mirror of
https://github.com/sqlite/sqlite.git
synced 2025-10-27 08:52:26 +03:00
Split up os.c into separate files, one for each platform. (CVS 1441)
FossilOrigin-Name: 5c61be1c47ac960fba2a642e69a98436ce1cd725
This commit is contained in:
882
src/os_unix.c
Normal file
882
src/os_unix.c
Normal file
@@ -0,0 +1,882 @@
|
||||
/*
|
||||
** 2004 May 22
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
******************************************************************************
|
||||
**
|
||||
** This file contains code that is specific to Unix systems.
|
||||
*/
|
||||
#include "os.h" /* Must be first to enable large file support */
|
||||
#if OS_UNIX /* This file is used on unix only */
|
||||
#include "sqliteInt.h"
|
||||
|
||||
|
||||
#include <time.h>
|
||||
#include <errno.h>
|
||||
#include <unistd.h>
|
||||
#ifndef O_LARGEFILE
|
||||
# define O_LARGEFILE 0
|
||||
#endif
|
||||
#ifdef SQLITE_DISABLE_LFS
|
||||
# undef O_LARGEFILE
|
||||
# define O_LARGEFILE 0
|
||||
#endif
|
||||
#ifndef O_NOFOLLOW
|
||||
# define O_NOFOLLOW 0
|
||||
#endif
|
||||
#ifndef O_BINARY
|
||||
# define O_BINARY 0
|
||||
#endif
|
||||
|
||||
/*
|
||||
** The DJGPP compiler environment looks mostly like Unix, but it
|
||||
** lacks the fcntl() system call. So redefine fcntl() to be something
|
||||
** that always succeeds. This means that locking does not occur under
|
||||
** DJGPP. But its DOS - what did you expect?
|
||||
*/
|
||||
#ifdef __DJGPP__
|
||||
# define fcntl(A,B,C) 0
|
||||
#endif
|
||||
|
||||
/*
|
||||
** Macros used to determine whether or not to use threads. The
|
||||
** SQLITE_UNIX_THREADS macro is defined if we are synchronizing for
|
||||
** Posix threads and SQLITE_W32_THREADS is defined if we are
|
||||
** synchronizing using Win32 threads.
|
||||
*/
|
||||
#if defined(THREADSAFE) && THREADSAFE
|
||||
# include <pthread.h>
|
||||
# define SQLITE_UNIX_THREADS 1
|
||||
#endif
|
||||
|
||||
|
||||
/*
|
||||
** Include code that is common to all os_*.c files
|
||||
*/
|
||||
#include "os_common.h"
