1
0
mirror of https://github.com/sqlite/sqlite.git synced 2025-07-29 08:01:23 +03:00

Initial attempt at getting R-Tree queries to work using a priority queue.

This check-in compiles, but R-Trees do not work well.  And there are
debugging printf()s left in the code.  This is an incremental check-in.

FossilOrigin-Name: 53688a25c23c394278a357829793889970aa4157
This commit is contained in:
drh
2014-04-15 21:06:14 +00:00
parent de8c279b28
commit 96ce1b36aa
3 changed files with 381 additions and 183 deletions

View File

@ -63,6 +63,7 @@
#include <string.h>
#include <assert.h>
#include <stdio.h>
#ifndef SQLITE_AMALGAMATION
#include "sqlite3rtree.h"
@ -86,6 +87,7 @@ typedef struct RtreeConstraint RtreeConstraint;
typedef struct RtreeMatchArg RtreeMatchArg;
typedef struct RtreeGeomCallback RtreeGeomCallback;
typedef union RtreeCoord RtreeCoord;
typedef struct RtreeSearchPoint RtreeSearchPoint;
/* The rtree may have between 1 and RTREE_MAX_DIMENSIONS dimensions. */
#define RTREE_MAX_DIMENSIONS 5
@ -165,6 +167,23 @@ struct Rtree {
typedef float RtreeValue; /* Low accuracy coordinate */
#endif
/*
** When doing a search of an r-tree, instances of the following structure
** record intermediate results from the tree walk.
**
** The id is always a node-id. For iLevel>=1 the id is the node-id of
** the node that the RtreeSearchPoint represents. When iLevel==0, however,
** the id is of the parent node and the cell that RtreeSearchPoint
** represents is the iCell-th entry in the parent node.
*/
struct RtreeSearchPoint {
RtreeDValue rScore; /* The score for this node. Smallest goes first. */
sqlite3_int64 id; /* Node ID */
u8 iLevel; /* 0=entries. 1=leaf node. 2+ for higher */
u8 eWithin; /* PARTLY_WITHIN or FULLY_WITHIN */
u8 iCell; /* Cell index within the node */
};
/*
** The minimum number of cells allowed for a node is a third of the
** maximum. In Gutman's notation:
@ -187,18 +206,34 @@ struct Rtree {
*/
#define RTREE_MAX_DEPTH 40
/*
** Number of entries in the cursor RtreeNode cache. The first entry is
** used to cache the RtreeNode for RtreeCursor.sPoint. The remaining
** entries cache the RtreeNode for the first elements of the priority queue.
*/
#define RTREE_CACHE_SZ 5
/*
** An rtree cursor object.
*/
struct RtreeCursor {
sqlite3_vtab_cursor base; /* Base class. Must be first */
RtreeNode *pNode; /* Node cursor is currently pointing at */
int iCell; /* Index of current cell in pNode */
u8 atEOF; /* True if at end of search */
u8 bPoint; /* True if sPoint is valid */
int iStrategy; /* Copy of idxNum search parameter */
int nConstraint; /* Number of entries in aConstraint */
RtreeConstraint *aConstraint; /* Search constraints. */
int nPointAlloc; /* Number of slots allocated for aPoint[] */
int nPoint; /* Number of slots used in aPoint[] */
RtreeSearchPoint *aPoint; /* Priority queue for search points */
RtreeSearchPoint sPoint; /* Cached next search point */
RtreeNode *aNode[RTREE_CACHE_SZ]; /* Rtree node cache */
};
/* Return the Rtree of a RtreeCursor */
#define RTREE_OF_CURSOR(X) ((Rtree*)((X)->base.pVtab))
