1
0
mirror of https://github.com/sqlite/sqlite.git synced 2025-11-16 23:02:26 +03:00

Add initial implementations of mutex and memory subsystem modules. (CVS 4226)

FossilOrigin-Name: c0fa3769790af199a4c8715c80bb8ff900730520
This commit is contained in:
drh
2007-08-15 13:04:54 +00:00
parent d84f946be8
commit 90f6a5beff
8 changed files with 472 additions and 45 deletions

View File

@@ -14,7 +14,7 @@
** other files are for internal use by SQLite and should not be
** accessed by users of the library.
**
** $Id: main.c,v 1.378 2007/08/13 15:28:34 danielk1977 Exp $
** $Id: main.c,v 1.379 2007/08/15 13:04:54 drh Exp $
*/
#include "sqliteInt.h"
#include "os.h"
@@ -421,30 +421,6 @@ void sqlite3_interrupt(sqlite3 *db){
}
}
/*
** Memory allocation routines that use SQLites internal memory
** memory allocator. Depending on how SQLite is compiled, the
** internal memory allocator might be just an alias for the
** system default malloc/realloc/free. Or the built-in allocator
** might do extra stuff like put sentinals around buffers to
** check for overruns or look for memory leaks.
**
** Use sqlite3_free() to free memory returned by sqlite3_mprintf().
*/
void sqlite3_free(void *p){ if( p ) sqlite3OsFree(p); }
void *sqlite3_malloc(int nByte){ return nByte>0 ? sqlite3OsMalloc(nByte) : 0; }
void *sqlite3_realloc(void *pOld, int nByte){
if( pOld ){
if( nByte>0 ){
return sqlite3OsRealloc(pOld, nByte);
}else{
sqlite3OsFree(pOld);
return 0;
}
}else{
return sqlite3_malloc(nByte);
}
}
/*
** This function is exactly the same as sqlite3_create_function(), except

