mirror of
https://github.com/sqlite/sqlite.git
synced 2025-11-05 04:30:38 +03:00
Reduce the space allocated for the runtime virtual machine stack. (CVS 2428)
FossilOrigin-Name: 7d6818da33a87076d1faf35ffc15a3aada0533b3
This commit is contained in:
22
manifest
22
manifest
@@ -1,5 +1,5 @@
|
||||
C Add\sthe\sSQLITE_OMIT_TEMPDB\scompile\stime\smacro.\s(CVS\s2427)
|
||||
D 2005-03-29T03:10:59
|
||||
C Reduce\sthe\sspace\sallocated\sfor\sthe\sruntime\svirtual\smachine\sstack.\s(CVS\s2428)
|
||||
D 2005-03-29T08:26:13
|
||||
F Makefile.in 5c00d0037104de2a50ac7647a5f12769795957a3
|
||||
F Makefile.linux-gcc 06be33b2a9ad4f005a5f42b22c4a19dab3cbb5c7
|
||||
F README 9c4e2d6706bdcc3efdd773ce752a8cdab4f90028
|
||||
@@ -19,7 +19,7 @@ F ltmain.sh f6b283068efa69f06eb8aa1fe4bddfdbdeb35826
|
||||
F main.mk 3acc5ae52addd43fd1858fe99fca54a49bca6a56
|
||||
F mkdll.sh 5ec23622515d5bf8969404e80cfb5e220ddf0512
|
||||
F mkopcodec.awk bd46ad001c98dfbab07b1713cb8e692fa0e5415d
|
||||
F mkopcodeh.awk e4d010870a3e98fd4323635c31565a3ca8584741
|
||||
F mkopcodeh.awk d3d6dfcef5a7b69398627aec581d1ec52561517d
|
||||
F mkso.sh 125868def279650a07d3f0f5e8476fecf99613fd
|
||||
F publish.sh ed0aba4ffdfadb36597d03ce8efdae96efc038cb
|
||||
F spec.template b2f6c4e488cbc3b993a57deba22cbc36203c4da3
|
||||
@@ -75,11 +75,11 @@ F src/update.c 42823d00865c9fe4f01b3c62647858726345a28e
|
||||
F src/utf.c bda5eb85039ef16f2d17004c1e18c96e1ab0a80c
|
||||
F src/util.c 02bc2750336b021b3f10e61538f665c4b0033b5d
|
||||
F src/vacuum.c 5cf598003191bd91c17a64742bad8e46241698a8
|
||||
F src/vdbe.c e93a28aaa2a59c398ae243c2dc3b2da10cf1c5d2
|
||||
F src/vdbe.c 68c8f34cbf7c05418c93e900d46f81b09500353a
|
||||
F src/vdbe.h 7f586cb6d6b57764e5aac1f87107d6a95ddce24c
|
||||
F src/vdbeInt.h e80721cd8ff611789e20743eec43363a9fb5a48e
|
||||
F src/vdbeInt.h 39beecdfb017d3e042fe60974691abd573a5c5a2
|
||||
F src/vdbeapi.c 467caa6e6fb9247528b1c7ab9132ae1b4748e8ac
|
||||
F src/vdbeaux.c 0932f570d276992c7b3ee989589b6ff9056f97e7
|
||||
F src/vdbeaux.c b28883d9efc9d4c1ec26c0d2473d5d8febc8178e
|
||||
F src/vdbemem.c 4e853ce3151eaf7906150da85a1b3ce1fe5e8da8
|
||||
F src/where.c c4b227458e8993decb515ed9a2fe2d4f5f8e3125
|
||||
F tclinstaller.tcl 046e3624671962dc50f0481d7c25b38ef803eb42
|
||||
@@ -173,7 +173,7 @@ F test/pagesize.test 1b826d1608fd86d2303aa895b5586052ad07eba1
|
||||
F test/pragma.test effcf2f0dea35223cbaa6bf40c47d0796ba39e40
|
||||
F test/printf.test 92ba4c510b4fc61120ffa4a01820446ed917ae57
|
||||
F test/progress.test 16496001da445e6534afb94562c286708316d82f x
|
||||
F test/quick.test e9fdedf06bd06ff22fcbf6895c4f62fcbeb9e6b4
|
||||
F test/quick.test a94d12658a2b590c1a5be580bef09bbb04c1266b
|
||||
F test/quote.test 6d75cf635d93ba2484dc9cb378d88cbae9dc2c62
|
||||
F test/reindex.test 38b138abe36bf9a08c791ed44d9f76cd6b97b78b
|
||||
F test/rollback.test 94cd981ee3a627d9f6466f69dcf1f7dbfe695d7a
|
||||
@@ -221,7 +221,7 @@ F tool/lemon.c c88936c67f6411608db8fa4254d254f509fa40f6
|
||||
F tool/lempar.c e8b0eb00a6b905ce2ebd55965ed243574482cd5f
|
||||
F tool/memleak.awk 4e7690a51bf3ed757e611273d43fe3f65b510133
|
||||
F tool/memleak2.awk 9cc20c8e8f3c675efac71ea0721ee6874a1566e8
|
||||
F tool/memleak3.tcl 2b1ab290badf3b26f9ba433baf7fad8def14aea8
|
||||
F tool/memleak3.tcl 009da0ea82dc5893edca76cf1a21fb7260e9412e
|
||||
F tool/mkkeywordhash.c 02ac5c523fd6d55364cd70aded5c36ba6651a6bf
|
||||
F tool/mkopts.tcl 66ac10d240cc6e86abd37dc908d50382f84ff46e x
|
||||
F tool/opcodeDoc.awk b3a2a3d5d3075b8bd90b7afe24283efdd586659c
|
||||
@@ -278,7 +278,7 @@ F www/tclsqlite.tcl e73f8f8e5f20e8277619433f7970060ab01088fc
|
||||
F www/vdbe.tcl 87a31ace769f20d3627a64fa1fade7fed47b90d0
|
||||
F www/version3.tcl 092a01f5ef430d2c4acc0ae558d74c4bb89638a0
|
||||
F www/whentouse.tcl 528299b8316726dbcc5548e9aa0648c8b1bd055b
|
||||
P 78df3d040443414ae5b440eeabc0c8c205ab311d
|
||||
R ab70e88fa1e907bd768a36809abb74cd
|
||||
P c41d55443c2dd532147962b87f542fb7d37075fd
|
||||
R d1e86050613dbac2624d4c64006d314d
|
||||
U danielk1977
|
||||
Z a20882d0dd8ba8be64666597fc85c766
|
||||
Z d987ab454820e190643b62f4a4339773
|
||||
|
||||
@@ -1 +1 @@
|
||||
c41d55443c2dd532147962b87f542fb7d37075fd
|
||||
7d6818da33a87076d1faf35ffc15a3aada0533b3
|
||||
@@ -24,6 +24,7 @@
|
||||
# the total library smaller.
|
||||
#
|
||||
|
||||
|
||||
# Remember the TK_ values from the parse.h file
|
||||
/^#define TK_/ {
|
||||
tk[$2] = $3
|
||||
@@ -35,11 +36,16 @@
|
||||
gsub(/:/,"",name)
|
||||
gsub("\r","",name)
|
||||
op[name] = -1
|
||||
for(i=3; i<NF-2; i++){
|
||||
for(i=3; i<NF; i++){
|
||||
if($i=="same" && $(i+1)=="as"){
|
||||
op[name] = tk[$(i+2)]
|
||||
sym = $(i+2)
|
||||
sub(/,/,"",sym)
|
||||
op[name] = tk[sym]
|
||||
used[op[name]] = 1
|
||||
sameas[op[name]] = $(i+2)