|
||||
|
||||
|
||||
/*
|
||||
** Here is the dirt on POSIX advisory locks: ANSI STD 1003.1 (1996)
|
||||
** section 6.5.2.2 lines 483 through 490 specify that when a process
|
||||
** sets or clears a lock, that operation overrides any prior locks set
|
||||
** by the same process. It does not explicitly say so, but this implies
|
||||
** that it overrides locks set by the same process using a different
|
||||
** file descriptor. Consider this test case:
|
||||
**
|
||||
** int fd1 = open("./file1", O_RDWR|O_CREAT, 0644);
|
||||
** int fd2 = open("./file2", O_RDWR|O_CREAT, 0644);
|
||||
**
|
||||
** Suppose ./file1 and ./file2 are really the same file (because
|
||||
** one is a hard or symbolic link to the other) then if you set
|
||||
** an exclusive lock on fd1, then try to get an exclusive lock
|
||||
** on fd2, it works. I would have expected the second lock to
|
||||
** fail since there was already a lock on the file due to fd1.
|
||||
** But not so. Since both locks came from the same process, the
|
||||
** second overrides the first, even though they were on different
|
||||
** file descriptors opened on different file names.
|
||||
**
|
||||
** Bummer. If you ask me, this is broken. Badly broken. It means
|
||||
** that we cannot use POSIX locks to synchronize file access among
|
||||
** competing threads of the same process. POSIX locks will work fine
|
||||
** to synchronize access for threads in separate processes, but not
|
||||
** threads within the same process.
|
||||
**
|
||||
** To work around the problem, SQLite has to manage file locks internally
|
||||
** on its own. Whenever a new database is opened, we have to find the
|
||||
** specific inode of the database file (the inode is determined by the
|
||||
** st_dev and st_ino fields of the stat structure that fstat() fills in)
|
||||
** and check for locks already existing on that inode. When locks are
|
||||
** created or removed, we have to look at our own internal record of the
|
||||
** locks to see if another thread has previously set a lock on that same
|
||||
** inode.
|
||||
**
|
||||
** The OsFile structure for POSIX is no longer just an integer file
|
||||
** descriptor. It is now a structure that holds the integer file
|
||||
** descriptor and a pointer to a structure that describes the internal
|
||||
** locks on the corresponding inode. There is one locking structure
|
||||
** per inode, so if the same inode is opened twice, both OsFile structures
|
||||
** point to the same locking structure. The locking structure keeps
|
||||
** a reference count (so we will know when to delete it) and a "cnt"
|
||||
** field that tells us its internal lock status. cnt==0 means the
|
||||
** file is unlocked. cnt==-1 means the file has an exclusive lock.
|
||||
** cnt>0 means there are cnt shared locks on the file.
|
||||
**
|
||||
** Any attempt to lock or unlock a file first checks the locking
|
||||
** structure. The fcntl() system call is only invoked to set a
|
||||
** POSIX lock if the internal lock structure transitions between
|
||||
** a locked and an unlocked state.
|
||||
**
|
||||
** 2004-Jan-11:
|
||||
** More recent discoveries about POSIX advisory locks. (The more
|
||||
** I discover, the more I realize the a POSIX advisory locks are
|
||||
** an abomination.)
|
||||
**
|
||||
** If you close a file descriptor that points to a file that has locks,
|
||||
** all locks on that file that are owned by the current process are
|
||||
** released. To work around this problem, each OsFile structure contains
|
||||
** a pointer to an openCnt structure. There is one openCnt structure
|
||||
** per open inode, which means that multiple OsFiles can point to a single
|
||||
** openCnt. When an attempt is made to close an OsFile, if there are
|
||||
** other OsFiles open on the same inode that are holding locks, the call
|
||||
** to close() the file descriptor is deferred until all of the locks clear.
|
||||
** The openCnt structure keeps a list of file descriptors that need to
|
||||
** be closed and that list is walked (and cleared) when the last lock
|
||||
** clears.
|
||||
**
|
||||
** First, under Linux threads, because each thread has a separate
|
||||
** process ID, lock operations in one thread do not override locks
|
||||
** to the same file in other threads. Linux threads behave like
|
||||
** separate processes in this respect. But, if you close a file
|
||||
** descriptor in linux threads, all locks are cleared, even locks
|
||||
** on other threads and even though the other threads have different
|
||||
** process IDs. Linux threads is inconsistent in this respect.
|
||||
** (I'm beginning to think that linux threads is an abomination too.)
|
||||
** The consequence of this all is that the hash table for the lockInfo
|
||||
** structure has to include the process id as part of its key because
|
||||
** locks in different threads are treated as distinct. But the
|
||||
** openCnt structure should not include the process id in its
|
||||
** key because close() clears lock on all threads, not just the current
|
||||
** thread. Were it not for this goofiness in linux threads, we could
|
||||
** combine the lockInfo and openCnt structures into a single structure.
|
||||
*/
|
||||
|
||||
/*
|
||||
** An instance of the following structure serves as the key used
|
||||
** to locate a particular lockInfo structure given its inode. Note
|
||||
** that we have to include the process ID as part of the key. On some
|
||||
** threading implementations (ex: linux), each thread has a separate
|
||||
** process ID.
|
||||
*/
|
||||
struct lockKey {
|
||||
dev_t dev; /* Device number */
|
||||
ino_t ino; /* Inode number */
|
||||
pid_t pid; /* Process ID */
|
||||
};
|
||||
|
||||
/*
|
||||
** An instance of the following structure is allocated for each open
|
||||
** inode on each thread with a different process ID. (Threads have
|
||||
** different process IDs on linux, but not on most other unixes.)
|
||||
**
|
||||
** A single inode can have multiple file descriptors, so each OsFile
|
||||
** structure contains a pointer to an instance of this object and this
|
||||
** object keeps a count of the number of OsFiles pointing to it.
|
||||
*/
|
||||
struct lockInfo {
|
||||
struct lockKey key; /* The lookup key */
|
||||
int cnt; /* 0: unlocked. -1: write lock. 1...: read lock. */
|
||||
int nRef; /* Number of pointers to this structure */
|
||||
};
|
||||
|
||||
/*
|
||||
** An instance of the following structure serves as the key used
|
||||
** to locate a particular openCnt structure given its inode. This
|
||||
** is the same as the lockKey except that the process ID is omitted.
|
||||
*/
|
||||
struct openKey {
|
||||
dev_t dev; /* Device number */
|
||||
ino_t ino; /* Inode number */
|
||||
};
