1
0
mirror of https://github.com/sqlite/sqlite.git synced 2025-07-27 20:41:58 +03:00

Convert lemon to use a single perfect hash table for storing the actions.

This should make the resulting parser both smaller and faster. (CVS 1112)

FossilOrigin-Name: 4f955c00076b16166ff837749efb84201eab3c3a
This commit is contained in:
drh
2003-10-21 13:16:03 +00:00
parent 348bb5d6c8
commit 8b582012de
4 changed files with 429 additions and 192 deletions

View File

@ -1,5 +1,5 @@
C Add\ssqlite_progress_handler()\sAPI\sfor\sspecifying\san\sprogress\scallback\s(CVS\s1111)
D 2003-10-18T09:37:26
C Convert\slemon\sto\suse\sa\ssingle\sperfect\shash\stable\sfor\sstoring\sthe\sactions.\nThis\sshould\smake\sthe\sresulting\sparser\sboth\ssmaller\sand\sfaster.\s(CVS\s1112)
D 2003-10-21T13:16:04
F Makefile.in ab585a91e34bc33928a1b6181fa2f6ebd4fb17e1
F Makefile.linux-gcc b86a99c493a5bfb402d1d9178dcdc4bd4b32f906
F README f1de682fbbd94899d50aca13d387d1b3fd3be2dd
@ -138,8 +138,8 @@ F test/version.test 605fd0d7e7d571370c32b12dbf395b58953de246
F test/view.test 1ee12c6f8f4791a2c0655120d5562a49400cfe53
F test/where.test cb3a2ed062ce4b5f08aff2d08027c6a46d68c47b
F tool/diffdb.c 7524b1b5df217c20cd0431f6789851a4e0cb191b
F tool/lemon.c 93db920de9479657d04ca73e9368db7fc2969990
F tool/lempar.c 73a991cc3017fb34804250fa901488b5147b3717
F tool/lemon.c 37d1493549a238bba56cc8a6e614191f43eac573
F tool/lempar.c a3406868634ef5e67a8a03675317dcf5623d4740
F tool/memleak.awk 16ef9493dcd36146f806e75148f4bb0201a123ec
F tool/memleak2.awk 9cc20c8e8f3c675efac71ea0721ee6874a1566e8
F tool/mkopts.tcl 66ac10d240cc6e86abd37dc908d50382f84ff46e x
@ -174,7 +174,7 @@ F www/speed.tcl 2f6b1155b99d39adb185f900456d1d592c4832b3
F www/sqlite.tcl 3c83b08cf9f18aa2d69453ff441a36c40e431604
F www/tclsqlite.tcl b9271d44dcf147a93c98f8ecf28c927307abd6da
F www/vdbe.tcl 9b9095d4495f37697fd1935d10e14c6015e80aa1
P 06d4e88394217fb1390b069bad82d6ac71981f72
R cde37f606921798e43de3b54f3499f6d
U danielk1977
Z a955533f397af1a9a7db7d26a39908ea
P ddb364635a207658664ea92fc677cf16a143a938
R c217117a68a15b5b6ece4f04bcc9b9b1
U drh
Z 76b8ed5abf9139dcfee1277f9c2ad231

View File

@ -1 +1 @@
ddb364635a207658664ea92fc677cf16a143a938
4f955c00076b16166ff837749efb84201eab3c3a

View File

@ -10,6 +10,7 @@
#include <stdarg.h>
#include <string.h>
#include <ctype.h>
#include <stdlib.h>
extern void qsort();
extern double strtod();
@ -215,10 +216,11 @@ struct state {
struct config *cfp; /* All configurations in this set */
int index; /* Sequencial number for this state */
struct action *ap; /* Array of actions for this state */
int naction; /* Number of actions for this state */
int tabstart; /* First index of the action table */
int tabdfltact; /* Default action */
int nTknAct, nNtAct; /* Number of actions on terminals and nonterminals */
int iTknOfst, iNtOfst; /* yy_action[] offset for terminals and nonterms */
int iDflt; /* Default action */
};
#define NO_OFFSET (-2147483647)
/* A followset propagation link indicates that the contents of one
** configuration followset should be propagated to another whenever
@ -394,6 +396,160 @@ char *arg;
new->x.rp = (struct rule *)arg;