|
||||
sameas[op[name]] = sym
|
||||
}
|
||||
if($i=="stack"){
|
||||
stack[name] = 1
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -75,4 +81,31 @@ END {
|
||||
printf "#define %-25s %15d\n", sprintf( "OP_NotUsed_%-3d", i ), i
|
||||
}
|
||||
}
|
||||
|
||||
# Generate the 10 16-bit bitmasks used by function opcodeUsesStack()
|
||||
# in vdbeaux.c. See comments in that function for details.
|
||||
#
|
||||
stack[0] = 0 # 0..15
|
||||
stack[1] = 0 # 16..31
|
||||
stack[2] = 0 # 32..47
|
||||
stack[3] = 0 # 48..63
|
||||
stack[4] = 0 # 64..79
|
||||
stack[5] = 0 # 80..95
|
||||
stack[6] = 0 # 96..111
|
||||
stack[7] = 0 # 112..127
|
||||
stack[8] = 0 # 128..143
|
||||
stack[9] = 0 # 144..159
|
||||
for(name in op){
|
||||
if( stack[name] ){
|
||||
n = op[name]
|
||||
j = n%16
|
||||
i = ((n - j)/16)
|
||||
stack[i] = stack[i] + (2^j)
|
||||
}
|
||||
}
|
||||
printf "\n"
|
||||
for(i=0; i<10; i++){
|
||||
printf "#define STACK_MASK_%d %d\n", i, stack[i]
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
232
src/vdbe.c
232
src/vdbe.c
@@ -43,7 +43,7 @@
|
||||
** in this file for details. If in doubt, do not deviate from existing
|
||||
** commenting and indentation practices when changing or adding code.
|
||||
**
|
||||
** $Id: vdbe.c,v 1.461 2005/03/29 03:11:00 danielk1977 Exp $
|
||||
** $Id: vdbe.c,v 1.462 2005/03/29 08:26:13 danielk1977 Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
#include "os.h"
|
||||
@@ -462,6 +462,9 @@ int sqlite3VdbeExec(
|
||||
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
|
||||
int nProgressOps = 0; /* Opcodes executed since progress callback. */
|
||||
#endif
|
||||
#ifndef NDEBUG
|
||||
Mem *pStackLimit;
|
||||
#endif
|
||||
|
||||
if( p->magic!=VDBE_MAGIC_RUN ) return SQLITE_MISUSE;
|
||||
assert( db->magic==SQLITE_MAGIC_BUSY );
|
||||
@@ -533,6 +536,23 @@ int sqlite3VdbeExec(
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifndef NDEBUG
|
||||
/* This is to check that the return value of static function
|
||||
** opcodeUsesStack() (see vdbeaux.c) returns values that match the
|
||||
** implementation of the virtual machine in this file. If
|
||||
** opcodeUsesStack() returns non-zero, then the stack is guarenteed
|
||||
** not to grow when the opcode is executed. If it returns zero, then
|
||||
** the stack may grow by at most 1.
|
||||
**
|
||||
** The global wrapper function sqlite3VdbeOpcodeUsesStack() is not
|
||||
** available if NDEBUG is defined at build time.
|
||||
*/
|
||||
pStackLimit = pTos;
|
||||
if( !sqlite3VdbeOpcodeUsesStack(pOp->opcode) ){
|
||||
pStackLimit++;
|
||||
}
|
||||
#endif
|
||||
|
||||
switch( pOp->opcode ){
|
||||
|
||||
/*****************************************************************************
|
||||
@@ -553,6 +573,11 @@ int sqlite3VdbeExec(
|
||||
** case statement is followed by a comment of the form "/# same as ... #/"
|
||||
** that comment is used to determine the particular value of the opcode.
|
||||
**
|
||||
** If a comment on the same line as the "case OP_" construction contains
|
||||
** the word "stack", then the opcode is guarenteed not to grow the
|
||||
** vdbe stack when it is executed. See function opcodeUsesStack() in
|
||||
** vdbeaux.c for details.
|
||||
**
|
||||
** Documentation about VDBE opcodes is generated by scanning this file
|
||||
** for lines of that contain "Opcode:". That line and all subsequent
|
||||
** comment lines are used in the generation of the opcode.html documentation
|
||||
@@ -572,7 +597,7 @@ int sqlite3VdbeExec(
|
||||
** the one at index P2 from the beginning of
|
||||
** the program.
|
||||
*/
|
||||
case OP_Goto: {
|
||||
case OP_Goto: { /* no stack growth */
|
||||
CHECK_FOR_INTERRUPT;
|
||||
pc = pOp->p2 - 1;
|
||||
break;
|
||||
@@ -588,7 +613,7 @@ case OP_Goto: {
|
||||
** the return address stack will fill up and processing will abort
|
||||
** with a fatal error.
|
||||
*/
|
||||
case OP_Gosub: {
|
||||
case OP_Gosub: { /* no stack growth */
|
||||
assert( p->returnDepth<sizeof(p->returnStack)/sizeof(p->returnStack[0]) );
|
||||
p->returnStack[p->returnDepth++] = pc+1;
|
||||
pc = pOp->p2 - 1;
|
||||
@@ -601,7 +626,7 @@ case OP_Gosub: {
|
||||
** OP_Gosub. If an OP_Return has occurred for all OP_Gosubs, then
|
||||
** processing aborts with a fatal error.
|
||||
*/
|
||||
case OP_Return: {
|
||||
case OP_Return: { /* no stack growth */
|
||||
assert( p->returnDepth>0 );
|
||||
p->returnDepth--;
|
||||
pc = p->returnStack[p->returnDepth] - 1;
|
||||
@@ -625,7 +650,7 @@ case OP_Return: {
|
||||
** every program. So a jump past the last instruction of the program
|
||||
** is the same as executing Halt.
|
||||
*/
|
||||
case OP_Halt: {
|
||||
case OP_Halt: { /* no stack growth */
|
||||
p->pTos = pTos;
|
||||
p->rc = pOp->p1;
|
||||
p->pc = pc;
|
||||
@@ -671,7 +696,7 @@ case OP_Integer: {
|
||||
**
|
||||
** The string value P3 is converted to a real and pushed on to the stack.
|
||||
*/
|
||||
case OP_Real: { /* same as TK_FLOAT */
|
||||
case OP_Real: { /* same as TK_FLOAT, */
|
||||
pTos++;
|
||||
pTos->flags = MEM_Str|MEM_Static|MEM_Term;
|
||||
pTos->z = pOp->p3;
|
||||
@@ -807,7 +832,7 @@ case OP_Variable: {
|
||||
**
|
||||
** P1 elements are popped off of the top of stack and discarded.
|
||||
*/
|
||||
case OP_Pop: {
|
||||
case OP_Pop: { /* no stack growth */
|
||||
assert( pOp->p1>=0 );
|
||||
popStack(&pTos, pOp->p1);
|
||||
assert( pTos>=&p->aStack[-1] );
|
||||
@@ -850,7 +875,7 @@ case OP_Dup: {
|
||||
**
|
||||
** See also the Dup instruction.
|
||||
*/
|
||||
case OP_Pull: {
|
||||
case OP_Pull: { /* no stack growth */
|
||||
Mem *pFrom = &pTos[-pOp->p1];
|
||||
int i;
|
||||
Mem ts;