/*
** A coordinate can be either a floating point number or a integer. All
** coordinates within a single R-Tree are always of the same time.
@ -247,6 +282,7 @@ struct RtreeConstraint {
#define RTREE_MATCH 0x46 /* Old-style sqlite3_rtree_geometry_callback() */
#define RTREE_QUERY 0x47 /* New-style sqlite3_rtree_query_callback() */
/*
** An rtree structure node.
*/
@ -838,12 +874,13 @@ static void freeCursorConstraints(RtreeCursor *pCsr){
*/
static int rtreeClose(sqlite3_vtab_cursor *cur){
Rtree *pRtree = (Rtree *)(cur->pVtab);
int rc;
int ii;
RtreeCursor *pCsr = (RtreeCursor *)cur;
freeCursorConstraints(pCsr);
rc = nodeRelease(pRtree, pCsr->pNode);
sqlite3_free(pCsr->aPoint);
for(ii=0; ii<RTREE_CACHE_SZ; ii++) nodeRelease(pRtree, pCsr->aNode[ii]);
sqlite3_free(pCsr);
return rc;
return SQLITE_OK;
}
/*
@ -854,14 +891,14 @@ static int rtreeClose(sqlite3_vtab_cursor *cur){
*/
static int rtreeEof(sqlite3_vtab_cursor *cur){
RtreeCursor *pCsr = (RtreeCursor *)cur;
return (pCsr->pNode==0);
return pCsr->atEOF;