204
src/mem1.c Normal file
View File

@@ -0,0 +1,204 @@
/*
** 2007 August 14
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains the C functions that implement a memory
** allocation subsystem for use by SQLite.
**
** $Id: mem1.c,v 1.1 2007/08/15 13:04:54 drh Exp $
*/
/*
** We will eventually construct multiple memory allocation subsystems
** suitable for use in various contexts:
**
** * Normal multi-threaded builds
** * Normal single-threaded builds
** * Debugging builds
**
** This initial version is suitable for use in normal multi-threaded
** builds. We envision that alternative versions will be stored in
** separate source files. #ifdefs will be used to select the code from
** one of the various memN.c source files for use in any given build.
*/
#include "sqliteInt.h"
/*
** Mutex to control access to the memory allocation subsystem.
*/
static sqlite3_mutex *memMutex = 0;
/*
** Current allocation and high-water mark.
*/
static sqlite3_uint64 nowUsed = 0;
static sqlite3_uint64 mxUsed = 0;
/*
** The alarm callback and its arguments. The memMutex lock will
** be held while the callback is running. Recursive calls into
** the memory subsystem are allowed, but no new callbacks will be
** issued. The alarmBusy variable is set to prevent recursive
** callbacks.
*/
static void (*alarmCallback)(void*, sqlite3_uint64, unsigned) = 0;
static void *alarmArg = 0;
static sqlite3_uint64 alarmThreshold = (((sqlite3_uint64)1)<<63);
static int alarmBusy = 0;
/*
** Return the amount of memory currently checked out.
*/
sqlite3_uint64 sqlite3_memory_used(void){
sqlite3_uint64 n;
if( memMutex==0 ){
memMutex = sqlite3_mutex_alloc(1);
}
sqlite3_mutex_enter(memMutex, 1);
n = nowUsed;
sqlite3_mutex_leave(memMutex);
return n;
}
/*
** Return the maximum amount of memory that has ever been
** checked out since either the beginning of this process
** or since the most recent reset.
*/
sqlite3_uint64 sqlite3_memory_highwater(int resetFlag){
sqlite3_uint64 n;
if( memMutex==0 ){
memMutex = sqlite3_mutex_alloc(1);
}
sqlite3_mutex_enter(memMutex, 1);
n = mxUsed;
if( resetFlag ){
mxUsed = nowUsed;
}
sqlite3_mutex_leave(memMutex);
return n;
}
/*
** Change the alarm callback
*/
int sqlite3_memory_alarm(
void(*xCallback)(void *pArg, sqlite3_uint64 used, unsigned int N),
void *pArg,
sqlite3_uint64 iThreshold
){
if( memMutex==0 ){
memMutex = sqlite3_mutex_alloc(1);
}
sqlite3_mutex_enter(memMutex, 1);
alarmCallback = xCallback;
alarmArg = pArg;
alarmThreshold = iThreshold;
sqlite3_mutex_leave(memMutex);
return SQLITE_OK;
}
/*
** Trigger the alarm
*/
static void sqlite3MemsysAlarm(unsigned nByte){
if( alarmCallback==0 || alarmBusy ) return;
alarmBusy = 1;
alarmCallback(alarmArg, nowUsed, nByte);
alarmBusy = 0;
}
/*
** Allocate nBytes of memory
*/
void *sqlite3_malloc(unsigned int nBytes){
sqlite3_uint64 *p;
if( memMutex==0 ){
memMutex = sqlite3_mutex_alloc(1);
}
sqlite3_mutex_enter(memMutex, 1);
if( nowUsed+nBytes>=alarmThreshold ){
sqlite3MemsysAlarm(nBytes);
}
p = malloc(nBytes+8);
if( p==0 ){
sqlite3MemsysAlarm(nBytes);
p = malloc(nBytes+8);
}
if( p ){
p[0] = nBytes;
p++;
nowUsed += nBytes;
if( nowUsed>mxUsed ){
mxUsed = nowUsed;
}
}
sqlite3_mutex_leave(memMutex);
return (void*)p;
}
/*
** Free memory.
*/
void sqlite3_free(void *pPrior){
sqlite3_uint64 *p;
unsigned nByte;
if( pPrior==0 ){
return;
}
assert( memMutex!=0 );
p = pPrior;
p--;
nByte = (unsigned int)*p;
sqlite3_mutex_enter(memMutex, 1);
nowUsed -= nByte;
free(p);
sqlite3_mutex_leave(memMutex);
}
/*
** Change the size of an existing memory allocation
*/
void *sqlite3_realloc(void *pPrior, unsigned int nBytes){
unsigned nOld;
sqlite3_uint64 *p;
if( pPrior==0 ){
return sqlite3_malloc(nBytes);
}
if( nBytes==0 ){
sqlite3_free(pPrior);
return;
}
p = pPrior;
p--;
nOld = (unsigned int)p[0];
assert( memMutex!=0 );
sqlite3_mutex_enter(memMutex, 1);
if( nowUsed+nBytes-nOld>=alarmThreshold ){
sqlite3MemsysAlarm(nBytes-nOld);
}
p = realloc(p, nBytes+8);
if( p==0 ){
sqlite3MemsysAlarm(nBytes);
p = realloc(p, nBytes+8);
}
if( p ){
p[0] = nBytes;
p++;
nowUsed += nBytes-nOld;
if( nowUsed>mxUsed ){
mxUsed = nowUsed;
}
}
sqlite3_mutex_leave(memMutex);
return (void*)p;
}