|
||||
@@ -882,7 +907,7 @@ case OP_Pull: {
|
||||
** stack (P1==0 is the top of the stack) with the value
|
||||
** of the top of the stack. Then pop the top of the stack.
|
||||
*/
|
||||
case OP_Push: {
|
||||
case OP_Push: { /* no stack growth */
|
||||
Mem *pTo = &pTos[-pOp->p1];
|
||||
|
||||
assert( pTo>=p->aStack );
|
||||
@@ -897,7 +922,7 @@ case OP_Push: {
|
||||
** invoke the callback function using the newly formed array as the
|
||||
** 3rd parameter.
|
||||
*/
|
||||
case OP_Callback: {
|
||||
case OP_Callback: { /* no stack growth */
|
||||
int i;
|
||||
assert( p->nResColumn==pOp->p1 );
|
||||
|
||||
@@ -1033,11 +1058,11 @@ case OP_Concat: { /* same as TK_CONCAT */
|
||||
** function before the division. Division by zero returns NULL.
|
||||
** If either operand is NULL, the result is NULL.
|
||||
*/
|
||||
case OP_Add: /* same as TK_PLUS */
|
||||
case OP_Subtract: /* same as TK_MINUS */
|
||||
case OP_Multiply: /* same as TK_STAR */
|
||||
case OP_Divide: /* same as TK_SLASH */
|
||||
case OP_Remainder: { /* same as TK_REM */
|
||||
case OP_Add: /* same as TK_PLUS, no stack growth */
|
||||
case OP_Subtract: /* same as TK_MINUS, no stack growth */
|
||||
case OP_Multiply: /* same as TK_STAR, no stack growth */
|
||||
case OP_Divide: /* same as TK_SLASH, no stack growth */
|
||||
case OP_Remainder: { /* same as TK_REM, no stack growth */
|
||||
Mem *pNos = &pTos[-1];
|
||||
assert( pNos>=p->aStack );
|
||||
if( ((pTos->flags | pNos->flags) & MEM_Null)!=0 ){
|
||||
@@ -1117,7 +1142,7 @@ divide_by_zero:
|
||||
** to retrieve the collation sequence set by this opcode is not available
|
||||
** publicly, only to user functions defined in func.c.
|
||||
*/
|
||||
case OP_CollSeq: {
|
||||
case OP_CollSeq: { /* no stack growth */
|
||||
assert( pOp->p3type==P3_COLLSEQ );
|
||||
break;
|
||||
}
|
||||
@@ -1235,10 +1260,10 @@ case OP_Function: {
|
||||
** right by N bits where N is the top element on the stack.
|
||||
** If either operand is NULL, the result is NULL.
|
||||
*/
|
||||
case OP_BitAnd: /* same as TK_BITAND */
|
||||
case OP_BitOr: /* same as TK_BITOR */
|
||||
case OP_ShiftLeft: /* same as TK_LSHIFT */
|
||||
case OP_ShiftRight: { /* same as TK_RSHIFT */
|
||||
case OP_BitAnd: /* same as TK_BITAND, no stack growth */
|
||||
case OP_BitOr: /* same as TK_BITOR, no stack growth */
|
||||
case OP_ShiftLeft: /* same as TK_LSHIFT, no stack growth */
|
||||
case OP_ShiftRight: { /* same as TK_RSHIFT, no stack growth */
|
||||
Mem *pNos = &pTos[-1];
|
||||
int a, b;
|
||||
|
||||
@@ -1273,7 +1298,7 @@ case OP_ShiftRight: { /* same as TK_RSHIFT */
|
||||
**
|
||||
** To force the top of the stack to be an integer, just add 0.
|
||||
*/
|
||||
case OP_AddImm: {
|
||||
case OP_AddImm: { /* no stack growth */
|
||||
assert( pTos>=p->aStack );
|
||||
Integerify(pTos);
|
||||
pTos->i += pOp->p1;
|
||||
@@ -1290,7 +1315,7 @@ case OP_AddImm: {
|
||||
** current value if P1==0, or to the least integer that is strictly
|
||||
** greater than its current value if P1==1.
|
||||
*/
|
||||
case OP_ForceInt: {
|
||||
case OP_ForceInt: { /* no stack growth */
|
||||
int v;
|
||||
assert( pTos>=p->aStack );
|
||||
applyAffinity(pTos, SQLITE_AFF_INTEGER, db->enc);
|
||||
@@ -1325,7 +1350,7 @@ case OP_ForceInt: {
|
||||
** P1 is 1, then the stack is popped. In all other cases, the depth
|
||||
** of the stack is unchanged.
|
||||
*/
|
||||
case OP_MustBeInt: {
|
||||
case OP_MustBeInt: { /* no stack growth */
|
||||
assert( pTos>=p->aStack );
|
||||
applyAffinity(pTos, SQLITE_AFF_INTEGER, db->enc);
|
||||
if( (pTos->flags & MEM_Int)==0 ){
|
||||
@@ -1400,12 +1425,12 @@ case OP_MustBeInt: {
|
||||
** the 2nd element down on the stack is greater than or equal to the
|
||||
** top of the stack. See the Eq opcode for additional information.
|
||||
*/
|
||||
case OP_Eq: /* same as TK_EQ */
|
||||
case OP_Ne: /* same as TK_NE */
|
||||
case OP_Lt: /* same as TK_LT */
|
||||
case OP_Le: /* same as TK_LE */
|
||||
case OP_Gt: /* same as TK_GT */
|
||||
case OP_Ge: { /* same as TK_GE */
|
||||
case OP_Eq: /* same as TK_EQ, no stack growth */
|
||||
case OP_Ne: /* same as TK_NE, no stack growth */
|
||||
case OP_Lt: /* same as TK_LT, no stack growth */
|
||||
case OP_Le: /* same as TK_LE, no stack growth */
|
||||
case OP_Gt: /* same as TK_GT, no stack growth */
|
||||
case OP_Ge: { /* same as TK_GE, no stack growth */
|
||||
Mem *pNos;
|
||||
int flags;
|
||||
int res;
|
||||
@@ -1471,8 +1496,8 @@ case OP_Ge: { /* same as TK_GE */
|
||||
** two values and push the resulting boolean value back onto the
|
||||
** stack.
|
||||
*/
|
||||
case OP_And: /* same as TK_AND */
|
||||
case OP_Or: { /* same as TK_OR */
|
||||
case OP_And: /* same as TK_AND, no stack growth */
|
||||
case OP_Or: { /* same as TK_OR, no stack growth */
|
||||
Mem *pNos = &pTos[-1];
|
||||
int v1, v2; /* 0==TRUE, 1==FALSE, 2==UNKNOWN or NULL */
|
||||
|
||||
@@ -1519,7 +1544,7 @@ case OP_Or: { /* same as TK_OR */
|
||||
** with its absolute value. If the top of the stack is NULL
|
||||
** its value is unchanged.
|
||||
*/
|
||||
case OP_Negative: /* same as TK_UMINUS */
|
||||
case OP_Negative: /* same as TK_UMINUS, no stack growth */
|
||||
case OP_AbsValue: {
|
||||
assert( pTos>=p->aStack );
|
||||
if( pTos->flags & MEM_Real ){
|
||||
@@ -1552,7 +1577,7 @@ case OP_AbsValue: {
|
||||
** with its complement. If the top of the stack is NULL its value
|
||||
** is unchanged.
|
||||
*/
|
||||
case OP_Not: { /* same as TK_NOT */
|
||||
case OP_Not: { /* same as TK_NOT, no stack growth */
|
||||
assert( pTos>=p->aStack );
|
||||
if( pTos->flags & MEM_Null ) break; /* Do nothing to NULLs */
|
||||
Integerify(pTos);