}
/*
** The r-tree constraint passed as the second argument to this function is
** guaranteed to be a MATCH constraint.
*/
static int testRtreeGeom(
static int rtreeTestGeom(
Rtree *pRtree, /* R-Tree object */
RtreeConstraint *pConstraint, /* MATCH constraint to test */
RtreeCell *pCell, /* Cell to test */
@ -883,24 +920,39 @@ static int testRtreeGeom(
/*
** Cursor pCursor currently points to a cell in a non-leaf page.
** Set *pbEof to true if the sub-tree headed by the cell is filtered
** (excluded) by the constraints in the pCursor->aConstraint[]
** array, or false otherwise.
** Set *peWithin to NOT_WITHIN if the constraints in pCursor->aConstraint[]
** are guaranteed to never be satisfied by any subelement under the
** current cell. If some subelement of the cell might satisfy all
** constraints, then set *peWithin to PARTLY_WITHIN. If all subelements
** of the cell are guaranteed to fully satisfy all constraints, then
** set *peWithin to FULLY_WITHIN.
**
** In other words, set *peWithin to NOT_WITHIN, PARTLY_WITHIN, or
** FULLY_WITHIN if the cell is completely outside of the field-of-view,
** overlaps the field of view, or is completely contained within the
** field of view, respectively.
**
** It is not an error to set *peWithin to PARTLY_WITHIN when FULLY_WITHIN
** would be correct. Doing so is suboptimal, but will still give the
** correct answer.
**
** Return SQLITE_OK if successful or an SQLite error code if an error
** occurs within a geometry callback.
** occurs. Errors can only possible if there is a geometry callback.
*/
static int testRtreeCell(Rtree *pRtree, RtreeCursor *pCursor, int *pbEof){
RtreeCell cell;
static int rtreeTestCell(
RtreeCursor *pCursor, /* The cursor to check */
RtreeCell *pCell, /* The cell to check */
int *peWithin /* Set true if element is out-of-bounds */
){
int ii;
int bRes = 0;
int bOutOfBounds = 0;
int rc = SQLITE_OK;
Rtree *pRtree = RTREE_OF_CURSOR(pCursor);
nodeGetCell(pRtree, pCursor->pNode, pCursor->iCell, &cell);
for(ii=0; bRes==0 && ii<pCursor->nConstraint; ii++){
for(ii=0; bOutOfBounds==0 && ii<pCursor->nConstraint; ii++){
RtreeConstraint *p = &pCursor->aConstraint[ii];
RtreeDValue cell_min = DCOORD(cell.aCoord[(p->iCoord>>1)*2]);
RtreeDValue cell_max = DCOORD(cell.aCoord[(p->iCoord>>1)*2+1]);
RtreeDValue cell_min = DCOORD(pCell->aCoord[(p->iCoord>>1)*2]);
RtreeDValue cell_max = DCOORD(pCell->aCoord[(p->iCoord>>1)*2+1]);
assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE
|| p->op==RTREE_GT || p->op==RTREE_EQ || p->op==RTREE_MATCH
@ -908,52 +960,61 @@ static int testRtreeCell(Rtree *pRtree, RtreeCursor *pCursor, int *pbEof){
switch( p->op ){
case RTREE_LE: case RTREE_LT:
bRes = p->u.rValue<cell_min;
bOutOfBounds = p->u.rValue<cell_min;
break;
case RTREE_GE: case RTREE_GT:
bRes = p->u.rValue>cell_max;
bOutOfBounds = p->u.rValue>cell_max;
break;
case RTREE_EQ:
bRes = (p->u.rValue>cell_max || p->u.rValue<cell_min);
bOutOfBounds = (p->u.rValue>cell_max || p->u.rValue<cell_min);
break;
default: {
assert( p->op==RTREE_MATCH );
rc = testRtreeGeom(pRtree, p, &cell, &bRes);
bRes = !bRes;
rc = rtreeTestGeom(pRtree, p, pCell, &bOutOfBounds);
bOutOfBounds = !bOutOfBounds;
break;
}
}
}
*pbEof = bRes;
*peWithin = bOutOfBounds ? NOT_WITHIN : PARTLY_WITHIN;
return rc;
}
/*
** Test if the cell that cursor pCursor currently points to
** would be filtered (excluded) by the constraints in the
** pCursor->aConstraint[] array. If so, set *pbEof to true before
** returning. If the cell is not filtered (excluded) by the constraints,
** set pbEof to zero.
** pCursor points to a leaf r-tree entry which is a candidate for output.
** This routine sets *peWithin to one of NOT_WITHIN, PARTLY_WITHIN, or
** FULLY_WITHIN depending on whether or not the leaf entry is completely
** outside the region defined by pCursor->aConstraints[], or overlaps the
** region, or is completely within the region, respectively.
**
** This routine is more selective than rtreeTestCell(). rtreeTestCell()
** will return PARTLY_WITHIN or FULLY_WITHIN if the constraints are such
** that a subelement of the cell to be included in the result set. This
** routine is is only called for leaf r-tree entries and does not need
** to concern itself with subelements. Hence it only sets *peWithin to
** PARTLY_WITHIN or FULLY_WITHIN if the cell itself meets the requirements.
**
** Return SQLITE_OK if successful or an SQLite error code if an error
** occurs within a geometry callback.
**
** This function assumes that the cell is part of a leaf node.
*/
static int testRtreeEntry(Rtree *pRtree, RtreeCursor *pCursor, int *pbEof){
RtreeCell cell;
static int rtreeTestEntry(
RtreeCursor *pCursor, /* Cursor pointing to the leaf element */
RtreeCell *pCell, /* The cell to check */
int *peWithin /* OUT: NOT_WITHIN, PARTLY_WITHIN, or FULLY_WITHIN */
){
Rtree *pRtree = RTREE_OF_CURSOR(pCursor);
int ii;
*pbEof = 0;
int res = 1; /* Innocent until proven guilty */
nodeGetCell(pRtree, pCursor->pNode, pCursor->iCell, &cell);
for(ii=0; ii<pCursor->nConstraint; ii++){
for(ii=0; res && ii<pCursor->nConstraint; ii++){
RtreeConstraint *p = &pCursor->aConstraint[ii];
RtreeDValue coord = DCOORD(cell.aCoord[p->iCoord]);
int res;
RtreeDValue coord = DCOORD(pCell->aCoord[p->iCoord]);
assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE
|| p->op==RTREE_GT || p->op==RTREE_EQ || p->op==RTREE_MATCH
);
@ -966,85 +1027,19 @@ static int testRtreeEntry(Rtree *pRtree, RtreeCursor *pCursor, int *pbEof){
default: {
int rc;
assert( p->op==RTREE_MATCH );
rc = testRtreeGeom(pRtree, p, &cell, &res);
rc = rtreeTestGeom(pRtree, p, pCell, &res);
if( rc!=SQLITE_OK ){
return rc;
}
break;
}
}
if( !res ){
*pbEof = 1;
return SQLITE_OK;
}
}
*peWithin = res ? FULLY_WITHIN : NOT_WITHIN;
return SQLITE_OK;