238
src/mutex.c Normal file
View File

@@ -0,0 +1,238 @@
/*
** 2007 August 14
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains the C functions that implement mutexes for
** use by the SQLite core.
**
** $Id: mutex.c,v 1.1 2007/08/15 13:04:54 drh Exp $
*/
/*
** If SQLITE_MUTEX_APPDEF is defined, then this whole module is
** omitted and equivalent functionality just be provided by the
** application that links against the SQLite library.
*/
#ifndef SQLITE_MUTEX_APPDEF
/*
** The start of real code
*/
#include "sqliteInt.h"
/************************ No-op Mutex Implementation **********************
**
** This first implementation of mutexes is really a no-op. In other words,
** no real locking occurs. This implementation is appropriate for use
** in single threaded applications which do not want the extra overhead
** of thread locking primitives.
*/
/*
** The sqlite3_mutex_alloc() routine allocates a new
** mutex and returns a pointer to it. If it returns NULL
** that means that a mutex could not be allocated. SQLite
** will unwind its stack and return an error. The argument
** to sqlite3_mutex_alloc() is usually zero, which causes
** any space required for the mutex to be obtained from
** sqlite3_malloc(). However if the argument is a positive
** integer less than SQLITE_NUM_STATIC_MUTEX, then a pointer
** to a static mutex is returned. There are a finite number
** of static mutexes. Static mutexes should not be passed
** to sqlite3_mutex_free(). The allocation of a static
** mutex cannot fail.
*/
sqlite3_mutex *sqlite3_mutex_alloc(int idNotUsed){
return (sqlite3_mutex*)sqlite3_mutex_alloc;
}
/*
** This routine deallocates a previously
** allocated mutex. SQLite is careful to deallocate every
** mutex that it allocates.
*/
void sqlite3_mutex_free(sqlite3_mutex *pNotUsed){}
/*
** The sqlite3_mutex_enter() routine attempts to enter a
** mutex. If another thread is already within the mutex,
** sqlite3_mutex_enter() will return SQLITE_BUSY if blockFlag
** is zero, or it will block and wait for the other thread to
** exit if blockFlag is non-zero. Mutexes are recursive. The
** same thread can enter a single mutex multiple times. Each
** entrance must be matched with a corresponding exit before
** another thread is able to enter the mutex.
*/
int sqlite3_mutex_enter(sqlite3_mutex *pNotUsed, int blockFlag){
return SQLITE_OK;
}
/*
** The sqlite3_mutex_exit() routine exits a mutex that was
** previously entered by the same thread. The behavior
** is undefined if the mutex is not currently entered or
** is not currently allocated. SQLite will never do either.
*/
void sqlite3_mutex_leave(sqlite3_mutex *pNotUsed){
return;
}
/*
** The sqlite3_mutex_serialize() routine is used to serialize
** execution of a subroutine. The subroutine given in the argument
** is invoked. But only one thread at a time is allowed to be
** running a subroutine using sqlite3_mutex_serialize().
*/
int sqlite3_mutex_serialize(void (*xCallback)(void*), void *pArg){
xCallback(pArg);
}
#if 0
/**************** Non-recursive Pthread Mutex Implementation *****************
**
** This implementation of mutexes is built using a version of pthreads that
** does not have native support for recursive mutexes.
*/
/*
** Each recursive mutex is an instance of the following structure.
*/
struct RMutex {
int nRef; /* Number of entrances */
pthread_mutex_t auxMutex; /* Mutex controlling access to nRef and owner */
pthread_mutex_t mainMutex; /* Mutex controlling the lock */
pthread_t owner; /* Thread that is within this mutex */
};
/*
** Static mutexes
*/
static struct RMutex rmutexes[] = {
{ 0, PTHREAD_MUTEX_INITIALIZER, PTHREAD_MUTEX_INITIALIZER, },
{ 0, PTHREAD_MUTEX_INITIALIZER, PTHREAD_MUTEX_INITIALIZER, },
{ 0, PTHREAD_MUTEX_INITIALIZER, PTHREAD_MUTEX_INITIALIZER, },
};
/*
** A mutex used for serialization.
*/
static RMutex serialMutex =
{0, PTHREAD_MUTEX_INITIALIZER, PTHREAD_MUTEX_INITIALIZER, };
/*
** The sqlite3_mutex_alloc() routine allocates a new
** mutex and returns a pointer to it. If it returns NULL
** that means that a mutex could not be allocated. SQLite
** will unwind its stack and return an error. The argument
** to sqlite3_mutex_alloc() is usually zero, which causes
** any space required for the mutex to be obtained from
** sqlite3_malloc(). However if the argument is a positive
** integer less than SQLITE_NUM_STATIC_MUTEX, then a pointer
** to a static mutex is returned. There are a finite number
** of static mutexes. Static mutexes should not be passed
** to sqlite3_mutex_free(). The allocation of a static
** mutex cannot fail.
*/
sqlite3_mutex *sqlite3_mutex_alloc(int id){
struct RMutex *p;
if( id>0 ){
if( id>sizeof(rmutexes)/sizeof(rmutexes[0]) ){
p = 0;
}else{
p = &rmutexes[id-1];
}
}else{
p = sqlite3_malloc( sizeof(*p) );
if( p ){
p->nRef = 0;
pthread_mutex_init(&p->mutex, 0);
}
}
return (sqlite3_mutex*)p;
}
/*
** This routine deallocates a previously
** allocated mutex. SQLite is careful to deallocate every
** mutex that it allocates.
*/
void sqlite3_mutex_free(sqlite3_mutex *pMutex){
struct RMutex *p = (struct RMutex*)pMutex;
assert( p->nRef==0 );
pthread_mutex_destroy(&p->mutex);
sqlite3_free(p);
}
/*
** The sqlite3_mutex_enter() routine attempts to enter a
** mutex. If another thread is already within the mutex,
** sqlite3_mutex_enter() will return SQLITE_BUSY if blockFlag
** is zero, or it will block and wait for the other thread to
** exit if blockFlag is non-zero. Mutexes are recursive. The
** same thread can enter a single mutex multiple times. Each
** entrance must be matched with a corresponding exit before
** another thread is able to enter the mutex.
*/
int sqlite3_mutex_enter(sqlite3_mutex *pMutex, int blockFlag){
struct RMutex *p = (struct RMutex*)pMutex;
while(1){
pthread_mutex_lock(&p->auxMutex);
if( p->nRef==0 ){
p->nRef++;
p->owner = pthread_self();
pthread_mutex_lock(&p->mainMutex);
pthread_mutex_unlock(&p->auxMutex);
return SQLITE_OK;
}else if( pthread_equal(p->owner, pthread_self()) ){
p->nRef++;
pthread_mutex_unlock(&p->auxMutex);
return SQLITE_OK;
}else if( !blockFlag ){
pthread_mutex_unlock(&p->auxMutex);
return SQLITE_BUSY;
}else{
pthread_mutex_unlock(&p->auxMutex);
pthread_mutex_lock(&p->mainMutex);
pthread_mutex_unlock(&p->mainMutex);
}
}
/* NOTREACHED */
}
/*
** The sqlite3_mutex_exit() routine exits a mutex that was
** previously entered by the same thread. The behavior
** is undefined if the mutex is not currently entered or
** is not currently allocated. SQLite will never do either.
*/
void sqlite3_mutex_leave(sqlite3_mutex *pMutex){
struct RMutex *p = (struct RMutex*)pMutex;
pthread_mutex_lock(&p->auxMutex);
p->nRef--;
if( p->nRef<=0 ){
pthread_mutex_unlock(&p->mainMutex);
}
pthread_mutex_unlock(&p->auxMutex);
}
/*
** The sqlite3_mutex_serialize() routine is used to serialize
** execution of a subroutine. The subroutine given in the argument
** is invoked. But only one thread at a time is allowed to be
** running a subroutine using sqlite3_mutex_serialize().
*/
int sqlite3_mutex_serialize(void (*xCallback)(void*), void *pArg){
sqlite3_mutex_enter(&serialMutex, 1);
xCallback(pArg);
sqlite3_mutex_leave(&serialMutex);
}
#endif /* non-recursive pthreads */
#endif /* !defined(SQLITE_MUTEX_APPDEF) */