|
||||
|
||||
/*
|
||||
** An instance of the following structure is allocated for each open
|
||||
** inode. This structure keeps track of the number of locks on that
|
||||
** inode. If a close is attempted against an inode that is holding
|
||||
** locks, the close is deferred until all locks clear by adding the
|
||||
** file descriptor to be closed to the pending list.
|
||||
*/
|
||||
struct openCnt {
|
||||
struct openKey key; /* The lookup key */
|
||||
int nRef; /* Number of pointers to this structure */
|
||||
int nLock; /* Number of outstanding locks */
|
||||
int nPending; /* Number of pending close() operations */
|
||||
int *aPending; /* Malloced space holding fd's awaiting a close() */
|
||||
};
|
||||
|
||||
/*
|
||||
** These hash table maps inodes and process IDs into lockInfo and openCnt
|
||||
** structures. Access to these hash tables must be protected by a mutex.
|
||||
*/
|
||||
static Hash lockHash = { SQLITE_HASH_BINARY, 0, 0, 0, 0, 0 };
|
||||
static Hash openHash = { SQLITE_HASH_BINARY, 0, 0, 0, 0, 0 };
|
||||
|
||||
/*
|
||||
** Release a lockInfo structure previously allocated by findLockInfo().
|
||||
*/
|
||||
static void releaseLockInfo(struct lockInfo *pLock){
|
||||
pLock->nRef--;
|
||||
if( pLock->nRef==0 ){
|
||||
sqlite3HashInsert(&lockHash, &pLock->key, sizeof(pLock->key), 0);
|
||||
sqliteFree(pLock);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Release a openCnt structure previously allocated by findLockInfo().
|
||||
*/
|
||||
static void releaseOpenCnt(struct openCnt *pOpen){
|
||||
pOpen->nRef--;
|
||||
if( pOpen->nRef==0 ){
|
||||
sqlite3HashInsert(&openHash, &pOpen->key, sizeof(pOpen->key), 0);
|
||||
sqliteFree(pOpen->aPending);
|
||||
sqliteFree(pOpen);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Given a file descriptor, locate lockInfo and openCnt structures that
|
||||
** describes that file descriptor. Create a new ones if necessary. The
|
||||
** return values might be unset if an error occurs.
|
||||
**
|
||||
** Return the number of errors.
|
||||
*/
|
||||
int findLockInfo(
|
||||
int fd, /* The file descriptor used in the key */
|
||||
struct lockInfo **ppLock, /* Return the lockInfo structure here */
|
||||
struct openCnt **ppOpen /* Return the openCnt structure here */
|
||||
){
|
||||
int rc;
|
||||
struct lockKey key1;
|
||||
struct openKey key2;
|
||||
struct stat statbuf;
|
||||
struct lockInfo *pLock;
|
||||
struct openCnt *pOpen;
|
||||
rc = fstat(fd, &statbuf);
|
||||
if( rc!=0 ) return 1;
|
||||
memset(&key1, 0, sizeof(key1));
|
||||
key1.dev = statbuf.st_dev;
|
||||
key1.ino = statbuf.st_ino;
|
||||
key1.pid = getpid();
|
||||
memset(&key2, 0, sizeof(key2));
|
||||
key2.dev = statbuf.st_dev;
|
||||
key2.ino = statbuf.st_ino;
|
||||
pLock = (struct lockInfo*)sqlite3HashFind(&lockHash, &key1, sizeof(key1));
|
||||
if( pLock==0 ){
|
||||
struct lockInfo *pOld;
|
||||
pLock = sqliteMallocRaw( sizeof(*pLock) );
|
||||
if( pLock==0 ) return 1;
|
||||
pLock->key = key1;
|
||||
pLock->nRef = 1;
|
||||
pLock->cnt = 0;
|
||||
pOld = sqlite3HashInsert(&lockHash, &pLock->key, sizeof(key1), pLock);
|
||||
if( pOld!=0 ){
|
||||
assert( pOld==pLock );
|
||||
sqliteFree(pLock);
|
||||
return 1;
|
||||
}
|
||||
}else{
|
||||
pLock->nRef++;
|
||||
}
|
||||
*ppLock = pLock;
|
||||
pOpen = (struct openCnt*)sqlite3HashFind(&openHash, &key2, sizeof(key2));
|
||||
if( pOpen==0 ){
|
||||
struct openCnt *pOld;
|
||||
pOpen = sqliteMallocRaw( sizeof(*pOpen) );
|
||||
if( pOpen==0 ){
|
||||
releaseLockInfo(pLock);
|
||||
return 1;
|
||||
}
|
||||
pOpen->key = key2;
|
||||
pOpen->nRef = 1;
|
||||
pOpen->nLock = 0;
|
||||
pOpen->nPending = 0;
|
||||
pOpen->aPending = 0;
|
||||
pOld = sqlite3HashInsert(&openHash, &pOpen->key, sizeof(key2), pOpen);
|
||||
if( pOld!=0 ){
|
||||
assert( pOld==pOpen );
|
||||
sqliteFree(pOpen);
|
||||
releaseLockInfo(pLock);
|
||||
return 1;
|
||||
}
|
||||
}else{
|
||||
pOpen->nRef++;
|
||||
}
|
||||
*ppOpen = pOpen;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
** Delete the named file
|
||||
*/
|
||||
int sqlite3OsDelete(const char *zFilename){
|
||||
unlink(zFilename);
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** Return TRUE if the named file exists.