}
/*
** Cursor pCursor currently points at a node that heads a sub-tree of
** height iHeight (if iHeight==0, then the node is a leaf). Descend
** to point to the left-most cell of the sub-tree that matches the
** configured constraints.
*/
static int descendToCell(
Rtree *pRtree,
RtreeCursor *pCursor,
int iHeight,
int *pEof /* OUT: Set to true if cannot descend */
){
int isEof;
int rc;
int ii;
RtreeNode *pChild;
sqlite3_int64 iRowid;
RtreeNode *pSavedNode = pCursor->pNode;
int iSavedCell = pCursor->iCell;
assert( iHeight>=0 );
if( iHeight==0 ){
rc = testRtreeEntry(pRtree, pCursor, &isEof);
}else{
rc = testRtreeCell(pRtree, pCursor, &isEof);
}
if( rc!=SQLITE_OK || isEof || iHeight==0 ){
goto descend_to_cell_out;
}
iRowid = nodeGetRowid(pRtree, pCursor->pNode, pCursor->iCell);
rc = nodeAcquire(pRtree, iRowid, pCursor->pNode, &pChild);
if( rc!=SQLITE_OK ){
goto descend_to_cell_out;
}
nodeRelease(pRtree, pCursor->pNode);
pCursor->pNode = pChild;
isEof = 1;
for(ii=0; isEof && ii<NCELL(pChild); ii++){
pCursor->iCell = ii;
rc = descendToCell(pRtree, pCursor, iHeight-1, &isEof);
if( rc!=SQLITE_OK ){
goto descend_to_cell_out;
}
}
if( isEof ){
assert( pCursor->pNode==pChild );
nodeReference(pSavedNode);
nodeRelease(pRtree, pChild);
pCursor->pNode = pSavedNode;
pCursor->iCell = iSavedCell;
}
descend_to_cell_out:
*pEof = isEof;
return rc;
}
/*
** One of the cells in node pNode is guaranteed to have a 64-bit
** integer value equal to iRowid. Return the index of this cell.
@ -1057,6 +1052,7 @@ static int nodeRowidIndex(
){
int ii;
int nCell = NCELL(pNode);
assert( nCell<200 );
for(ii=0; ii<nCell; ii++){
if( nodeGetRowid(pRtree, pNode, ii)==iRowid ){
*piIndex = ii;
@ -1079,48 +1075,241 @@ static int nodeParentIndex(Rtree *pRtree, RtreeNode *pNode, int *piIndex){
return SQLITE_OK;
}
/*
** Compare two search points. Return negative, zero, or positive if the first
** is less than, equal to, or greater than the second.
*/
static int rtreeSearchPointCompare(
const RtreeSearchPoint *pA,
const RtreeSearchPoint *pB
){
if( pA->rScore<pB->rScore ) return -1;
if( pA->rScore>pB->rScore ) return +1;
if( pA->iLevel<pB->iLevel ) return -1;
if( pA->iLevel>pB->iLevel ) return +1;
return 0;