|
||||
@@ -1568,7 +1593,7 @@ case OP_Not: { /* same as TK_NOT */
|
||||
** with its ones-complement. If the top of the stack is NULL its
|
||||
** value is unchanged.
|
||||
*/
|
||||
case OP_BitNot: { /* same as TK_BITNOT */
|
||||
case OP_BitNot: { /* same as TK_BITNOT, no stack growth */
|
||||
assert( pTos>=p->aStack );
|
||||
if( pTos->flags & MEM_Null ) break; /* Do nothing to NULLs */
|
||||
Integerify(pTos);
|
||||
@@ -1583,7 +1608,7 @@ case OP_BitNot: { /* same as TK_BITNOT */
|
||||
** Do nothing. This instruction is often useful as a jump
|
||||
** destination.
|
||||
*/
|
||||
case OP_Noop: {
|
||||
case OP_Noop: { /* no stack growth */
|
||||
break;
|
||||
}
|
||||
|
||||
@@ -1607,8 +1632,8 @@ case OP_Noop: {
|
||||
** If the value popped of the stack is NULL, then take the jump if P1
|
||||
** is true and fall through if P1 is false.
|
||||
*/
|
||||
case OP_If:
|
||||
case OP_IfNot: {
|
||||
case OP_If: /* no stack growth */
|
||||
case OP_IfNot: { /* no stack growth */
|
||||
int c;
|
||||
assert( pTos>=p->aStack );
|
||||
if( pTos->flags & MEM_Null ){
|
||||
@@ -1629,7 +1654,7 @@ case OP_IfNot: {
|
||||
** to P2. Pop the stack P1 times if P1>0. If P1<0 leave the stack
|
||||
** unchanged.
|
||||
*/
|
||||
case OP_IsNull: { /* same as TK_ISNULL */
|
||||
case OP_IsNull: { /* same as TK_ISNULL, no stack growth */
|
||||
int i, cnt;
|
||||
Mem *pTerm;
|
||||
cnt = pOp->p1;
|
||||
@@ -1652,7 +1677,7 @@ case OP_IsNull: { /* same as TK_ISNULL */
|
||||
** stack if P1 times if P1 is greater than zero. If P1 is less than
|
||||
** zero then leave the stack unchanged.
|
||||
*/
|
||||
case OP_NotNull: { /* same as TK_NOTNULL */
|
||||
case OP_NotNull: { /* same as TK_NOTNULL, no stack growth */
|
||||
int i, cnt;
|
||||
cnt = pOp->p1;
|
||||
if( cnt<0 ) cnt = -cnt;
|
||||
@@ -1673,7 +1698,7 @@ case OP_NotNull: { /* same as TK_NOTNULL */
|
||||
** If OP_KeyAsData is to be applied to cursor P1, it must be executed
|
||||
** before this op-code.
|
||||
*/
|
||||
case OP_SetNumColumns: {
|
||||
case OP_SetNumColumns: { /* no stack growth */
|
||||
Cursor *pC;
|
||||
assert( (pOp->p1)<p->nCursor );
|
||||
assert( p->apCsr[pOp->p1]!=0 );
|
||||
@@ -2131,7 +2156,7 @@ case OP_MakeRecord: {
|
||||
** database file has an index of 0 and the file used for temporary tables
|
||||
** has an index of 1.
|
||||
*/
|
||||
case OP_Statement: {
|
||||
case OP_Statement: { /* no stack growth */
|
||||
int i = pOp->p1;
|
||||
Btree *pBt;
|
||||
if( i>=0 && i<db->nDb && (pBt = db->aDb[i].pBt) && !(db->autoCommit) ){
|
||||
@@ -2151,7 +2176,7 @@ case OP_Statement: {
|
||||
**
|
||||
** This instruction causes the VM to halt.
|
||||
*/
|
||||
case OP_AutoCommit: {
|
||||
case OP_AutoCommit: { /* no stack growth */
|
||||
u8 i = pOp->p1;
|
||||
u8 rollback = pOp->p2;
|
||||
|
||||
@@ -2212,7 +2237,7 @@ case OP_AutoCommit: {
|
||||
**
|
||||
** If P2 is zero, then a read-lock is obtained on the database file.
|
||||
*/
|
||||
case OP_Transaction: {
|
||||
case OP_Transaction: { /* no stack growth */
|
||||
int i = pOp->p1;
|
||||
Btree *pBt;
|
||||
|
||||
@@ -2275,7 +2300,7 @@ case OP_ReadCookie: {
|
||||
**
|
||||
** A transaction must be started before executing this opcode.
|
||||
*/
|
||||
case OP_SetCookie: {
|
||||
case OP_SetCookie: { /* no stack growth */
|
||||
Db *pDb;
|
||||
assert( pOp->p2<SQLITE_N_BTREE_META );
|
||||
assert( pOp->p1>=0 && pOp->p1<db->nDb );
|
||||
@@ -2311,7 +2336,7 @@ case OP_SetCookie: {
|
||||
** to be executed (to establish a read lock) before this opcode is
|
||||
** invoked.
|
||||
*/
|
||||
case OP_VerifyCookie: {
|
||||
case OP_VerifyCookie: { /* no stack growth */
|
||||
int iMeta;
|
||||
Btree *pBt;
|
||||
assert( pOp->p1>=0 && pOp->p1<db->nDb );
|
||||
@@ -2371,8 +2396,8 @@ case OP_VerifyCookie: {
|
||||
**
|
||||
** See also OpenRead.
|
||||
*/
|
||||
case OP_OpenRead:
|
||||
case OP_OpenWrite: {
|
||||
case OP_OpenRead: /* no stack growth */
|
||||
case OP_OpenWrite: { /* no stack growth */
|
||||
int i = pOp->p1;
|
||||
int p2 = pOp->p2;
|
||||
int wrFlag;
|
||||
@@ -2460,7 +2485,7 @@ case OP_OpenWrite: {
|
||||
** whereas "Temporary" in the context of CREATE TABLE means for the duration
|
||||
** of the connection to the database. Same word; different meanings.
|
||||
*/
|
||||
case OP_OpenTemp: {
|
||||
case OP_OpenTemp: { /* no stack growth */
|
||||
int i = pOp->p1;
|
||||
Cursor *pCx;
|
||||
assert( i>=0 );
|
||||
@@ -2509,7 +2534,7 @@ case OP_OpenTemp: {
|
||||
** A pseudo-table created by this opcode is useful for holding the
|
||||
** NEW or OLD tables in a trigger.
|
||||
*/
|
||||
case OP_OpenPseudo: {
|
||||
case OP_OpenPseudo: { /* no stack growth */
|
||||
int i = pOp->p1;
|
||||
Cursor *pCx;
|
||||
assert( i>=0 );