}
}
/********************** New code to implement the "acttab" module ***********/
/*
** This module implements routines use to construct the yy_action[] table.
*/
/*
** The state of the yy_action table under construction is an instance of
** the following structure
*/
typedef struct acttab acttab;
struct acttab {
int nAction; /* Number of used slots in aAction[] */
int nActionAlloc; /* Slots allocated for aAction[] */
struct {
int lookahead; /* Value of the lookahead token */
int action; /* Action to take on the given lookahead */
} *aAction, /* The yy_action[] table under construction */
*aLookahead; /* A single new transaction set */
int mnLookahead; /* Minimum aLookahead[].lookahead */
int mnAction; /* Action associated with mnLookahead */
int mxLookahead; /* Maximum aLookahead[].lookahead */
int nLookahead; /* Used slots in aLookahead[] */
int nLookaheadAlloc; /* Slots allocated in aLookahead[] */
};
/* Return the number of entries in the yy_action table */
#define acttab_size(X) ((X)->nAction)
/* The value for the N-th entry in yy_action */
#define acttab_yyaction(X,N) ((X)->aAction[N].action)
/* The value for the N-th entry in yy_lookahead */
#define acttab_yylookahead(X,N) ((X)->aAction[N].lookahead)
/* Free all memory associated with the given acttab */
void acttab_free(acttab *p){
free( p->aAction );
free( p->aLookahead );
free( p );
}
/* Allocate a new acttab structure */
acttab *acttab_alloc(void){
acttab *p = malloc( sizeof(*p) );
if( p==0 ){
fprintf(stderr,"Unable to allocate memory for a new acttab.");
exit(1);
}
memset(p, 0, sizeof(*p));
return p;
}
/* Add a new action to the current transaction set
*/
void acttab_action(acttab *p, int lookahead, int action){
if( p->nLookahead>=p->nLookaheadAlloc ){
p->nLookaheadAlloc += 25;
p->aLookahead = realloc( p->aLookahead,
sizeof(p->aLookahead[0])*p->nLookaheadAlloc );
if( p->aLookahead==0 ){
fprintf(stderr,"malloc failed\n");
exit(1);
}
}
if( p->nLookahead==0 ){
p->mxLookahead = lookahead;
p->mnLookahead = lookahead;
p->mnAction = action;
}else{
if( p->mxLookahead<lookahead ) p->mxLookahead = lookahead;
if( p->mnLookahead>lookahead ){
p->mnLookahead = lookahead;
p->mnAction = action;
}
}
p->aLookahead[p->nLookahead].lookahead = lookahead;
p->aLookahead[p->nLookahead].action = action;
p->nLookahead++;
}
/*
** Add the transaction set built up with prior calls to acttab_action()
** into the current action table. Then reset the transaction set back
** to an empty set in preparation for a new round of acttab_action() calls.
**
** Return the offset into the action table of the new transaction.
*/
int acttab_insert(acttab *p){
int i, j, k, n;
assert( p->nLookahead>0 );
/* Make sure we have enough space to hold the expanded action table
** in the worst case. The worst case occurs if the transaction set
** must be appended to the current action table
*/
n = p->mxLookahead - p->mnLookahead + 1;
if( p->nAction + n >= p->nActionAlloc ){
p->nActionAlloc = p->nAction + n + p->nActionAlloc + 20;
p->aAction = realloc( p->aAction,
sizeof(p->aAction[0])*p->nActionAlloc);
if( p->aAction==0 ){
fprintf(stderr,"malloc failed\n");
exit(1);
}
for(i=p->nAction; i<p->nActionAlloc; i++){
p->aAction[i].lookahead = -1;
p->aAction[i].action = -1;