|
||||
*/
|
||||
int sqlite3OsFileExists(const char *zFilename){
|
||||
return access(zFilename, 0)==0;
|
||||
}
|
||||
|
||||
/*
|
||||
** Attempt to open a file for both reading and writing. If that
|
||||
** fails, try opening it read-only. If the file does not exist,
|
||||
** try to create it.
|
||||
**
|
||||
** On success, a handle for the open file is written to *id
|
||||
** and *pReadonly is set to 0 if the file was opened for reading and
|
||||
** writing or 1 if the file was opened read-only. The function returns
|
||||
** SQLITE_OK.
|
||||
**
|
||||
** On failure, the function returns SQLITE_CANTOPEN and leaves
|
||||
** *id and *pReadonly unchanged.
|
||||
*/
|
||||
int sqlite3OsOpenReadWrite(
|
||||
const char *zFilename,
|
||||
OsFile *id,
|
||||
int *pReadonly
|
||||
){
|
||||
int rc;
|
||||
id->dirfd = -1;
|
||||
id->fd = open(zFilename, O_RDWR|O_CREAT|O_LARGEFILE|O_BINARY, 0644);
|
||||
if( id->fd<0 ){
|
||||
id->fd = open(zFilename, O_RDONLY|O_LARGEFILE|O_BINARY);
|
||||
if( id->fd<0 ){
|
||||
return SQLITE_CANTOPEN;
|
||||
}
|
||||
*pReadonly = 1;
|
||||
}else{
|
||||
*pReadonly = 0;
|
||||
}
|
||||
sqlite3OsEnterMutex();
|
||||
rc = findLockInfo(id->fd, &id->pLock, &id->pOpen);
|
||||
sqlite3OsLeaveMutex();
|
||||
if( rc ){
|
||||
close(id->fd);
|
||||
return SQLITE_NOMEM;
|
||||
}
|
||||
id->locked = 0;
|
||||
TRACE3("OPEN %-3d %s\n", id->fd, zFilename);
|
||||
OpenCounter(+1);
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
** Attempt to open a new file for exclusive access by this process.
|
||||
** The file will be opened for both reading and writing. To avoid
|
||||
** a potential security problem, we do not allow the file to have
|
||||
** previously existed. Nor do we allow the file to be a symbolic
|
||||
** link.
|
||||
**
|
||||
** If delFlag is true, then make arrangements to automatically delete
|
||||
** the file when it is closed.
|
||||
**
|
||||
** On success, write the file handle into *id and return SQLITE_OK.
|
||||
**
|
||||
** On failure, return SQLITE_CANTOPEN.
|
||||
*/
|
||||
int sqlite3OsOpenExclusive(const char *zFilename, OsFile *id, int delFlag){
|
||||
int rc;
|
||||
if( access(zFilename, 0)==0 ){
|
||||
return SQLITE_CANTOPEN;
|
||||
}
|
||||
id->dirfd = -1;
|
||||
id->fd = open(zFilename,
|
||||
O_RDWR|O_CREAT|O_EXCL|O_NOFOLLOW|O_LARGEFILE|O_BINARY, 0600);
|
||||
if( id->fd<0 ){
|
||||
return SQLITE_CANTOPEN;
|
||||
}
|
||||
sqlite3OsEnterMutex();
|
||||
rc = findLockInfo(id->fd, &id->pLock, &id->pOpen);
|
||||
sqlite3OsLeaveMutex();
|
||||
if( rc ){
|
||||
close(id->fd);
|
||||
unlink(zFilename);
|
||||
return SQLITE_NOMEM;
|
||||
}
|
||||
id->locked = 0;
|
||||
if( delFlag ){
|
||||
unlink(zFilename);
|
||||
}
|
||||
TRACE3("OPEN-EX %-3d %s\n", id->fd, zFilename);
|
||||
OpenCounter(+1);
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** Attempt to open a new file for read-only access.