|
||||
@@ -2527,7 +2552,7 @@ case OP_OpenPseudo: {
|
||||
** Close a cursor previously opened as P1. If P1 is not
|
||||
** currently open, this instruction is a no-op.
|
||||
*/
|
||||
case OP_Close: {
|
||||
case OP_Close: { /* no stack growth */
|
||||
int i = pOp->p1;
|
||||
if( i>=0 && i<p->nCursor ){
|
||||
sqlite3VdbeFreeCursor(p->apCsr[i]);
|
||||
@@ -2576,10 +2601,10 @@ case OP_Close: {
|
||||
**
|
||||
** See also: Found, NotFound, Distinct, MoveGt, MoveGe, MoveLt
|
||||
*/
|
||||
case OP_MoveLt:
|
||||
case OP_MoveLe:
|
||||
case OP_MoveGe:
|
||||
case OP_MoveGt: {
|
||||
case OP_MoveLt: /* no stack growth */
|
||||
case OP_MoveLe: /* no stack growth */
|
||||
case OP_MoveGe: /* no stack growth */
|
||||
case OP_MoveGt: { /* no stack growth */
|
||||
int i = pOp->p1;
|
||||
Cursor *pC;
|
||||
|
||||
@@ -2688,9 +2713,9 @@ case OP_MoveGt: {
|
||||
**
|
||||
** See also: Distinct, Found, MoveTo, NotExists, IsUnique
|
||||
*/
|
||||
case OP_Distinct:
|
||||
case OP_NotFound:
|
||||
case OP_Found: {
|
||||
case OP_Distinct: /* no stack growth */
|
||||
case OP_NotFound: /* no stack growth */
|
||||
case OP_Found: { /* no stack growth */
|
||||
int i = pOp->p1;
|
||||
int alreadyExists = 0;
|
||||
Cursor *pC;
|
||||
@@ -2739,7 +2764,7 @@ case OP_Found: {
|
||||
**
|
||||
** See also: Distinct, NotFound, NotExists, Found
|
||||
*/
|
||||
case OP_IsUnique: {
|
||||
case OP_IsUnique: { /* no stack growth */
|
||||
int i = pOp->p1;
|
||||
Mem *pNos = &pTos[-1];
|
||||
Cursor *pCx;
|
||||
@@ -2833,7 +2858,7 @@ case OP_IsUnique: {
|
||||
**
|
||||
** See also: Distinct, Found, MoveTo, NotFound, IsUnique
|
||||
*/
|
||||
case OP_NotExists: {
|
||||
case OP_NotExists: { /* no stack growth */
|
||||
int i = pOp->p1;
|
||||
Cursor *pC;
|
||||
BtCursor *pCrsr;
|
||||
@@ -3036,8 +3061,8 @@ case OP_NewRecno: {
|
||||
**
|
||||
** P1 may not be a pseudo-table opened using the OpenPseudo opcode.
|
||||
*/
|
||||
case OP_PutIntKey:
|
||||
case OP_PutStrKey: {
|
||||
case OP_PutIntKey: /* no stack growth */
|
||||
case OP_PutStrKey: { /* no stack growth */
|
||||
Mem *pNos = &pTos[-1];
|
||||
int i = pOp->p1;
|
||||
Cursor *pC;
|
||||
@@ -3131,7 +3156,7 @@ case OP_PutStrKey: {
|
||||
**
|
||||
** If P1 is a pseudo-table, then this instruction is a no-op.
|
||||
*/
|
||||
case OP_Delete: {
|
||||
case OP_Delete: { /* no stack growth */
|
||||
int i = pOp->p1;
|
||||
Cursor *pC;
|
||||
assert( i>=0 && i<p->nCursor );
|
||||
@@ -3155,7 +3180,7 @@ case OP_Delete: {
|
||||
** change counter (returned by subsequent calls to sqlite3_changes())
|
||||
** before it is reset. This is used by trigger programs.
|
||||
*/
|
||||
case OP_ResetCount: {
|
||||
case OP_ResetCount: { /* no stack growth */
|
||||
if( pOp->p1 ){
|
||||
sqlite3VdbeSetChanges(db, p->nChange);
|
||||
}
|
||||
@@ -3170,7 +3195,7 @@ case OP_ResetCount: {
|
||||
** data off of the key rather than the data. This is used for
|
||||
** processing compound selects.
|
||||
*/
|
||||
case OP_KeyAsData: {
|
||||
case OP_KeyAsData: { /* no stack growth */
|
||||
int i = pOp->p1;
|
||||
Cursor *pC;
|
||||
assert( i>=0 && i<p->nCursor );
|
||||
@@ -3346,7 +3371,7 @@ case OP_FullKey: {
|
||||
** that occur while the cursor is on the null row will always push
|
||||
** a NULL onto the stack.
|
||||
*/
|
||||
case OP_NullRow: {
|
||||
case OP_NullRow: { /* no stack growth */
|
||||
int i = pOp->p1;
|
||||
Cursor *pC;
|
||||
|
||||
@@ -3366,7 +3391,7 @@ case OP_NullRow: {
|
||||
** If P2 is 0 or if the table or index is not empty, fall through
|
||||
** to the following instruction.
|
||||
*/
|
||||
case OP_Last: {
|
||||
case OP_Last: { /* no stack growth */
|
||||
int i = pOp->p1;
|
||||
Cursor *pC;
|
||||
BtCursor *pCrsr;
|
||||
@@ -3397,7 +3422,7 @@ case OP_Last: {
|
||||
** If P2 is 0 or if the table or index is not empty, fall through
|
||||
** to the following instruction.
|
||||
*/
|
||||
case OP_Rewind: {
|
||||
case OP_Rewind: { /* no stack growth */
|
||||
int i = pOp->p1;
|
||||
Cursor *pC;
|
||||
BtCursor *pCrsr;
|
||||
@@ -3437,8 +3462,8 @@ case OP_Rewind: {
|
||||
** to the following instruction. But if the cursor backup was successful,
|
||||
** jump immediately to P2.
|
||||
*/
|
||||
case OP_Prev:
|
||||
case OP_Next: {
|
||||
case OP_Prev: /* no stack growth */
|
||||
case OP_Next: { /* no stack growth */
|
||||
Cursor *pC;
|
||||
BtCursor *pCrsr;
|
||||
|
||||
@@ -3479,7 +3504,7 @@ case OP_Next: {
|
||||
** is rolled back. If P3 is not null, then it becomes part of the
|
||||
** error message returned with the SQLITE_CONSTRAINT.
|
||||
*/
|
||||
case OP_IdxPut: {
|
||||
case OP_IdxPut: { /* no stack growth */
|
||||
int i = pOp->p1;
|
||||
Cursor *pC;
|
||||
BtCursor *pCrsr;
|
||||
@@ -3531,7 +3556,7 @@ case OP_IdxPut: {
|
||||
** The top of the stack is an index key built using the MakeIdxKey opcode.
|
||||
** This opcode removes that entry from the index.
|
||||
*/
|
||||
case OP_IdxDelete: {
|
||||
case OP_IdxDelete: { /* no stack growth */
|
||||
int i = pOp->p1;
|
||||
Cursor *pC;
|
||||
BtCursor *pCrsr;
|
||||
@@ -3633,9 +3658,9 @@ case OP_IdxRecno: {
|
||||
** an epsilon prior to the comparison. This makes the opcode work
|
||||
** like IdxLE.
|
||||
*/
|
||||
case OP_IdxLT:
|
||||
case OP_IdxGT:
|
||||
case OP_IdxGE: {
|
||||
case OP_IdxLT: /* no stack growth */
|
||||
case OP_IdxGT: /* no stack growth */
|
||||
case OP_IdxGE: { /* no stack growth */
|
||||
int i= pOp->p1;
|
||||
BtCursor *pCrsr;
|
||||
Cursor *pC;