}
}
/* Scan the existing action table looking for an offset where we can
** insert the current transaction set. Fall out of the loop when that
** offset is found. In the worst case, we fall out of the loop when
** i reaches p->nAction, which means we append the new transaction set.
**
** i is the index in p->aAction[] where p->mnLookahead is inserted.
*/
for(i=0; i<p->nAction; i++){
if( p->aAction[i].lookahead<0 ){
for(j=0; j<p->nLookahead; j++){
k = p->aLookahead[j].lookahead - p->mnLookahead + i;
if( k<0 ) break;
if( p->aAction[k].lookahead>=0 ) break;
}
if( j==p->nLookahead ) break; /* Fits in empty slots */
}else if( p->aAction[i].lookahead==p->mnLookahead ){
if( p->aAction[i].action!=p->mnAction ) continue;
for(j=0; j<p->nLookahead; j++){
k = p->aLookahead[j].lookahead - p->mnLookahead + i;
if( k<0 || k>=p->nAction ) break;
if( p->aLookahead[j].lookahead!=p->aAction[k].lookahead ) break;
if( p->aLookahead[j].action!=p->aAction[k].action ) break;
}
if( j<p->nLookahead ) continue;
n = 0;
for(j=0; j<p->nAction; j++){
if( p->aAction[j].lookahead==j+i-p->mnLookahead ) n++;
}
if( n==p->nLookahead ) break; /* Same as a prior transaction set */
}
}
/* Insert transaction set at index i. */
for(j=0; j<p->nLookahead; j++){
k = p->aLookahead[j].lookahead - p->mnLookahead + i;
p->aAction[k] = p->aLookahead[j];
if( k>=p->nAction ) p->nAction = k+1;
}
p->nLookahead = 0;
/* Return the offset that is added to the lookahead in order to get the
** index into yy_action of the action */
return i - p->mnLookahead;
}
/********************** From the file "assert.c" ****************************/
/*
** A more efficient way of handling assertions.
@ -1672,17 +1828,17 @@ void OptPrint(){
case OPT_INT:
case OPT_FINT:
fprintf(errstream," %s=<integer>%*s %s\n",op[i].label,
max-strlen(op[i].label)-9,"",op[i].message);
(int)(max-strlen(op[i].label)-9),"",op[i].message);
break;
case OPT_DBL:
case OPT_FDBL:
fprintf(errstream," %s=<real>%*s %s\n",op[i].label,
max-strlen(op[i].label)-6,"",op[i].message);
(int)(max-strlen(op[i].label)-6),"",op[i].message);
break;
case OPT_STR:
case OPT_FSTR:
fprintf(errstream," %s=<string>%*s %s\n",op[i].label,
max-strlen(op[i].label)-8,"",op[i].message);
(int)(max-strlen(op[i].label)-8),"",op[i].message);
break;
}
}
@ -2654,7 +2810,7 @@ struct lemon *lemp;
cp = strrchr(lemp->filename,'.');
if( cp ){
sprintf(buf,"%.*s.lt",(unsigned long)cp-(unsigned long)lemp->filename,lemp->filename);
sprintf(buf,"%.*s.lt",(int)(cp-lemp->filename),lemp->filename);
}else{
sprintf(buf,"%s.lt",lemp->filename);