}
/*
** Interchange to search points in a cursor.
*/
static void rtreeSearchPointSwap(RtreeCursor *p, int i, int j){
RtreeSearchPoint t = p->aPoint[i];
assert( i<j );
p->aPoint[i] = p->aPoint[j];
p->aPoint[j] = t;
if( i<RTREE_CACHE_SZ-1 ){
if( j>=RTREE_CACHE_SZ-1 ){
nodeRelease(RTREE_OF_CURSOR(p), p->aNode[i+1]);
p->aNode[i+1] = 0;
}else{
RtreeNode *pTemp = p->aNode[i+i];
p->aNode[i+1] = p->aNode[j+1];
p->aNode[j+1] = pTemp;
}
}
}
/*
** Return the search point with the lowest current score.
*/
static RtreeSearchPoint *rtreeSearchPointFirst(RtreeCursor *pCur){
return pCur->bPoint ? &pCur->sPoint : pCur->nPoint ? pCur->aPoint : 0;
}
/*
** Get the RtreeNode for the search point with the lowest score.
*/
static RtreeNode *rtreeNodeOfFirstSearchPoint(RtreeCursor *pCur, int *pRC){
sqlite3_int64 id;
int ii = 1 - pCur->bPoint;
assert( ii==0 || ii==1 );
assert( pCur->bPoint || pCur->nPoint );
if( pCur->aNode[ii]==0 ){
assert( pRC!=0 );
id = ii ? pCur->aPoint[0].id : pCur->sPoint.id;
*pRC = nodeAcquire(RTREE_OF_CURSOR(pCur), id, 0, &pCur->aNode[ii]);
}
return pCur->aNode[ii];
}
/*
** Push a new element onto the priority queue
*/
static RtreeSearchPoint *rtreeEnqueue(
RtreeCursor *pCur, /* The cursor */
RtreeDValue rScore, /* Score for the new search point */
u8 iLevel /* Level for the new search point */
){
int i, j;
RtreeSearchPoint *pNew;
if( pCur->nPoint>=pCur->nPointAlloc ){
int nNew = pCur->nPointAlloc*2 + 8;
pNew = sqlite3_realloc(pCur->aPoint, nNew*sizeof(pCur->aPoint[0]));
if( pNew==0 ) return 0;
pCur->aPoint = pNew;
pCur->nPointAlloc = nNew;
}
i = pCur->nPoint++;
pNew = pCur->aPoint + i;
pNew->rScore = rScore;
pNew->iLevel = iLevel;
while( i>0 ){
RtreeSearchPoint *pParent;
j = (i-1)/2;
pParent = pCur->aPoint + j;
if( rtreeSearchPointCompare(pNew, pParent)>=0 ) break;
rtreeSearchPointSwap(pCur, j, i);
i = j;
pNew = pParent;
}
return pNew;
}
/*
** Allocate a new RtreeSearchPoint and return a pointer to it. Return
** NULL if malloc fails.
*/
static RtreeSearchPoint *rtreeSearchPointNew(
RtreeCursor *pCur, /* The cursor */
RtreeDValue rScore, /* Score for the new search point */
u8 iLevel /* Level for the new search point */
){
RtreeSearchPoint *pNew, *pFirst;
pFirst = rtreeSearchPointFirst(pCur);
if( pFirst==0
|| pFirst->rScore>rScore
|| (pFirst->rScore==rScore && pFirst->iLevel>iLevel)
){
if( pCur->bPoint ){
pNew = rtreeEnqueue(pCur, rScore, iLevel);
if( pNew==0 ) return 0;
assert( pCur->aNode[1]==0 );
pCur->aNode[1] = pCur->aNode[0];
pCur->aNode[0] = 0;
*pNew = pCur->sPoint;
}
pCur->sPoint.rScore = rScore;
pCur->sPoint.iLevel = iLevel;
pCur->bPoint = 1;
return &pCur->sPoint;
}else{
return rtreeEnqueue(pCur, rScore, iLevel);
}
}
static void traceTop(RtreeCursor *pCur, const char *zPrefix){
RtreeSearchPoint *p = rtreeSearchPointFirst(pCur);
if( p ){
printf("=== %6s id=%lld lvl=%d iCell=%d rScore=%g eWithin=%d\n",
zPrefix, p->id, p->iLevel, p->iCell, p->rScore, p->eWithin);
}
}
/* Remove the search point with the lowest current score.