|
||||
**
|
||||
** On success, write the file handle into *id and return SQLITE_OK.
|
||||
**
|
||||
** On failure, return SQLITE_CANTOPEN.
|
||||
*/
|
||||
int sqlite3OsOpenReadOnly(const char *zFilename, OsFile *id){
|
||||
int rc;
|
||||
id->dirfd = -1;
|
||||
id->fd = open(zFilename, O_RDONLY|O_LARGEFILE|O_BINARY);
|
||||
if( id->fd<0 ){
|
||||
return SQLITE_CANTOPEN;
|
||||
}
|
||||
sqlite3OsEnterMutex();
|
||||
rc = findLockInfo(id->fd, &id->pLock, &id->pOpen);
|
||||
sqlite3OsLeaveMutex();
|
||||
if( rc ){
|
||||
close(id->fd);
|
||||
return SQLITE_NOMEM;
|
||||
}
|
||||
id->locked = 0;
|
||||
TRACE3("OPEN-RO %-3d %s\n", id->fd, zFilename);
|
||||
OpenCounter(+1);
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** Attempt to open a file descriptor for the directory that contains a
|
||||
** file. This file descriptor can be used to fsync() the directory
|
||||
** in order to make sure the creation of a new file is actually written
|
||||
** to disk.
|
||||
**
|
||||
** This routine is only meaningful for Unix. It is a no-op under
|
||||
** windows since windows does not support hard links.
|
||||
**
|
||||
** On success, a handle for a previously open file is at *id is
|
||||
** updated with the new directory file descriptor and SQLITE_OK is
|
||||
** returned.
|
||||
**
|
||||
** On failure, the function returns SQLITE_CANTOPEN and leaves
|
||||
** *id unchanged.
|
||||
*/
|
||||
int sqlite3OsOpenDirectory(
|
||||
const char *zDirname,
|
||||
OsFile *id
|
||||
){
|
||||
if( id->fd<0 ){
|
||||
/* Do not open the directory if the corresponding file is not already
|
||||
** open. */
|
||||
return SQLITE_CANTOPEN;
|
||||
}
|
||||
assert( id->dirfd<0 );
|
||||
id->dirfd = open(zDirname, O_RDONLY|O_BINARY, 0644);
|
||||
if( id->dirfd<0 ){
|
||||
return SQLITE_CANTOPEN;
|
||||
}
|
||||
TRACE3("OPENDIR %-3d %s\n", id->dirfd, zDirname);
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** Create a temporary file name in zBuf. zBuf must be big enough to
|
||||
** hold at least SQLITE_TEMPNAME_SIZE characters.
|
||||
*/
|
||||
int sqlite3OsTempFileName(char *zBuf){
|
||||
static const char *azDirs[] = {
|
||||
"/var/tmp",
|
||||
"/usr/tmp",
|
||||
"/tmp",
|
||||
".",
|
||||
};
|
||||
static unsigned char zChars[] =
|
||||
"abcdefghijklmnopqrstuvwxyz"
|
||||
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
|
||||
"0123456789";
|
||||
int i, j;
|
||||
struct stat buf;
|
||||
const char *zDir = ".";
|
||||
for(i=0; i<sizeof(azDirs)/sizeof(azDirs[0]); i++){
|
||||
if( stat(azDirs[i], &buf) ) continue;
|
||||
if( !S_ISDIR(buf.st_mode) ) continue;
|
||||
if( access(azDirs[i], 07) ) continue;
|
||||
zDir = azDirs[i];
|
||||
break;
|
||||
}
|
||||
do{
|
||||
sprintf(zBuf, "%s/"TEMP_FILE_PREFIX, zDir);
|
||||
j = strlen(zBuf);
|
||||
sqlite3Randomness(15, &zBuf[j]);
|
||||
for(i=0; i<15; i++, j++){
|
||||
zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ];
|
||||
}
|
||||
zBuf[j] = 0;
|
||||
}while( access(zBuf,0)==0 );
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** Close a file.
|
||||
*/
|
||||
int sqlite3OsClose(OsFile *id){
|
||||
sqlite3OsUnlock(id);
|
||||
if( id->dirfd>=0 ) close(id->dirfd);
|
||||
id->dirfd = -1;
|
||||
sqlite3OsEnterMutex();
|
||||
if( id->pOpen->nLock ){
|
||||
/* If there are outstanding locks, do not actually close the file just
|
||||
** yet because that would clear those locks. Instead, add the file
|
||||
** descriptor to pOpen->aPending. It will be automatically closed when
|
||||
** the last lock is cleared.
|
||||
*/
|
||||
int *aNew;
|
||||
struct openCnt *pOpen = id->pOpen;
|
||||
pOpen->nPending++;
|
||||
aNew = sqliteRealloc( pOpen->aPending, pOpen->nPending*sizeof(int) );
|
||||
if( aNew==0 ){
|
||||
/* If a malloc fails, just leak the file descriptor */
|
||||
}else{
|
||||
pOpen->aPending = aNew;
|
||||
pOpen->aPending[pOpen->nPending-1] = id->fd;
|
||||
}
|
||||
}else{
|
||||
/* There are no outstanding locks so we can close the file immediately */
|
||||
close(id->fd);
|
||||
}
|
||||
releaseLockInfo(id->pLock);
|
||||
releaseOpenCnt(id->pOpen);
|
||||
sqlite3OsLeaveMutex();
|
||||
TRACE2("CLOSE %-3d\n", id->fd);
|
||||
OpenCounter(-1);
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** Read data from a file into a buffer. Return SQLITE_OK if all