}
@ -2949,16 +3105,24 @@ int mhflag; /* True if generating makeheaders output */
/*
** Return the name of a C datatype able to represent values between
** 0 and N, inclusive.
** lwr and upr, inclusive.
*/
static const char *minimum_size_type(int N){
if( N<=255 ){
static const char *minimum_size_type(int lwr, int upr){
if( lwr>=0 ){
if( upr<=255 ){
return "unsigned char";
}else if( N<65535 ){
}else if( upr<65535 ){
return "unsigned short int";
}else{
return "unsigned int";
}
}else if( lwr>=-127 && upr<=127 ){
return "signed char";
}else if( lwr>=-32767 && upr<32767 ){
return "short";
}else{
return "int";
}
}
/* Generate C source code for the parser */
@ -2972,9 +3136,11 @@ int mhflag; /* Output in makeheaders format if true */
struct state *stp;
struct action *ap;
struct rule *rp;
int i, j;
int tablecnt;
struct acttab *pActtab;
int i, j, n;
char *name;
int mnTknOfst, mxTknOfst;
int mnNtOfst, mxNtOfst;
in = tplt_open(lemp);
if( in==0 ) return;
@ -3012,10 +3178,10 @@ int mhflag; /* Output in makeheaders format if true */
/* Generate the defines */
fprintf(out,"/* \001 */\n");
fprintf(out,"#define YYCODETYPE %s\n",
minimum_size_type(lemp->nsymbol+5)); lineno++;
minimum_size_type(0, lemp->nsymbol+5)); lineno++;
fprintf(out,"#define YYNOCODE %d\n",lemp->nsymbol+1); lineno++;
fprintf(out,"#define YYACTIONTYPE %s\n",
minimum_size_type(lemp->nstate+lemp->nrule+5)); lineno++;
minimum_size_type(0, lemp->nstate+lemp->nrule+5)); lineno++;
print_stack_union(out,lemp,&lineno,mhflag);
if( lemp->stacksize ){
if( atoi(lemp->stacksize)<=0 ){
@ -3062,111 +3228,161 @@ int mhflag; /* Output in makeheaders format if true */
}
tplt_xfer(lemp->name,in,out,&lineno);
/* Generate the action table.
/* Generate the action table and its associates:
**
** Each entry in the action table is an element of the following
** structure:
** struct yyActionEntry {
** YYCODETYPE lookahead;
** YYCODETYPE next;
** YYACTIONTYPE action;
** }
**
** The entries are grouped into hash tables, one hash table for each
** parser state. The hash table has a size which is the number of
** entries in that table. In case of a collision, the "next" value
** contains one more than the index into the hash table of the next
** entry in the collision chain. A "next" value of 0 means the end
** of the chain has been reached.
** yy_action[] A single table containing all actions.
** yy_lookahead[] A table containing the lookahead for each entry in
** yy_action. Used to detect hash collisions.
** yy_shift_ofst[] For each state, the offset into yy_action for
** shifting terminals.
** yy_reduce_ofst[] For each state, the offset into yy_action for
** shifting non-terminals after a reduce.
** yy_default[] Default action for each state.
*/
tablecnt = 0;
/* Loop over parser states */
for(i=0; i<lemp->nstate; i++){
int tablesize; /* size of the hash table */
int j,k; /* Loop counter */
int collide[2048]; /* The collision chain for the table */
