mirror of
https://github.com/sqlite/sqlite.git
synced 2025-11-09 14:21:03 +03:00
Add initial implementations of mutex and memory subsystem modules. (CVS 4226)
FossilOrigin-Name: c0fa3769790af199a4c8715c80bb8ff900730520
This commit is contained in:
238
src/mutex.c
Normal file
238
src/mutex.c
Normal file
@@ -0,0 +1,238 @@
|
||||
/*
|
||||
** 2007 August 14
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
** This file contains the C functions that implement mutexes for
|
||||
** use by the SQLite core.
|
||||
**
|
||||
** $Id: mutex.c,v 1.1 2007/08/15 13:04:54 drh Exp $
|
||||
*/
|
||||
|
||||
/*
|
||||
** If SQLITE_MUTEX_APPDEF is defined, then this whole module is
|
||||
** omitted and equivalent functionality just be provided by the
|
||||
** application that links against the SQLite library.
|
||||
*/
|
||||
#ifndef SQLITE_MUTEX_APPDEF
|
||||
|
||||
/*
|
||||
** The start of real code
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
|
||||
/************************ No-op Mutex Implementation **********************
|
||||
**
|
||||
** This first implementation of mutexes is really a no-op. In other words,
|
||||
** no real locking occurs. This implementation is appropriate for use
|
||||
** in single threaded applications which do not want the extra overhead
|
||||
** of thread locking primitives.
|
||||
*/
|
||||
|
||||
/*
|
||||
** The sqlite3_mutex_alloc() routine allocates a new
|
||||
** mutex and returns a pointer to it. If it returns NULL
|
||||
** that means that a mutex could not be allocated. SQLite
|
||||
** will unwind its stack and return an error. The argument
|
||||
** to sqlite3_mutex_alloc() is usually zero, which causes
|
||||
** any space required for the mutex to be obtained from
|
||||
** sqlite3_malloc(). However if the argument is a positive
|
||||
** integer less than SQLITE_NUM_STATIC_MUTEX, then a pointer
|
||||
** to a static mutex is returned. There are a finite number
|
||||
** of static mutexes. Static mutexes should not be passed
|
||||
** to sqlite3_mutex_free(). The allocation of a static
|
||||
** mutex cannot fail.
|
||||
*/
|
||||
sqlite3_mutex *sqlite3_mutex_alloc(int idNotUsed){
|
||||
return (sqlite3_mutex*)sqlite3_mutex_alloc;
|
||||
}
|
||||
|
||||
/*
|
||||
** This routine deallocates a previously
|
||||
** allocated mutex. SQLite is careful to deallocate every
|
||||
** mutex that it allocates.
|
||||
*/
|
||||
void sqlite3_mutex_free(sqlite3_mutex *pNotUsed){}
|
||||
|
||||
/*
|
||||
** The sqlite3_mutex_enter() routine attempts to enter a
|
||||
** mutex. If another thread is already within the mutex,
|
||||
** sqlite3_mutex_enter() will return SQLITE_BUSY if blockFlag
|
||||
** is zero, or it will block and wait for the other thread to
|
||||
** exit if blockFlag is non-zero. Mutexes are recursive. The
|
||||
** same thread can enter a single mutex multiple times. Each
|
||||
** entrance must be matched with a corresponding exit before
|
||||
** another thread is able to enter the mutex.
|
||||
*/
|
||||
int sqlite3_mutex_enter(sqlite3_mutex *pNotUsed, int blockFlag){
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** The sqlite3_mutex_exit() routine exits a mutex that was
|
||||
** previously entered by the same thread. The behavior
|
||||
** is undefined if the mutex is not currently entered or
|
||||
** is not currently allocated. SQLite will never do either.
|
||||
*/
|
||||
void sqlite3_mutex_leave(sqlite3_mutex *pNotUsed){
|
||||
return;
|
||||
}
|
||||
|
||||
/*
|
||||
** The sqlite3_mutex_serialize() routine is used to serialize
|
||||
** execution of a subroutine. The subroutine given in the argument
|
||||
** is invoked. But only one thread at a time is allowed to be
|
||||
** running a subroutine using sqlite3_mutex_serialize().
|
||||
*/
|
||||
int sqlite3_mutex_serialize(void (*xCallback)(void*), void *pArg){
|
||||
xCallback(pArg);
|
||||
}
|
||||
|
||||
#if 0
|
||||
/**************** Non-recursive Pthread Mutex Implementation *****************
|
||||
**
|
||||
** This implementation of mutexes is built using a version of pthreads that
|
||||
** does not have native support for recursive mutexes.
|
||||
*/
|
||||
|
||||
/*
|
||||
** Each recursive mutex is an instance of the following structure.
|
||||
*/
|
||||
struct RMutex {
|
||||
int nRef; /* Number of entrances */
|
||||
pthread_mutex_t auxMutex; /* Mutex controlling access to nRef and owner */
|
||||
pthread_mutex_t mainMutex; /* Mutex controlling the lock */
|
||||
pthread_t owner; /* Thread that is within this mutex */
|
||||
};
|
||||
|
||||
/*
|
||||
** Static mutexes
|
||||
*/
|
||||
static struct RMutex rmutexes[] = {
|
||||
{ 0, PTHREAD_MUTEX_INITIALIZER, PTHREAD_MUTEX_INITIALIZER, },
|
||||
{ 0, PTHREAD_MUTEX_INITIALIZER, PTHREAD_MUTEX_INITIALIZER, },
|
||||
{ 0, PTHREAD_MUTEX_INITIALIZER, PTHREAD_MUTEX_INITIALIZER, },
|
||||
};