|
||||
** bytes were read successfully and SQLITE_IOERR if anything goes
|
||||
** wrong.
|
||||
*/
|
||||
int sqlite3OsRead(OsFile *id, void *pBuf, int amt){
|
||||
int got;
|
||||
SimulateIOError(SQLITE_IOERR);
|
||||
TIMER_START;
|
||||
got = read(id->fd, pBuf, amt);
|
||||
TIMER_END;
|
||||
TRACE4("READ %-3d %7d %d\n", id->fd, last_page, elapse);
|
||||
SEEK(0);
|
||||
/* if( got<0 ) got = 0; */
|
||||
if( got==amt ){
|
||||
return SQLITE_OK;
|
||||
}else{
|
||||
return SQLITE_IOERR;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Write data from a buffer into a file. Return SQLITE_OK on success
|
||||
** or some other error code on failure.
|
||||
*/
|
||||
int sqlite3OsWrite(OsFile *id, const void *pBuf, int amt){
|
||||
int wrote = 0;
|
||||
SimulateIOError(SQLITE_IOERR);
|
||||
TIMER_START;
|
||||
while( amt>0 && (wrote = write(id->fd, pBuf, amt))>0 ){
|
||||
amt -= wrote;
|
||||
pBuf = &((char*)pBuf)[wrote];
|
||||
}
|
||||
TIMER_END;
|
||||
TRACE4("WRITE %-3d %7d %d\n", id->fd, last_page, elapse);
|
||||
SEEK(0);
|
||||
if( amt>0 ){
|
||||
return SQLITE_FULL;
|
||||
}
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** Move the read/write pointer in a file.
|
||||
*/
|
||||
int sqlite3OsSeek(OsFile *id, off_t offset){
|
||||
SEEK(offset/1024 + 1);
|
||||
lseek(id->fd, offset, SEEK_SET);
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** Make sure all writes to a particular file are committed to disk.
|
||||
**
|
||||
** Under Unix, also make sure that the directory entry for the file
|
||||
** has been created by fsync-ing the directory that contains the file.
|
||||
** If we do not do this and we encounter a power failure, the directory
|
||||
** entry for the journal might not exist after we reboot. The next
|
||||
** SQLite to access the file will not know that the journal exists (because
|
||||
** the directory entry for the journal was never created) and the transaction
|
||||
** will not roll back - possibly leading to database corruption.
|
||||
*/
|
||||
int sqlite3OsSync(OsFile *id){
|
||||
SimulateIOError(SQLITE_IOERR);
|
||||
TRACE2("SYNC %-3d\n", id->fd);
|
||||
if( fsync(id->fd) ){
|
||||
return SQLITE_IOERR;
|
||||
}else{
|
||||
if( id->dirfd>=0 ){
|
||||
TRACE2("DIRSYNC %-3d\n", id->dirfd);
|
||||
fsync(id->dirfd);
|
||||
close(id->dirfd); /* Only need to sync once, so close the directory */
|
||||
id->dirfd = -1; /* when we are done. */
|
||||
}
|
||||
return SQLITE_OK;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Truncate an open file to a specified size
|
||||
*/
|
||||
int sqlite3OsTruncate(OsFile *id, off_t nByte){
|
||||
SimulateIOError(SQLITE_IOERR);
|
||||
return ftruncate(id->fd, nByte)==0 ? SQLITE_OK : SQLITE_IOERR;
|
||||
}
|
||||
|
||||
/*
|
||||
** Determine the current size of a file in bytes
|
||||
*/
|
||||
int sqlite3OsFileSize(OsFile *id, off_t *pSize){
|
||||
struct stat buf;
|
||||
SimulateIOError(SQLITE_IOERR);
|
||||
if( fstat(id->fd, &buf)!=0 ){
|
||||
return SQLITE_IOERR;
|
||||
}
|
||||
*pSize = buf.st_size;