struct action *table[2048]; /* Build the hash table here */
/* Find the number of actions and initialize the hash table */
stp = lemp->sorted[i];
stp->tabstart = tablecnt;
stp->naction = 0;
for(ap=stp->ap; ap; ap=ap->next){
if( ap->sp->index!=lemp->nsymbol && compute_action(lemp,ap)>=0 ){
stp->naction++;
}
}
tablesize = stp->naction;
assert( tablesize<= sizeof(table)/sizeof(table[0]) );
for(j=0; j<tablesize; j++){
table[j] = 0;
collide[j] = -1;
}
/* Hash the actions into the hash table */
stp->tabdfltact = lemp->nstate + lemp->nrule;
for(ap=stp->ap; ap; ap=ap->next){
int action = compute_action(lemp,ap);
int h;
if( ap->sp->index==lemp->nsymbol ){
stp->tabdfltact = action;
}else if( action>=0 ){
h = ap->sp->index % tablesize;
ap->collide = table[h];
table[h] = ap;
}
}
/* Resolve collisions */
for(j=k=0; j<tablesize; j++){
if( table[j] && table[j]->collide ){
while( table[k] ) k++;
table[k] = table[j]->collide;
collide[j] = k;
table[j]->collide = 0;
if( k<j ) j = k-1;
}
}
/* Print the hash table */
if( tablesize>0 ){
fprintf(out,"/* State %d */\n",stp->index); lineno++;
}
for(j=0; j<tablesize; j++){
assert( table[j]!=0 );
fprintf(out," {%4d,%4d,%4d}, /* %2d: ",
table[j]->sp->index,
collide[j]+1,
compute_action(lemp,table[j]),
j+1);
PrintAction(table[j],out,22);
fprintf(out," */\n");
lineno++;
}
/* Update the table count */
tablecnt += tablesize;
}
tplt_xfer(lemp->name,in,out,&lineno);
lemp->tablesize = tablecnt;
/* Generate the state table
**
** Each entry is an element of the following structure:
** struct yyStateEntry {
** struct yyActionEntry *hashtbl;
** YYCODETYPE nEntry;
** YYACTIONTYPE actionDefault;
** }
*/
/* Compute the actions on all states and count them up */
for(i=0; i<lemp->nstate; i++){
stp = lemp->sorted[i];
fprintf(out," { &yyActionTable[%d],%4d,%4d },\n",
stp->tabstart,
stp->naction,
stp->tabdfltact); lineno++;
stp->nTknAct = stp->nNtAct = 0;
stp->iDflt = lemp->nstate + lemp->nrule;
stp->iTknOfst = NO_OFFSET;
stp->iNtOfst = NO_OFFSET;
for(ap=stp->ap; ap; ap=ap->next){
if( compute_action(lemp,ap)>=0 ){
if( ap->sp->index<lemp->nterminal ){
stp->nTknAct++;
}else if( ap->sp->index<lemp->nsymbol ){
stp->nNtAct++;
}else{
stp->iDflt = compute_action(lemp, ap);
}
}
}
}
mxTknOfst = mnTknOfst = 0;
mxNtOfst = mnNtOfst = 0;
/* Compute the action table. Do this in two passes. The first
** pass does all entries with two or more actions and the second
** pass does all states with a single action.
*/
pActtab = acttab_alloc();
for(j=0; j<=1; j++){
for(i=0; i<lemp->nstate; i++){
stp = lemp->sorted[i];
if( (j==0 && stp->nTknAct>=2) || (j==1 && stp->nTknAct==1) ){
for(ap=stp->ap; ap; ap=ap->next){
int action;
if( ap->sp->index>=lemp->nterminal ) continue;
action = compute_action(lemp, ap);
if( action<0 ) continue;
acttab_action(pActtab, ap->sp->index, action);
}
stp->iTknOfst = acttab_insert(pActtab);
if( stp->iTknOfst<mnTknOfst ) mnTknOfst = stp->iTknOfst;