|
||||
@@ -3679,7 +3704,7 @@ case OP_IdxGE: {
|
||||
**
|
||||
** The index entry is always popped from the stack.
|
||||
*/
|
||||
case OP_IdxIsNull: {
|
||||
case OP_IdxIsNull: { /* no stack growth */
|
||||
int i = pOp->p1;
|
||||
int k, n;
|
||||
const char *z;
|
||||
@@ -3753,7 +3778,7 @@ case OP_Destroy: {
|
||||
**
|
||||
** See also: Destroy
|
||||
*/
|
||||
case OP_Clear: {
|
||||
case OP_Clear: { /* no stack growth */
|
||||
rc = sqlite3BtreeClearTable(db->aDb[pOp->p2].pBt, pOp->p1);
|
||||
break;
|
||||
}
|
||||
@@ -3811,7 +3836,7 @@ case OP_CreateTable: {
|
||||
** This opcode invokes the parser to create a new virtual machine,
|
||||
** then runs the new virtual machine. It is thus a reentrant opcode.
|
||||
*/
|
||||
case OP_ParseSchema: {
|
||||
case OP_ParseSchema: { /* no stack growth */
|
||||
char *zSql;
|
||||
int iDb = pOp->p1;
|
||||
const char *zMaster;
|
||||
@@ -3843,7 +3868,7 @@ case OP_ParseSchema: {
|
||||
** is dropped in order to keep the internal representation of the
|
||||
** schema consistent with what is on disk.
|
||||
*/
|
||||
case OP_DropTable: {
|
||||
case OP_DropTable: { /* no stack growth */
|
||||
sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p3);
|
||||
break;
|
||||
}
|
||||
@@ -3855,7 +3880,7 @@ case OP_DropTable: {
|
||||
** is dropped in order to keep the internal representation of the
|
||||
** schema consistent with what is on disk.
|
||||
*/
|
||||
case OP_DropIndex: {
|
||||
case OP_DropIndex: { /* no stack growth */
|
||||
sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p3);
|
||||
break;
|
||||
}
|
||||
@@ -3867,7 +3892,7 @@ case OP_DropIndex: {
|
||||
** is dropped in order to keep the internal representation of the
|
||||
** schema consistent with what is on disk.
|
||||
*/
|
||||
case OP_DropTrigger: {
|
||||
case OP_DropTrigger: { /* no stack growth */
|
||||
sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p3);
|
||||
break;
|
||||
}
|
||||
@@ -3932,7 +3957,7 @@ case OP_IntegrityCk: {
|
||||
** Write the integer on the top of the stack
|
||||
** into the temporary storage list.
|
||||
*/
|
||||
case OP_ListWrite: {
|
||||
case OP_ListWrite: { /* no stack growth */
|
||||
Keylist *pKeylist;
|
||||
assert( pTos>=p->aStack );
|
||||
pKeylist = p->pList;
|
||||
@@ -3956,7 +3981,7 @@ case OP_ListWrite: {
|
||||
**
|
||||
** Rewind the temporary buffer back to the beginning.
|
||||
*/
|
||||
case OP_ListRewind: {
|
||||
case OP_ListRewind: { /* no stack growth */
|
||||
/* What this opcode codes, really, is reverse the order of the
|
||||
** linked list of Keylist structures so that they are read out
|
||||
** in the same order that they were read in. */
|
||||
@@ -4003,7 +4028,7 @@ case OP_ListRead: {
|
||||
**
|
||||
** Reset the temporary storage buffer so that it holds nothing.
|
||||
*/
|
||||
case OP_ListReset: {
|
||||
case OP_ListReset: { /* no stack growth */
|
||||
if( p->pList ){
|
||||
sqlite3VdbeKeylistFree(p->pList);
|
||||
p->pList = 0;
|
||||
@@ -4018,7 +4043,7 @@ case OP_ListReset: {
|
||||
** AggContextPop opcode.
|
||||
**
|
||||
*/
|
||||
case OP_AggContextPush: {
|
||||
case OP_AggContextPush: { /* no stack growth */
|
||||
p->pAgg++;
|
||||
assert( p->pAgg<&p->apAgg[p->nAgg] );
|
||||
break;
|
||||
@@ -4029,7 +4054,7 @@ case OP_AggContextPush: {
|
||||
** Restore the aggregator to the state it was in when AggContextPush
|
||||
** was last called. Any data in the current aggregator is deleted.
|
||||
*/
|
||||
case OP_AggContextPop: {
|
||||
case OP_AggContextPop: { /* no stack growth */
|
||||
p->pAgg--;
|
||||
assert( p->pAgg>=p->apAgg );
|
||||
break;
|
||||
@@ -4043,7 +4068,7 @@ case OP_AggContextPop: {
|
||||
** opcode. The context stores the last insert row id, the last statement change
|
||||
** count, and the current statement change count.
|
||||
*/
|
||||
case OP_ContextPush: {
|
||||
case OP_ContextPush: { /* no stack growth */
|
||||
int i = p->contextStackTop++;
|
||||
Context *pContext;
|
||||
|
||||
@@ -4068,7 +4093,7 @@ case OP_ContextPush: {
|
||||
** executed. The context stores the last insert row id, the last statement
|
||||
** change count, and the current statement change count.
|
||||
*/
|
||||
case OP_ContextPop: {
|
||||
case OP_ContextPop: { /* no stack growth */
|
||||
Context *pContext = &p->contextStack[--p->contextStackTop];
|
||||
assert( p->contextStackTop>=0 );
|
||||
db->lastRowid = pContext->lastRowid;
|
||||
@@ -4085,7 +4110,7 @@ case OP_ContextPop: {
|
||||
** and put them on the sorter. The key and data should have been
|
||||
** made using the MakeRecord opcode.
|
||||
*/
|
||||
case OP_SortPut: {
|
||||
case OP_SortPut: { /* no stack growth */
|
||||
Mem *pNos = &pTos[-1];
|
||||
Sorter *pSorter;
|
||||
assert( pNos>=p->aStack );
|
||||
@@ -4109,7 +4134,7 @@ case OP_SortPut: {
|
||||
** mergesort. The P3 argument is a pointer to a KeyInfo structure
|
||||
** that describes the keys to be sorted.
|
||||
*/
|
||||
case OP_Sort: {
|
||||
case OP_Sort: { /* no stack growth */
|
||||
int i;
|
||||
KeyInfo *pKeyInfo = (KeyInfo*)pOp->p3;
|
||||
Sorter *pElem;
|
||||
@@ -4171,7 +4196,7 @@ case OP_SortNext: {
|
||||
**
|
||||
** Remove any elements that remain on the sorter.
|
||||
*/
|
||||
case OP_SortReset: {
|
||||
case OP_SortReset: { /* no stack growth */
|
||||
sqlite3VdbeSorterReset(p);
|
||||
break;
|
||||
}
|
||||
@@ -4186,7 +4211,7 @@ case OP_SortReset: {
|
||||
** stack is popped once if P2 is 1. If P2 is zero, then
|
||||
** the original data remains on the stack.
|
||||
*/
|
||||
case OP_MemStore: {
|
||||
case OP_MemStore: { /* no stack growth */
|
||||
assert( pTos>=p->aStack );
|
||||
assert( pOp->p1>=0 && pOp->p1<p->nMem );
|
||||
rc = sqlite3VdbeMemMove(&p->aMem[pOp->p1], pTos);
|
||||
@@ -4225,7 +4250,7 @@ case OP_MemLoad: {
|
||||
** This instruction throws an error if the memory cell is not initially
|
||||
** an integer.
|
||||
*/
|
||||
case OP_MemMax: {
|
||||
case OP_MemMax: { /* no stack growth */
|
||||
int i = pOp->p1;
|
||||
Mem *pMem;
|
||||
assert( pTos>=p->aStack );