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
** Change the status of the lock on the file "id" to be a readlock.
|
||||
** If the file was write locked, then this reduces the lock to a read.
|
||||
** If the file was read locked, then this acquires a new read lock.
|
||||
**
|
||||
** Return SQLITE_OK on success and SQLITE_BUSY on failure. If this
|
||||
** library was compiled with large file support (LFS) but LFS is not
|
||||
** available on the host, then an SQLITE_NOLFS is returned.
|
||||
*/
|
||||
int sqlite3OsReadLock(OsFile *id){
|
||||
int rc;
|
||||
sqlite3OsEnterMutex();
|
||||
if( id->pLock->cnt>0 ){
|
||||
if( !id->locked ){
|
||||
id->pLock->cnt++;
|
||||
id->locked = 1;
|
||||
id->pOpen->nLock++;
|
||||
}
|
||||
rc = SQLITE_OK;
|
||||
}else if( id->locked || id->pLock->cnt==0 ){
|
||||
struct flock lock;
|
||||
int s;
|
||||
lock.l_type = F_RDLCK;
|
||||
lock.l_whence = SEEK_SET;
|
||||
lock.l_start = lock.l_len = 0L;
|
||||
s = fcntl(id->fd, F_SETLK, &lock);
|
||||
if( s!=0 ){
|
||||
rc = (errno==EINVAL) ? SQLITE_NOLFS : SQLITE_BUSY;
|
||||
}else{
|
||||
rc = SQLITE_OK;
|
||||
if( !id->locked ){
|
||||
id->pOpen->nLock++;
|
||||
id->locked = 1;
|
||||
}
|
||||
id->pLock->cnt = 1;
|
||||
}
|
||||
}else{
|
||||
rc = SQLITE_BUSY;
|
||||
}
|
||||
sqlite3OsLeaveMutex();
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
** Change the lock status to be an exclusive or write lock. Return
|
||||
** SQLITE_OK on success and SQLITE_BUSY on a failure. If this
|
||||
** library was compiled with large file support (LFS) but LFS is not
|
||||
** available on the host, then an SQLITE_NOLFS is returned.
|
||||
*/
|
||||
int sqlite3OsWriteLock(OsFile *id){
|
||||
int rc;
|
||||
sqlite3OsEnterMutex();
|
||||
if( id->pLock->cnt==0 || (id->pLock->cnt==1 && id->locked==1) ){
|
||||
struct flock lock;
|
||||
int s;
|
||||
lock.l_type = F_WRLCK;
|
||||
lock.l_whence = SEEK_SET;
|
||||
lock.l_start = lock.l_len = 0L;
|
||||
s = fcntl(id->fd, F_SETLK, &lock);
|
||||
if( s!=0 ){
|
||||
rc = (errno==EINVAL) ? SQLITE_NOLFS : SQLITE_BUSY;
|
||||
}else{
|
||||
rc = SQLITE_OK;
|
||||
if( !id->locked ){
|
||||
id->pOpen->nLock++;
|
||||
id->locked = 1;
|
||||
}
|
||||
id->pLock->cnt = -1;
|
||||
}
|
||||
}else{
|
||||
rc = SQLITE_BUSY;
|
||||
}
|
||||
sqlite3OsLeaveMutex();
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
** Unlock the given file descriptor. If the file descriptor was
|
||||
** not previously locked, then this routine is a no-op. If this
|
||||
** library was compiled with large file support (LFS) but LFS is not
|
||||
** available on the host, then an SQLITE_NOLFS is returned.
|
||||
*/
|
||||
int sqlite3OsUnlock(OsFile *id){
|
||||
int rc;
|
||||
if( !id->locked ) return SQLITE_OK;
|
||||
sqlite3OsEnterMutex();
|
||||
assert( id->pLock->cnt!=0 );
|
||||
if( id->pLock->cnt>1 ){
|
||||
id->pLock->cnt--;
|
||||
rc = SQLITE_OK;
|
||||
}else{
|
||||
struct flock lock;
|
||||
int s;
|
||||
lock.l_type = F_UNLCK;
|
||||
lock.l_whence = SEEK_SET;
|
||||
lock.l_start = lock.l_len = 0L;
|
||||
s = fcntl(id->fd, F_SETLK, &lock);
|
||||
if( s!=0 ){
|
||||
rc = (errno==EINVAL) ? SQLITE_NOLFS : SQLITE_BUSY;
|
||||
}else{
|
||||
rc = SQLITE_OK;
|
||||
id->pLock->cnt = 0;
|
||||
}
|
||||
}
|
||||
if( rc==SQLITE_OK ){
|
||||
/* Decrement the count of locks against this same file. When the
|
||||
** count reaches zero, close any other file descriptors whose close
|
||||
** was deferred because of outstanding locks.
|
||||
*/
|
||||
struct openCnt *pOpen = id->pOpen;
|
||||
pOpen->nLock--;
|
||||
assert( pOpen->nLock>=0 );
|
||||
if( pOpen->nLock==0 && pOpen->nPending>0 ){
|
||||
int i;
|
||||
for(i=0; i<pOpen->nPending; i++){
|
||||
close(pOpen->aPending[i]);
|
||||
}
|
||||
sqliteFree(pOpen->aPending);
|
||||
pOpen->nPending = 0;
|
||||
pOpen->aPending = 0;
|
||||
}
|
||||
}
|
||||
sqlite3OsLeaveMutex();
|
||||
id->locked = 0;