if( stp->iTknOfst>mxTknOfst ) mxTknOfst = stp->iTknOfst;
}
if( (j==0 && stp->nNtAct>=2) || (j==1 && stp->nNtAct==1) ){
for(ap=stp->ap; ap; ap=ap->next){
int action;
if( ap->sp->index<lemp->nterminal ) continue;
if( ap->sp->index==lemp->nsymbol ) continue;
action = compute_action(lemp, ap);
if( action<0 ) continue;
acttab_action(pActtab, ap->sp->index, action);
}
stp->iNtOfst = acttab_insert(pActtab);
if( stp->iNtOfst<mnNtOfst ) mnNtOfst = stp->iNtOfst;
if( stp->iNtOfst>mxNtOfst ) mxNtOfst = stp->iNtOfst;
}
}
}
/* Output the yy_action table */
fprintf(out,"static YYACTIONTYPE yy_action[] = {\n"); lineno++;
n = acttab_size(pActtab);
for(i=j=0; i<n; i++){
int action = acttab_yyaction(pActtab, i);
if( action<0 ) action = lemp->nsymbol + lemp->nrule + 2;
fprintf(out, " %4d,", action);
if( j==9 || i==n-1 ){
fprintf(out, "\n"); lineno++;
j = 0;
}else{
j++;
}
}
fprintf(out, "};\n"); lineno++;
/* Output the yy_lookahead table */
fprintf(out,"static YYCODETYPE yy_lookahead[] = {\n"); lineno++;
for(i=j=0; i<n; i++){
int la = acttab_yylookahead(pActtab, i);
if( la<0 ) la = lemp->nsymbol;
fprintf(out, " %4d,", la);
if( j==9 || i==n-1 ){
fprintf(out, "\n"); lineno++;
j = 0;
}else{
j++;
}
}
fprintf(out, "};\n"); lineno++;
/* Output the yy_shift_ofst[] table */
fprintf(out, "#define YY_SHIFT_USE_DFLT (%d)\n", mnTknOfst-1); lineno++;
fprintf(out, "static %s yy_shift_ofst[] = {\n",
minimum_size_type(mnTknOfst-1, mxTknOfst)); lineno++;
n = lemp->nstate;
for(i=j=0; i<n; i++){
int ofst;
stp = lemp->sorted[i];
ofst = stp->iTknOfst;
if( ofst==NO_OFFSET ) ofst = mnTknOfst - 1;
fprintf(out, " %4d,", ofst);
if( j==9 || i==n-1 ){
fprintf(out, "\n"); lineno++;
j = 0;
}else{
j++;
}
}
fprintf(out, "};\n"); lineno++;
/* Output the yy_reduce_ofst[] table */
fprintf(out, "#define YY_REDUCE_USE_DFLT (%d)\n", mnNtOfst-1); lineno++;
fprintf(out, "static %s yy_reduce_ofst[] = {\n",
minimum_size_type(mnNtOfst-1, mxNtOfst)); lineno++;
n = lemp->nstate;
for(i=j=0; i<n; i++){
int ofst;
stp = lemp->sorted[i];
ofst = stp->iNtOfst;
if( ofst==NO_OFFSET ) ofst = mnNtOfst - 1;
fprintf(out, " %4d,", ofst);
if( j==9 || i==n-1 ){
fprintf(out, "\n"); lineno++;
j = 0;
}else{
j++;
}
}
fprintf(out, "};\n"); lineno++;
/* Output the default action table */
fprintf(out, "static YYACTIONTYPE yy_default[] = {\n"); lineno++;
n = lemp->nstate;
for(i=j=0; i<n; i++){
stp = lemp->sorted[i];
fprintf(out, " %4d,", stp->iDflt);
if( j==9 || i==n-1 ){
fprintf(out, "\n"); lineno++;
j = 0;
}else{
j++;
}
}
fprintf(out, "};\n"); lineno++;
tplt_xfer(lemp->name,in,out,&lineno);
/* Generate the table of fallback tokens.
@ -3336,7 +3552,6 @@ struct lemon *lemp;
struct rule *rp, *rp2, *rbest;
int nbest, n;
int i;
int cnt;
for(i=0; i<lemp->nstate; i++){
stp = lemp->sorted[i];

View File

@ -58,55 +58,49 @@
#define YY_NO_ACTION (YYNSTATE+YYNRULE+2)
#define YY_ACCEPT_ACTION (YYNSTATE+YYNRULE+1)
#define YY_ERROR_ACTION (YYNSTATE+YYNRULE)