*/
static void rtreeSearchPointPop(RtreeCursor *p){
int i, j, k, n;
i = p->bPoint;
assert( i==0 || i==1 );
if( p->aNode[i] ){
nodeRelease(RTREE_OF_CURSOR(p), p->aNode[i]);
p->aNode[i] = 0;
}
if( p->bPoint ){
p->bPoint = 0;
}else if( p->nPoint ){
n = --p->nPoint;
p->aPoint[0] = p->aPoint[n];
i = 0;
while( (j = i*2+1)<n ){
k = j+1;
if( k<n && rtreeSearchPointCompare(&p->aPoint[k], &p->aPoint[j])<0 ){
if( rtreeSearchPointCompare(&p->aPoint[k], &p->aPoint[i])<0 ){
rtreeSearchPointSwap(p, i, k);
i = k;
}else{
break;
}
}else{
if( rtreeSearchPointCompare(&p->aPoint[j], &p->aPoint[i])<0 ){
rtreeSearchPointSwap(p, i, j);
i = j;
}else{
break;
}
}
}
}
}
/*
** Continue the search on cursor pCur until the front of the queue
** contains an entry suitable for returning as a result-set row,
** or until the RtreeSearchPoint queue is empty, indicating that the
** query has completed.
*/
static int rtreeStepToLeaf(RtreeCursor *pCur){
RtreeSearchPoint *p;
RtreeSearchPoint *pNew;
Rtree *pRtree = RTREE_OF_CURSOR(pCur);
RtreeNode *pNode;
int eWithin;
int rc = SQLITE_OK;
int nCell;
RtreeCell cell;
RtreeSearchPoint x;
while( (p = rtreeSearchPointFirst(pCur))!=0 && p->iLevel>0 ){
pNode = rtreeNodeOfFirstSearchPoint(pCur, &rc);
if( rc ) return rc;
nCell = NCELL(pNode);
assert( nCell<200 );
while( p->iCell<nCell ){
nodeGetCell(pRtree, pNode, p->iCell, &cell);
if( p->iLevel==1 ){
rc = rtreeTestEntry(pCur, &cell, &eWithin);
}else{
rc = rtreeTestCell(pCur, &cell, &eWithin);
}
if( rc ) return rc;
x = *p;
p->iCell++;
if( p->iCell>=nCell ){
traceTop(pCur, "POP:");
rtreeSearchPointPop(pCur);
}
if( eWithin==NOT_WITHIN ) continue;
pNew = rtreeSearchPointNew(pCur, /*rScore*/0.0, x.iLevel-1);
if( pNew==0 ) return SQLITE_NOMEM;
pNew->eWithin = eWithin;
if( pNew->iLevel ){
pNew->id = cell.iRowid;
pNew->iCell = 0;
}else{
pNew->id = x.id;
pNew->iCell = x.iCell;
}
traceTop(pCur, "PUSH:");
break;
}
}
pCur->atEOF = p==0;
return SQLITE_OK;
}
/*
** Rtree virtual table module xNext method.
*/
static int rtreeNext(sqlite3_vtab_cursor *pVtabCursor){
Rtree *pRtree = (Rtree *)(pVtabCursor->pVtab);
RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor;
int rc = SQLITE_OK;