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
** Get information to seed the random number generator. The seed
|
||||
** is written into the buffer zBuf[256]. The calling function must
|
||||
** supply a sufficiently large buffer.
|
||||
*/
|
||||
int sqlite3OsRandomSeed(char *zBuf){
|
||||
/* We have to initialize zBuf to prevent valgrind from reporting
|
||||
** errors. The reports issued by valgrind are incorrect - we would
|
||||
** prefer that the randomness be increased by making use of the
|
||||
** uninitialized space in zBuf - but valgrind errors tend to worry
|
||||
** some users. Rather than argue, it seems easier just to initialize
|
||||
** the whole array and silence valgrind, even if that means less randomness
|
||||
** in the random seed.
|
||||
**
|
||||
** When testing, initializing zBuf[] to zero is all we do. That means
|
||||
** that we always use the same random number sequence.* This makes the
|
||||
** tests repeatable.
|
||||
*/
|
||||
memset(zBuf, 0, 256);
|
||||
#if !defined(SQLITE_TEST)
|
||||
{
|
||||
int pid;
|
||||
time((time_t*)zBuf);
|
||||
pid = getpid();
|
||||
memcpy(&zBuf[sizeof(time_t)], &pid, sizeof(pid));
|
||||
}
|
||||
#endif
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** Sleep for a little while. Return the amount of time slept.
|
||||
*/
|
||||
int sqlite3OsSleep(int ms){
|
||||
#if defined(HAVE_USLEEP) && HAVE_USLEEP
|
||||
usleep(ms*1000);
|
||||
return ms;
|
||||
#else
|
||||
sleep((ms+999)/1000);
|
||||
return 1000*((ms+999)/1000);
|
||||
#endif
|
||||
}
|
||||
|
||||
/*
|
||||
** Static variables used for thread synchronization
|
||||
*/
|
||||
static int inMutex = 0;
|
||||
static pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
|
||||
|
||||
/*
|
||||
** The following pair of routine implement mutual exclusion for
|
||||
** multi-threaded processes. Only a single thread is allowed to
|
||||
** executed code that is surrounded by EnterMutex() and LeaveMutex().
|
||||
**
|
||||
** SQLite uses only a single Mutex. There is not much critical
|
||||
** code and what little there is executes quickly and without blocking.
|
||||
*/
|
||||
void sqlite3OsEnterMutex(){
|
||||
#ifdef SQLITE_UNIX_THREADS
|
||||
pthread_mutex_lock(&mutex);
|
||||
#endif
|
||||
assert( !inMutex );
|
||||
inMutex = 1;
|
||||
}
|
||||
void sqlite3OsLeaveMutex(){
|
||||
assert( inMutex );
|
||||
inMutex = 0;
|
||||
#ifdef SQLITE_UNIX_THREADS
|
||||
pthread_mutex_unlock(&mutex);
|
||||
#endif
|
||||
}
|
||||
|
||||
/*
|
||||
** Turn a relative pathname into a full pathname. Return a pointer
|
||||
** to the full pathname stored in space obtained from sqliteMalloc().
|
||||
** The calling function is responsible for freeing this space once it
|
||||
** is no longer needed.
|
||||
*/
|
||||
char *sqlite3OsFullPathname(const char *zRelative){
|
||||
char *zFull = 0;
|
||||
if( zRelative[0]=='/' ){
|
||||
sqlite3SetString(&zFull, zRelative, (char*)0);
|
||||
}else{
|
||||
char zBuf[5000];
|
||||
sqlite3SetString(&zFull, getcwd(zBuf, sizeof(zBuf)), "/", zRelative,
|
||||
(char*)0);
|
||||
}
|
||||
return zFull;
|
||||
}
|
||||
|
||||
/*
|
||||
** The following variable, if set to a non-zero value, becomes the result
|
||||
** returned from sqlite3OsCurrentTime(). This is used for testing.
|
||||
*/
|
||||
#ifdef SQLITE_TEST
|
||||
int sqlite3_current_time = 0;
|
||||
#endif
|
||||
|
||||
/*
|
||||
** Find the current time (in Universal Coordinated Time). Write the
|
||||
** current time and date as a Julian Day number into *prNow and
|
||||
** return 0. Return 1 if the time and date cannot be found.
|
||||
*/
|
||||
int sqlite3OsCurrentTime(double *prNow){
|
||||
time_t t;
|
||||
time(&t);
|
||||
*prNow = t/86400.0 + 2440587.5;
|
||||
#ifdef SQLITE_TEST
|
||||
if( sqlite3_current_time ){
|
||||
*prNow = sqlite3_current_time/86400.0 + 2440587.5;
|
||||
}
|
||||
#endif
|
||||
return 0;
|
||||
}
|
||||
|
||||
#endif /* OS_UNIX */
|
||||
Reference in New Issue
Block a user