/* Next is the action table. Each entry in this table contains
/* Next are that ables used to determine what action to take based on the
** current state and lookahead token. These tables are used to implement
** functions that take a state number and lookahead value and return an
** action integer.
**
** + An integer which is the number representing the look-ahead
** token
**
** + An integer indicating what action to take. Number (N) between
** The action integer is a number N between
** 0 and YYNSTATE-1 mean shift the look-ahead and go to state N.
** Numbers between YYNSTATE and YYNSTATE+YYNRULE-1 mean reduce by
** rule N-YYNSTATE. Number YYNSTATE+YYNRULE means that a syntax
** error has occurred. Number YYNSTATE+YYNRULE+1 means the parser
** accepts its input.
**
** + A pointer to the next entry with the same hash value.
** The action table is constructed as a single large hash table with
** a perfect hash. Given state S and lookahead X, the action is computed
** as
**
** The action table is really a series of hash tables. Each hash
** table contains a number of entries which is a power of two. The
** "state" table (which follows) contains information about the starting
** point and size of each hash table.
** yy_action[ yy_shift_ofst[S] + X ]
**
** If the index yy_shift_ofst[S]+X is out of range or if the value
** yy_lookahead[yy_shift_ofst[S]+X] is not equal to X or if yy_shift_ofst[S]
** is equal to YY_SHIFT_USE_DFLT, it means that the action is not in the table
** and that yy_default[S] should be used instead.
**
** The formula above is for computing the action when the lookahead is
** a terminal symbol. If the lookahead is a non-terminal (as occurs after
** a reduce action) then the yy_reduce_ofst[] array is used in place of
** the yy_shift_ofst[] array and YY_REDUCE_USE_DFLT is used in place of
** YY_SHIFT_USE_DFLT.
**
** The following are the tables generated in this section:
**
** yy_action[] A single table containing all actions.
** yy_lookahead[] A table containing the lookahead for each entry in
** yy_action. Used to detect hash collisions.
** yy_shift_ofst[] For each state, the offset into yy_action for
** shifting terminals.
** yy_reduce_ofst[] For each state, the offset into yy_action for
** shifting non-terminals after a reduce.
** yy_default[] Default action for each state.
*/
struct yyActionEntry {
YYCODETYPE lookahead; /* The value of the look-ahead token */
YYCODETYPE next; /* Next entry + 1. Zero at end of collision chain */
YYACTIONTYPE action; /* Action to take for this look-ahead */
};
typedef struct yyActionEntry yyActionEntry;
static const yyActionEntry yyActionTable[] = {
%%
};
/* The state table contains information needed to look up the correct
** action in the action table, given the current state of the parser.
** Information needed includes:
**
** + A pointer to the start of the action hash table in yyActionTable.
**
** + The number of entries in the action hash table.
**
** + The default action. This is the action to take if no entry for
** the given look-ahead is found in the action hash table.
*/
struct yyStateEntry {
const yyActionEntry *hashtbl; /* Start of the hash table in yyActionTable */
YYCODETYPE nEntry; /* Number of entries in action hash table */
YYACTIONTYPE actionDefault; /* Default action if look-ahead not found */
};
typedef struct yyStateEntry yyStateEntry;
static const yyStateEntry yyStateTable[] = {
%%
};
#define YY_SZ_ACTTAB (sizeof(yy_action)/sizeof(yy_action[0]))