/* RtreeCursor.pNode must not be NULL. If is is NULL, then this cursor is
** already at EOF. It is against the rules to call the xNext() method of
** a cursor that has already reached EOF.
*/
assert( pCsr->pNode );
if( pCsr->iStrategy==1 ){
/* This "scan" is a direct lookup by rowid. There is no next entry. */
nodeRelease(pRtree, pCsr->pNode);
pCsr->pNode = 0;
}else{
/* Move to the next entry that matches the configured constraints. */
int iHeight = 0;
while( pCsr->pNode ){
RtreeNode *pNode = pCsr->pNode;
int nCell = NCELL(pNode);
for(pCsr->iCell++; pCsr->iCell<nCell; pCsr->iCell++){
int isEof;
rc = descendToCell(pRtree, pCsr, iHeight, &isEof);
if( rc!=SQLITE_OK || !isEof ){
return rc;
}
}
pCsr->pNode = pNode->pParent;
rc = nodeParentIndex(pRtree, pNode, &pCsr->iCell);
if( rc!=SQLITE_OK ){
return rc;
}
nodeReference(pCsr->pNode);
nodeRelease(pRtree, pNode);
iHeight++;
}
}
/* Move to the next entry that matches the configured constraints. */
traceTop(pCsr, "POP:");
rtreeSearchPointPop(pCsr);
rtreeStepToLeaf(pCsr);
return rc;
}
@ -1128,13 +1317,14 @@ static int rtreeNext(sqlite3_vtab_cursor *pVtabCursor){
** Rtree virtual table module xRowid method.
*/
static int rtreeRowid(sqlite3_vtab_cursor *pVtabCursor, sqlite_int64 *pRowid){
Rtree *pRtree = (Rtree *)pVtabCursor->pVtab;
RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor;
assert(pCsr->pNode);
*pRowid = nodeGetRowid(pRtree, pCsr->pNode, pCsr->iCell);
return SQLITE_OK;
RtreeSearchPoint *p = rtreeSearchPointFirst(pCsr);
int rc = SQLITE_OK;
RtreeNode *pNode = rtreeNodeOfFirstSearchPoint(pCsr, &rc);
if( rc==SQLITE_OK && p ){
*pRowid = nodeGetRowid(RTREE_OF_CURSOR(pCsr), pNode, p->iCell);
}
return rc;
}
/*
@ -1143,13 +1333,18 @@ static int rtreeRowid(sqlite3_vtab_cursor *pVtabCursor, sqlite_int64 *pRowid){
static int rtreeColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){
Rtree *pRtree = (Rtree *)cur->pVtab;
RtreeCursor *pCsr = (RtreeCursor *)cur;
RtreeSearchPoint *p = rtreeSearchPointFirst(pCsr);
RtreeCoord c;
int rc = SQLITE_OK;
RtreeNode *pNode = rtreeNodeOfFirstSearchPoint(pCsr, &rc);
if( rc ) return rc;
if( p==0 ) return SQLITE_OK;
if( i==0 ){
i64 iRowid = nodeGetRowid(pRtree, pCsr->pNode, pCsr->iCell);
sqlite3_result_int64(ctx, iRowid);
sqlite3_result_int64(ctx, nodeGetRowid(pRtree, pNode, p->iCell));
}else{
RtreeCoord c;
nodeGetCoord(pRtree, pCsr->pNode, pCsr->iCell, i-1, &c);
if( rc ) return rc;
nodeGetCoord(pRtree, pNode, p->iCell, i-1, &c);
#ifndef SQLITE_RTREE_INT_ONLY
if( pRtree->eCoordType==RTREE_COORD_REAL32 ){
sqlite3_result_double(ctx, c.f);
@ -1160,7 +1355,6 @@ static int rtreeColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){
sqlite3_result_int(ctx, c.i);
}
}
return SQLITE_OK;
}
@ -1171,12 +1365,18 @@ static int rtreeColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){
