMutex==0 );
assert( p->btreeMask==0 );
resolveP2Values(p, pnMaxArg);
*pnOp = p->nOp;
@@ -945,22 +950,123 @@ static char *displayP4(Op *pOp, char *zTemp, int nTemp){
/*
** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
**
** The prepared statement has to know in advance which Btree objects
** will be used so that it can acquire mutexes on them all in sorted
** order (via sqlite3VdbeMutexArrayEnter(). Mutexes are acquired
** in order (and released in reverse order) to avoid deadlocks.
** The prepared statements need to know in advance the complete set of
** attached databases that they will be using. A mask of these databases
** is maintained in p->btreeMask and is used for locking and other purposes.
*/
void sqlite3VdbeUsesBtree(Vdbe *p, int i){
yDbMask mask;
assert( i>=0 && i<p->db->nDb && i<sizeof(yDbMask)*8 );
assert( i<(int)sizeof(p->btreeMask)*8 );
mask = ((yDbMask)1)<<i;
if( (p->btreeMask & mask)==0 ){
p->btreeMask |= mask;
sqlite3BtreeMutexArrayInsert(&p->aMutex, p->db->aDb[i].pBt);
}
p->btreeMask |= ((yDbMask)1)<<i;
}
/*
** Compute the sum of all mutex counters for all btrees in the
** given prepared statement.
*/
#ifndef SQLITE_OMIT_SHARED_CACHE
static u32 mutexCounterSum(Vdbe *p){
u32 cntSum = 0;
#ifdef SQLITE_DEBUG
int i;
yDbMask mask;
sqlite3 *db = p->db;
Db *aDb = db->aDb;
int nDb = db->nDb;
for(i=0, mask=1; i<nDb; i++, mask += mask){
if( i!=1 && (mask & p->btreeMask)!=0 && ALWAYS(aDb[i].pBt!=0) ){
cntSum += sqlite3BtreeMutexCounter(aDb[i].pBt);
}
}
#endif
return cntSum;
}
#endif
/*
** If SQLite is compiled to support shared-cache mode and to be threadsafe,
** this routine obtains the mutex associated with each BtShared structure
** that may be accessed by the VM passed as an argument. In doing so it also
** sets the BtShared.db member of each of the BtShared structures, ensuring
** that the correct busy-handler callback is invoked if required.
**
** If SQLite is not threadsafe but does support shared-cache mode, then
** sqlite3BtreeEnter() is invoked to set the BtShared.db variables
** of all of BtShared structures accessible via the database handle
** associated with the VM.
**
** If SQLite is not threadsafe and does not support shared-cache mode, this
** function is a no-op.
**
** The p->btreeMask field is a bitmask of all btrees that the prepared
** statement p will ever use. Let N be the number of bits in p->btreeMask
** corresponding to btrees that use shared cache. Then the runtime of
** this routine is N*N. But as N is rarely more than 1, this should not
** be a problem.
*/
void sqlite3VdbeEnter(Vdbe *p){
#ifndef SQLITE_OMIT_SHARED_CACHE
int i;
yDbMask mask;
sqlite3 *db = p->db;
Db *aDb = db->aDb;
int nDb = db->nDb;
for(i=0, mask=1; i<nDb; i++, mask += mask){
if( i!=1 && (mask & p->btreeMask)!=0 && ALWAYS(aDb[i].pBt!=0) ){
sqlite3BtreeEnter(aDb[i].pBt);
}
}
p->iMutexCounter = mutexCounterSum(p);
#endif
}
/*
** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter().
*/
void sqlite3VdbeLeave(Vdbe *p){
#ifndef SQLITE_OMIT_SHARED_CACHE
int i;
yDbMask mask;
sqlite3 *db = p->db;
Db *aDb = db->aDb;
int nDb = db->nDb;