|
||||
@@ -4249,7 +4274,7 @@ case OP_MemMax: {
|
||||
** This instruction throws an error if the memory cell is not initially
|
||||
** an integer.
|
||||
*/
|
||||
case OP_MemIncr: {
|
||||
case OP_MemIncr: { /* no stack growth */
|
||||
int i = pOp->p1;
|
||||
Mem *pMem;
|
||||
assert( i>=0 && i<p->nMem );
|
||||
@@ -4267,7 +4292,7 @@ case OP_MemIncr: {
|
||||
** If the value of memory cell P1 is 1 or greater, jump to P2. This
|
||||
** opcode assumes that memory cell P1 holds an integer value.
|
||||
*/
|
||||
case OP_IfMemPos: {
|
||||
case OP_IfMemPos: { /* no stack growth */
|
||||
int i = pOp->p1;
|
||||
Mem *pMem;
|
||||
assert( i>=0 && i<p->nMem );
|
||||
@@ -4289,7 +4314,7 @@ case OP_IfMemPos: {
|
||||
** there is no GROUP BY expression). In this case it is illegal to invoke
|
||||
** OP_AggFocus.
|
||||
*/
|
||||
case OP_AggReset: {
|
||||
case OP_AggReset: { /* no stack growth */
|
||||
assert( !pOp->p3 || pOp->p3type==P3_KEYINFO );
|
||||
if( pOp->p1 ){
|
||||
rc = sqlite3VdbeAggReset(0, p->pAgg, (KeyInfo *)pOp->p3);
|
||||
@@ -4313,7 +4338,7 @@ case OP_AggReset: {
|
||||
** The aggregate will operate out of aggregate column P2.
|
||||
** P3 is a pointer to the FuncDef structure for the function.
|
||||
*/
|
||||
case OP_AggInit: {
|
||||
case OP_AggInit: { /* no stack growth */
|
||||
int i = pOp->p2;
|
||||
assert( i>=0 && i<p->pAgg->nMem );
|
||||
p->pAgg->apFunc[i] = (FuncDef*)pOp->p3;
|
||||
@@ -4331,7 +4356,7 @@ case OP_AggInit: {
|
||||
** Ideally, this index would be another parameter, but there are
|
||||
** no free parameters left. The integer is popped from the stack.
|
||||
*/
|
||||
case OP_AggFunc: {
|
||||
case OP_AggFunc: { /* no stack growth */
|
||||
int n = pOp->p2;
|
||||
int i;
|
||||
Mem *pMem, *pRec;
|
||||
@@ -4389,7 +4414,7 @@ case OP_AggFunc: {
|
||||
** zero or more AggNext operations. You must not execute an AggFocus
|
||||
** in between an AggNext and an AggReset.
|
||||
*/
|
||||
case OP_AggFocus: {
|
||||
case OP_AggFocus: { /* no stack growth */
|
||||
char *zKey;
|
||||
int nKey;
|
||||
int res;
|
||||
@@ -4423,7 +4448,7 @@ case OP_AggFocus: {
|
||||
** Move the top of the stack into the P2-th field of the current
|
||||
** aggregate. String values are duplicated into new memory.
|
||||
*/
|
||||
case OP_AggSet: {
|
||||
case OP_AggSet: { /* no stack growth */
|
||||
AggElem *pFocus;
|
||||
int i = pOp->p2;
|
||||
pFocus = p->pAgg->pCurrent;
|
||||
@@ -4488,7 +4513,7 @@ case OP_AggGet: {
|
||||
** zero or more AggNext operations. You must not execute an AggFocus
|
||||
** in between an AggNext and an AggReset.
|
||||
*/
|
||||
case OP_AggNext: {
|
||||
case OP_AggNext: { /* no stack growth */
|
||||
int res;
|
||||
assert( rc==SQLITE_OK );
|
||||
CHECK_FOR_INTERRUPT;
|
||||
@@ -4549,7 +4574,7 @@ case OP_AggNext: {
|
||||
** machines to be created and run. It may not be called from within
|
||||
** a transaction.
|
||||
*/
|
||||
case OP_Vacuum: {
|
||||
case OP_Vacuum: { /* no stack growth */
|
||||
if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
|
||||
rc = sqlite3RunVacuum(&p->zErrMsg, db);
|
||||
if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
|
||||
@@ -4565,7 +4590,7 @@ case OP_Vacuum: {
|
||||
** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
|
||||
** then only the currently executing statement is affected.
|
||||
*/
|
||||
case OP_Expire: {
|
||||
case OP_Expire: { /* no stack growth */
|
||||
if( !pOp->p1 ){
|
||||
sqlite3ExpirePreparedStatements(db);
|
||||
}else{
|
||||
@@ -4592,6 +4617,9 @@ default: {
|
||||
*****************************************************************************/
|
||||
}
|
||||
|
||||
/* Make sure the stack limit was not exceeded */
|
||||
assert( pTos<=pStackLimit );
|
||||
|
||||
#ifdef VDBE_PROFILE
|
||||
{
|
||||
long long elapse = hwtime() - start;
|
||||
|
||||
@@ -406,6 +406,7 @@ int sqlite3VdbeMemFromBtree(BtCursor*,int,int,int,Mem*);
|
||||
void sqlite3VdbeMemRelease(Mem *p);
|
||||
#ifndef NDEBUG
|
||||
void sqlite3VdbeMemSanity(Mem*, u8);
|
||||
int sqlite3VdbeOpcodeUsesStack(u8);
|
||||
#endif
|
||||
int sqlite3VdbeMemTranslate(Mem*, u8);
|
||||
void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf, int nBuf);
|
||||
|
||||
@@ -166,6 +166,47 @@ void sqlite3VdbeResolveLabel(Vdbe *p, int x){
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Return non-zero if opcode 'op' is guarenteed not to push more values
|
||||
** onto the VDBE stack than it pops off.
|
||||
*/
|
||||
static int opcodeUsesStack(u8 op){
|
||||
/* The 10 STACK_MASK_n constants are defined in the automatically
|
||||
** generated header file opcodes.h. Each is a 16-bit bitmask, one
|
||||
** bit corresponding to each opcode implemented by the virtual
|
||||
** machine in vdbe.c. The bit is true if the word "stack" appears
|
||||
** in a comment on the same line as the "case OP_XXX:" in
|
||||
** sqlite3VdbeExec() in vdbe.c.
|
||||
**
|
||||
** If the bit is true, then the corresponding opcode is guarenteed not
|
||||
** to grow the stack when it is executed. Otherwise, it may grow the
|
||||
** stack by at most one entry.
|
||||
**
|
||||
** STACK_MASK_0 corresponds to opcodes 0 to 15. STACK_MASK_1 contains
|
||||
** one bit for opcodes 16 to 31, and so on.
|
||||
**
|
||||
** 16-bit bitmasks (rather than 32-bit) are specified in opcodes.h
|
||||
** because the file is generated by an awk program. Awk manipulates
|
||||
** all numbers as floating-point and we don't want to risk a rounding
|
||||
** error if someone builds with an awk that uses (for example) 32-bit
|
||||
** IEEE floats.
|
||||
*/
|
||||
static u32 masks[5] = {
|
||||
STACK_MASK_0 + (STACK_MASK_1<<16),
|
||||
STACK_MASK_2 + (STACK_MASK_3<<16),
|
||||
STACK_MASK_4 + (STACK_MASK_5<<16),
|
||||
STACK_MASK_6 + (STACK_MASK_7<<16),
|
||||
STACK_MASK_8 + (STACK_MASK_9<<16)
|
||||
};
|
||||
return (masks[op>>5] & (1<<(op&0x1F)));
|
||||
}
|
||||
|
||||
#ifndef NDEBUG
|
||||
int sqlite3VdbeOpcodeUsesStack(u8 op){
|
||||
return opcodeUsesStack(op);