/* The next table maps tokens into fallback tokens. If a construct
** like the following:
@ -312,32 +306,31 @@ void ParseFree(
}
/*
** Find the appropriate action for a parser given the look-ahead token.
** Find the appropriate action for a parser given the terminal
** look-ahead token iLookAhead.
**
** If the look-ahead token is YYNOCODE, then check to see if the action is
** independent of the look-ahead. If it is, return the action, otherwise
** return YY_NO_ACTION.
*/
static int yy_find_parser_action(
static int yy_find_shift_action(
yyParser *pParser, /* The parser */
int iLookAhead /* The look-ahead token */
){
const yyStateEntry *pState; /* Appropriate entry in the state table */
const yyActionEntry *pAction; /* Action appropriate for the look-ahead */
int iFallback; /* Fallback token */
int i;
/* if( pParser->yyidx<0 ) return YY_NO_ACTION; */
pState = &yyStateTable[pParser->yytop->stateno];
if( pState->nEntry==0 ){
return pState->actionDefault;
}else if( iLookAhead!=YYNOCODE ){
pAction = &pState->hashtbl[iLookAhead % pState->nEntry];
while( 1 ){
if( pAction->lookahead==iLookAhead ) return pAction->action;
if( pAction->next==0 ) break;
pAction = &pState->hashtbl[pAction->next-1];
i = yy_shift_ofst[pParser->yytop->stateno];
if( i==YY_SHIFT_USE_DFLT ){
return yy_default[pParser->yytop->stateno];
}
if( iLookAhead==YYNOCODE ){
return YY_NO_ACTION;
}
i += iLookAhead;
if( i<0 || i>=YY_SZ_ACTTAB || yy_lookahead[i]!=iLookAhead ){
#ifdef YYFALLBACK
int iFallback; /* Fallback token */
if( iLookAhead<sizeof(yyFallback)/sizeof(yyFallback[0])
&& (iFallback = yyFallback[iLookAhead])!=0 ){
#ifndef NDEBUG
@ -346,13 +339,42 @@ static int yy_find_parser_action(
yyTracePrompt, yyTokenName[iLookAhead], yyTokenName[iFallback]);
}
#endif
return yy_find_parser_action(pParser, iFallback);
return yy_find_shift_action(pParser, iFallback);
}
#endif
}else if( pState->hashtbl->lookahead!=YYNOCODE ){
return yy_default[pParser->yytop->stateno];
}else{
return yy_action[i];
}
}
/*
** Find the appropriate action for a parser given the non-terminal
** look-ahead token iLookAhead.
**
** If the look-ahead token is YYNOCODE, then check to see if the action is
** independent of the look-ahead. If it is, return the action, otherwise
** return YY_NO_ACTION.
*/
static int yy_find_reduce_action(
yyParser *pParser, /* The parser */
int iLookAhead /* The look-ahead token */
){
int i;
i = yy_reduce_ofst[pParser->yytop->stateno];
if( i==YY_REDUCE_USE_DFLT ){
return yy_default[pParser->yytop->stateno];
}
if( iLookAhead==YYNOCODE ){
return YY_NO_ACTION;
}
return pState->actionDefault;
i += iLookAhead;
if( i<0 || i>=YY_SZ_ACTTAB || yy_lookahead[i]!=iLookAhead ){
return yy_default[pParser->yytop->stateno];
}else{
return yy_action[i];
}
}
/*
@ -447,7 +469,7 @@ static void yy_reduce(
yysize = yyRuleInfo[yyruleno].nrhs;
yypParser->yyidx -= yysize;
yypParser->yytop -= yysize;
yyact = yy_find_parser_action(yypParser,yygoto);
yyact = yy_find_reduce_action(yypParser,yygoto);
if( yyact < YYNSTATE ){
yy_shift(yypParser,yyact,yygoto,&yygotominor);
}else if( yyact == YYNSTATE + YYNRULE + 1 ){
@ -559,7 +581,7 @@ void Parse(
#endif
do{
yyact = yy_find_parser_action(yypParser,yymajor);
yyact = yy_find_shift_action(yypParser,yymajor);
if( yyact<YYNSTATE ){
yy_shift(yypParser,yyact,yymajor,&yyminorunion);
yypParser->yyerrcnt--;
@ -612,7 +634,7 @@ void Parse(
while(
yypParser->yyidx >= 0 &&
yypParser->yytop->major != YYERRORSYMBOL &&
(yyact = yy_find_parser_action(yypParser,YYERRORSYMBOL)) >= YYNSTATE
(yyact = yy_find_shift_action(yypParser,YYERRORSYMBOL)) >= YYNSTATE
){
yy_pop_parser_stack(yypParser);
}