View File

@@ -30,7 +30,7 @@
** the version number) and changes its name to "sqlite3.h" as
** part of the build process.
**
** @(#) $Id: sqlite.h.in,v 1.222 2007/08/15 11:28:56 drh Exp $
** @(#) $Id: sqlite.h.in,v 1.223 2007/08/15 13:04:54 drh Exp $
*/
#ifndef _SQLITE3_H_
#define _SQLITE3_H_
@@ -1020,10 +1020,7 @@ char *sqlite3_vmprintf(const char*, va_list);
char *sqlite3_snprintf(int,char*,const char*, ...);
/*
** CAPI3REF: Memory Allocation Functions
**
** The SQLite sources include a memory allocation subsystem
** that implements the interfaces shown here.
** CAPI3REF: Memory Allocation Subsystem
**
** The SQLite core uses these three routines for all of its own
** internal memory allocation needs. The default implementation
@@ -1031,14 +1028,14 @@ char *sqlite3_snprintf(int,char*,const char*, ...);
** and free() provided by the standard C library. However, if
** SQLite is compiled with the following C preprocessor macro
**
** <blockquote>SQLITE_OMIT_MEMORY_ALLOCATION</blockquote>
** <blockquote> SQLITE_OMIT_MEMORY_ALLOCATION </blockquote>
**
** then no implementation is provided for these routines by
** SQLite. The application that links against SQLite is
** expected to provide its own implementation.
*/
void *sqlite3_malloc(int);
void *sqlite3_realloc(void*, int);
void *sqlite3_malloc(unsigned int);
void *sqlite3_realloc(void*, unsigned int);
void sqlite3_free(void*);
/*

View File

@@ -11,7 +11,7 @@
*************************************************************************
** Internal interface definitions for SQLite.
**
** @(#) $Id: sqliteInt.h,v 1.585 2007/08/08 12:11:21 drh Exp $
** @(#) $Id: sqliteInt.h,v 1.586 2007/08/15 13:04:54 drh Exp $
*/
#ifndef _SQLITEINT_H_
#define _SQLITEINT_H_
@@ -441,6 +441,7 @@ struct Schema {
** consistently.
*/
struct sqlite3 {
sqlite3_vfs *pVfs; /* OS Interface */
int nDb; /* Number of backends currently in use */
Db *aDb; /* All backends */
int flags; /* Miscellanous flags. See below */