|
||||
}
|
||||
#endif
|
||||
|
||||
/*
|
||||
** Loop through the program looking for P2 values that are negative.
|
||||
** Each such value is a label. Resolve the label by setting the P2
|
||||
@@ -176,22 +217,30 @@ void sqlite3VdbeResolveLabel(Vdbe *p, int x){
|
||||
** Variable *pMaxFuncArgs is set to the maximum value of any P1 argument
|
||||
** to an OP_Function or P2 to an OP_AggFunc opcode. This is used by
|
||||
** sqlite3VdbeMakeReady() to size the Vdbe.apArg[] array.
|
||||
**
|
||||
** The integer *pMaxStack is set to the maximum number of vdbe stack
|
||||
** entries that static analysis reveals this program might need.
|
||||
*/
|
||||
static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
|
||||
static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs, int *pMaxStack){
|
||||
int i;
|
||||
int nMax = 0;
|
||||
int nMaxArgs = 0;
|
||||
int nMaxStack = p->nOp;
|
||||
Op *pOp;
|
||||
int *aLabel = p->aLabel;
|
||||
if( aLabel==0 ) return;
|
||||
for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
|
||||
u8 opcode = pOp->opcode;
|
||||
|
||||
/* Todo: Maybe OP_AggFunc should change to use P1 in the same
|
||||
* way as OP_Function. */
|
||||
* way as OP_Function.
|
||||
*/
|
||||
if( opcode==OP_Function ){
|
||||
if( pOp->p1>nMax ) nMax = pOp->p1;
|
||||
if( pOp->p1>nMaxArgs ) nMaxArgs = pOp->p1;
|
||||
}else if( opcode==OP_AggFunc ){
|
||||
if( pOp->p2>nMax ) nMax = pOp->p2;
|
||||
if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
|
||||
}
|
||||
|
||||
if( opcodeUsesStack(opcode) ){
|
||||
nMaxStack--;
|
||||
}
|
||||
|
||||
if( pOp->p2>=0 ) continue;
|
||||
@@ -200,7 +249,9 @@ static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
|
||||
}
|
||||
sqliteFree(p->aLabel);
|
||||
p->aLabel = 0;
|
||||
*pMaxFuncArgs = nMax;
|
||||
|
||||
*pMaxFuncArgs = nMaxArgs;
|
||||
*pMaxStack = nMaxStack;
|
||||
}
|
||||
|
||||
/*
|
||||
@@ -641,12 +692,14 @@ void sqlite3VdbeMakeReady(
|
||||
*/
|
||||
if( p->aStack==0 ){
|
||||
int nArg; /* Maximum number of args passed to a user function. */
|
||||
resolveP2Values(p, &nArg);
|
||||
int nStack; /* Maximum number of stack entries required */
|
||||
resolveP2Values(p, &nArg, &nStack);
|
||||
resizeOpArray(p, p->nOp);
|
||||
assert( nVar>=0 );
|
||||
n = isExplain ? 10 : p->nOp;
|
||||
assert( nStack<p->nOp );
|
||||
nStack = isExplain ? 10 : nStack;
|
||||
p->aStack = sqliteMalloc(
|
||||
n*sizeof(p->aStack[0]) /* aStack */
|
||||
nStack*sizeof(p->aStack[0]) /* aStack */
|
||||
+ nArg*sizeof(Mem*) /* apArg */
|
||||
+ nVar*sizeof(Mem) /* aVar */
|
||||
+ nVar*sizeof(char*) /* azVar */
|
||||
@@ -655,7 +708,7 @@ void sqlite3VdbeMakeReady(
|
||||
+ nAgg*sizeof(Agg) /* Aggregate contexts */
|
||||
);
|
||||
if( !sqlite3_malloc_failed ){
|
||||
p->aMem = &p->aStack[n];
|
||||
p->aMem = &p->aStack[nStack];
|
||||
p->nMem = nMem;
|
||||
p->aVar = &p->aMem[nMem];
|
||||
p->nVar = nVar;
|
||||
|
||||
@@ -10,7 +10,7 @@
|
||||
#***********************************************************************
|
||||
# This file runs all tests.
|
||||
#
|
||||
# $Id: quick.test,v 1.35 2005/03/29 03:11:00 danielk1977 Exp $
|
||||
# $Id: quick.test,v 1.36 2005/03/29 08:26:13 danielk1977 Exp $
|
||||
|
||||
set testdir [file dirname $argv0]
|
||||
source $testdir/tester.tcl
|
||||
@@ -19,7 +19,6 @@ proc finish_test {} {}
|
||||
set ISQUICK 1
|
||||
|
||||
set EXCLUDE {
|
||||
alter.test
|
||||
all.test
|
||||
btree2.test
|
||||
btree3.test
|
||||
|
||||
@@ -34,14 +34,46 @@ Example:
|
||||
$ ./testfixture ../sqlite/test/select1.test 2> memtrace.out
|
||||
$ tclsh $argv0 ?-r <malloc-number>? ./testfixture memtrace.out
|
||||
"
|
||||
if { [llength $argv]!=2 && [llength $argv]!=4 } {
|
||||
set prg [file tail $argv0]
|
||||
|
||||
|
||||
proc usage {} {
|
||||
set prg [file tail $::argv0]
|
||||
puts "Usage: $prg ?-r <malloc-number>? <binary file> <mem trace file>"
|
||||
puts ""
|
||||
puts [string trim $doco]
|
||||
puts [string trim $::doco]
|
||||
exit -1
|
||||
}
|
||||
|
||||
proc shift {listvar} {
|
||||
upvar $listvar l
|
||||
set ret [lindex $l 0]
|
||||
set l [lrange $l 1 end]
|
||||
return $ret
|
||||
}
|
||||
|
||||
# Argument handling. The following vars are set:
|
||||
#
|
||||
# $exe - the name of the executable (i.e. "testfixture" or "./sqlite3")
|
||||
# $memfile - the name of the file containing the trace output.
|
||||
# $report_at - The malloc number to stop and report at. Or -1 to read
|
||||
# all of $memfile.
|
||||
#
|
||||
set report_at -1
|
||||
while {[llength $argv]>2} {
|
||||
set arg [shift argv]
|
||||
switch -- $arg {
|
||||
"-r" {
|
||||
set report_at [shift argv]
|
||||
}
|
||||
default {
|
||||
usage
|
||||
}
|
||||
}
|
||||
}
|
||||
if {[llength $argv]!=2} usage
|
||||
set exe [lindex $argv 0]
|
||||
set memfile [lindex $argv 1]
|
||||
|
||||
# If stack traces are enabled, the 'addr2line' program is called to
|
||||
# translate a binary stack address into a human-readable form.
|
||||
set addr2line addr2line
|
||||
@@ -69,17 +101,6 @@ set iPeak 0 ;# nMalloc when nPeak was set.
|
||||
#
|
||||
array unset memmap
|
||||
|
||||
# The executable program being analyzed.
|
||||
if {[llength $argv]==2} {
|
||||
set exe [lindex $argv 0]
|
||||
set memfile [lindex $argv 1]
|
||||
set report_at -1
|
||||
} else {
|
||||
set exe [lindex $argv 2]
|
||||
set memfile [lindex $argv 3]
|
||||
set report_at [lindex $argv 1]
|
||||
}
|
||||
|
||||
proc process_input {input_file array_name} {
|
||||
upvar $array_name mem
|
||||
set input [open $input_file]
|
||||
|
||||
Reference in New Issue
Block a user