** *ppLeaf to 0 and return SQLITE_OK. If an error occurs, set *ppLeaf
** to zero and return an SQLite error code.
*/
static int findLeafNode(Rtree *pRtree, i64 iRowid, RtreeNode **ppLeaf){
static int findLeafNode(
Rtree *pRtree, /* RTree to search */
i64 iRowid, /* The rowid searching for */
RtreeNode **ppLeaf, /* Write the node here */
sqlite3_int64 *piNode /* Write the node-id here */
){
int rc;
*ppLeaf = 0;
sqlite3_bind_int64(pRtree->pReadRowid, 1, iRowid);
if( sqlite3_step(pRtree->pReadRowid)==SQLITE_ROW ){
i64 iNode = sqlite3_column_int64(pRtree->pReadRowid, 0);
if( piNode ) *piNode = iNode;
rc = nodeAcquire(pRtree, iNode, 0, ppLeaf);
sqlite3_reset(pRtree->pReadRowid);
}else{
@ -1239,10 +1439,10 @@ static int rtreeFilter(
){
Rtree *pRtree = (Rtree *)pVtabCursor->pVtab;
RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor;
RtreeNode *pRoot = 0;
int ii;
int rc = SQLITE_OK;
int iCell = 0;
rtreeReference(pRtree);
@ -1252,13 +1452,16 @@ static int rtreeFilter(
if( idxNum==1 ){
/* Special case - lookup by rowid. */
RtreeNode *pLeaf; /* Leaf on which the required cell resides */
RtreeSearchPoint *p; /* Search point for the the leaf */
i64 iRowid = sqlite3_value_int64(argv[0]);
rc = findLeafNode(pRtree, iRowid, &pLeaf);
pCsr->pNode = pLeaf;
if( pLeaf ){
assert( rc==SQLITE_OK );
rc = nodeRowidIndex(pRtree, pLeaf, iRowid, &pCsr->iCell);
}
p = rtreeSearchPointNew(pCsr, 0.0, 0);
if( p==0 ) return SQLITE_NOMEM;
rc = findLeafNode(pRtree, iRowid, &pLeaf, &p->id);
pCsr->aNode[0] = pLeaf;
p->eWithin = PARTLY_WITHIN;
if( rc ) rc = nodeRowidIndex(pRtree, pLeaf, iRowid, &iCell);
p->iCell = iCell;
traceTop(pCsr, "PUSH:");
}else{
/* Normal case - r-tree scan. Set up the RtreeCursor.aConstraint array
** with the configured constraints.
@ -1297,26 +1500,18 @@ static int rtreeFilter(
}
if( rc==SQLITE_OK ){
pCsr->pNode = 0;
rc = nodeAcquire(pRtree, 1, 0, &pRoot);
}
if( rc==SQLITE_OK ){
int isEof = 1;
int nCell = NCELL(pRoot);
pCsr->pNode = pRoot;
for(pCsr->iCell=0; rc==SQLITE_OK && pCsr->iCell<nCell; pCsr->iCell++){
assert( pCsr->pNode==pRoot );
rc = descendToCell(pRtree, pCsr, pRtree->iDepth, &isEof);
if( !isEof ){
break;
}
}
if( rc==SQLITE_OK && isEof ){
assert( pCsr->pNode==pRoot );
nodeRelease(pRtree, pRoot);
pCsr->pNode = 0;
}
assert( rc!=SQLITE_OK || !pCsr->pNode || pCsr->iCell<NCELL(pCsr->pNode) );
RtreeSearchPoint *pNew = rtreeSearchPointNew(pCsr, 0.0, pRtree->iDepth+1);
if( pNew==0 ) return SQLITE_NOMEM;
pNew->id = 1;
pNew->iCell = 0;
pNew->eWithin = PARTLY_WITHIN;
assert( pCsr->bPoint==1 );
pCsr->aNode[0] = pRoot;
traceTop(pCsr, "PUSH:");
rc = rtreeStepToLeaf(pCsr);
}
}
@ -2395,7 +2590,7 @@ static int rtreeDeleteRowid(Rtree *pRtree, sqlite3_int64 iDelete){
** about to be deleted.
*/
if( rc==SQLITE_OK ){
rc = findLeafNode(pRtree, iDelete, &pLeaf);
rc = findLeafNode(pRtree, iDelete, &pLeaf, 0);
}
/* Delete the cell in question from the leaf node. */