/* Assert that the all mutexes have been held continously since
** the most recent sqlite3VdbeEnter() or sqlite3VdbeMutexResync().
*/
assert( mutexCounterSum(p) == p->iMutexCounter );
for(i=0, mask=1; i<nDb; i++, mask += mask){
if( i!=1 && (mask & p->btreeMask)!=0 && ALWAYS(aDb[i].pBt!=0) ){
sqlite3BtreeLeave(aDb[i].pBt);
}
}
#endif
}
/*
** Recompute the sum of the mutex counters on all btrees used by the
** prepared statement p.
**
** Call this routine while holding a sqlite3VdbeEnter() after doing something
** that might cause one or more of the individual mutexes held by the
** prepared statement to be released. Calling sqlite3BtreeEnter() on
** any BtShared mutex which is not used by the prepared statement is one
** way to cause one or more of the mutexes in the prepared statement
** to be temporarily released. The anti-deadlocking logic in
** sqlite3BtreeEnter() can cause mutexes to be released temporarily then
** reacquired.
**
** Calling this routine is an acknowledgement that some of the individual
** mutexes in the prepared statement might have been released and reacquired.
** So checks to verify that mutex-protected content did not change
** unexpectedly should accompany any call to this routine.
*/
void sqlite3VdbeMutexResync(Vdbe *p){
#if !defined(SQLITE_OMIT_SHARED_CACHE) && defined(SQLITE_DEBUG)
p->iMutexCounter = mutexCounterSum(p);
#endif
}
#if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
/*
@@ -1959,33 +2065,6 @@ int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){
return rc;
}
/*
** If SQLite is compiled to support shared-cache mode and to be threadsafe,
** this routine obtains the mutex associated with each BtShared structure
** that may be accessed by the VM passed as an argument. In doing so it
** sets the BtShared.db member of each of the BtShared structures, ensuring
** that the correct busy-handler callback is invoked if required.
**
** If SQLite is not threadsafe but does support shared-cache mode, then
** sqlite3BtreeEnterAll() is invoked to set the BtShared.db variables
** of all of BtShared structures accessible via the database handle
** associated with the VM. Of course only a subset of these structures
** will be accessed by the VM, and we could use Vdbe.btreeMask to figure
** that subset out, but there is no advantage to doing so.
**
** If SQLite is not threadsafe and does not support shared-cache mode, this
** function is a no-op.
*/
#ifndef SQLITE_OMIT_SHARED_CACHE
void sqlite3VdbeMutexArrayEnter(Vdbe *p){
#if SQLITE_THREADSAFE
sqlite3BtreeMutexArrayEnter(&p->aMutex);
#else
sqlite3BtreeEnterAll(p->db);
#endif
}
#endif
/*
** This function is called when a transaction opened by the database
** handle associated with the VM passed as an argument is about to be
@@ -2058,7 +2137,7 @@ int sqlite3VdbeHalt(Vdbe *p){
int isSpecialError; /* Set to true if a 'special' error */
/* Lock all btrees used by the statement */
sqlite3VdbeMutexArrayEnter(p);
sqlite3VdbeEnter(p);
/* Check for one of the special errors */
mrc = p->rc & 0xff;
@@ -2112,7 +2191,7 @@ int sqlite3VdbeHalt(Vdbe *p){
rc = sqlite3VdbeCheckFk(p, 1);
if( rc!=SQLITE_OK ){
if( NEVER(p->readOnly) ){
sqlite3BtreeMutexArrayLeave(&p->aMutex);
sqlite3VdbeLeave(p);
return SQLITE_ERROR;
}
rc = SQLITE_CONSTRAINT;
@@ -2124,7 +2203,7 @@ int sqlite3VdbeHalt(Vdbe *p){
rc = vdbeCommit(db, p);
}
if( rc==SQLITE_BUSY && p->readOnly ){
sqlite3BtreeMutexArrayLeave(&p->aMutex);
sqlite3VdbeLeave(p);
return SQLITE_BUSY;
}else if( rc!=SQLITE_OK ){
p->rc = rc;
@@ -2196,7 +2275,8 @@ int sqlite3VdbeHalt(Vdbe *p){
}
/* Release the locks */
sqlite3BtreeMutexArrayLeave(&p->aMutex);
sqlite3VdbeMutexResync(p);
sqlite3VdbeLeave(p);
}
/* We have successfully halted and closed the VM. Record this fact. */