|
||||
|
||||
/*
|
||||
** A mutex used for serialization.
|
||||
*/
|
||||
static RMutex serialMutex =
|
||||
{0, PTHREAD_MUTEX_INITIALIZER, PTHREAD_MUTEX_INITIALIZER, };
|
||||
|
||||
/*
|
||||
** The sqlite3_mutex_alloc() routine allocates a new
|
||||
** mutex and returns a pointer to it. If it returns NULL
|
||||
** that means that a mutex could not be allocated. SQLite
|
||||
** will unwind its stack and return an error. The argument
|
||||
** to sqlite3_mutex_alloc() is usually zero, which causes
|
||||
** any space required for the mutex to be obtained from
|
||||
** sqlite3_malloc(). However if the argument is a positive
|
||||
** integer less than SQLITE_NUM_STATIC_MUTEX, then a pointer
|
||||
** to a static mutex is returned. There are a finite number
|
||||
** of static mutexes. Static mutexes should not be passed
|
||||
** to sqlite3_mutex_free(). The allocation of a static
|
||||
** mutex cannot fail.
|
||||
*/
|
||||
sqlite3_mutex *sqlite3_mutex_alloc(int id){
|
||||
struct RMutex *p;
|
||||
if( id>0 ){
|
||||
if( id>sizeof(rmutexes)/sizeof(rmutexes[0]) ){
|
||||
p = 0;
|
||||
}else{
|
||||
p = &rmutexes[id-1];
|
||||
}
|
||||
}else{
|
||||
p = sqlite3_malloc( sizeof(*p) );
|
||||
if( p ){
|
||||
p->nRef = 0;
|
||||
pthread_mutex_init(&p->mutex, 0);
|
||||
}
|
||||
}
|
||||
return (sqlite3_mutex*)p;
|
||||
}
|
||||
|
||||
/*
|
||||
** This routine deallocates a previously
|
||||
** allocated mutex. SQLite is careful to deallocate every
|
||||
** mutex that it allocates.
|
||||
*/
|
||||
void sqlite3_mutex_free(sqlite3_mutex *pMutex){
|
||||
struct RMutex *p = (struct RMutex*)pMutex;
|
||||
assert( p->nRef==0 );
|
||||
pthread_mutex_destroy(&p->mutex);
|
||||
sqlite3_free(p);
|
||||
}
|
||||
|
||||
/*
|
||||
** The sqlite3_mutex_enter() routine attempts to enter a
|
||||
** mutex. If another thread is already within the mutex,
|
||||
** sqlite3_mutex_enter() will return SQLITE_BUSY if blockFlag
|
||||
** is zero, or it will block and wait for the other thread to
|
||||
** exit if blockFlag is non-zero. Mutexes are recursive. The
|
||||
** same thread can enter a single mutex multiple times. Each
|
||||
** entrance must be matched with a corresponding exit before
|
||||
** another thread is able to enter the mutex.
|
||||
*/
|
||||
int sqlite3_mutex_enter(sqlite3_mutex *pMutex, int blockFlag){
|
||||
struct RMutex *p = (struct RMutex*)pMutex;
|
||||
while(1){
|
||||
pthread_mutex_lock(&p->auxMutex);
|
||||
if( p->nRef==0 ){
|
||||
p->nRef++;
|
||||
p->owner = pthread_self();
|
||||
pthread_mutex_lock(&p->mainMutex);
|
||||
pthread_mutex_unlock(&p->auxMutex);
|
||||
return SQLITE_OK;
|
||||
}else if( pthread_equal(p->owner, pthread_self()) ){
|
||||
p->nRef++;
|
||||
pthread_mutex_unlock(&p->auxMutex);
|
||||
return SQLITE_OK;
|
||||
}else if( !blockFlag ){
|
||||
pthread_mutex_unlock(&p->auxMutex);
|
||||
return SQLITE_BUSY;
|
||||
}else{
|
||||
pthread_mutex_unlock(&p->auxMutex);
|
||||
pthread_mutex_lock(&p->mainMutex);
|
||||
pthread_mutex_unlock(&p->mainMutex);
|
||||
}
|
||||
}
|
||||
/* NOTREACHED */
|
||||
}
|
||||
|
||||
/*
|
||||
** The sqlite3_mutex_exit() routine exits a mutex that was
|
||||
** previously entered by the same thread. The behavior
|
||||
** is undefined if the mutex is not currently entered or
|
||||
** is not currently allocated. SQLite will never do either.
|
||||
*/
|
||||
void sqlite3_mutex_leave(sqlite3_mutex *pMutex){
|
||||
struct RMutex *p = (struct RMutex*)pMutex;
|
||||
pthread_mutex_lock(&p->auxMutex);
|
||||
p->nRef--;
|
||||
if( p->nRef<=0 ){
|
||||
pthread_mutex_unlock(&p->mainMutex);
|
||||
}
|
||||
pthread_mutex_unlock(&p->auxMutex);
|
||||
}
|
||||
|
||||
/*
|
||||
** The sqlite3_mutex_serialize() routine is used to serialize
|
||||
** execution of a subroutine. The subroutine given in the argument
|
||||
** is invoked. But only one thread at a time is allowed to be
|
||||
** running a subroutine using sqlite3_mutex_serialize().
|
||||
*/
|
||||
int sqlite3_mutex_serialize(void (*xCallback)(void*), void *pArg){
|
||||
sqlite3_mutex_enter(&serialMutex, 1);
|
||||
xCallback(pArg);
|
||||
sqlite3_mutex_leave(&serialMutex);
|
||||
}
|
||||
#endif /* non-recursive pthreads */
|
||||
|
||||
#endif /* !defined(SQLITE_MUTEX_APPDEF) */
|
||||
Reference in New Issue
Block a user