mirror of
https://github.com/sqlite/sqlite.git
synced 2025-11-16 23:02:26 +03:00
Allow OP_MoveGt and similar to use an array of registers instead of a serialized record. Modify one type of index range scan to use this. (CVS 5028)
FossilOrigin-Name: c448f15aa5ed3dec511426775e893efea324faa1
This commit is contained in:
222
src/where.c
222
src/where.c
@@ -16,7 +16,7 @@
|
||||
** so is applicable. Because this module is responsible for selecting
|
||||
** indices, you might also think of this module as the "query optimizer".
|
||||
**
|
||||
** $Id: where.c,v 1.299 2008/04/17 19:14:02 drh Exp $
|
||||
** $Id: where.c,v 1.300 2008/04/18 09:01:16 danielk1977 Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
|
||||
@@ -2475,36 +2475,40 @@ WhereInfo *sqlite3WhereBegin(
|
||||
** constraints but an index is selected anyway, in order
|
||||
** to force the output order to conform to an ORDER BY.
|
||||
*/
|
||||
int start;
|
||||
int aStartOp[] = {
|
||||
0,
|
||||
0,
|
||||
OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */
|
||||
OP_Last, /* 3: (!start_constraints && startEq && bRev) */
|
||||
OP_MoveGt, /* 4: (start_constraints && !startEq && !bRev) */
|
||||
OP_MoveLt, /* 5: (start_constraints && !startEq && bRev) */
|
||||
OP_MoveGe, /* 6: (start_constraints && startEq && !bRev) */
|
||||
OP_MoveLe /* 7: (start_constraints && startEq && bRev) */
|
||||
};
|
||||
int aEndOp[] = {
|
||||
OP_Noop, /* 0: () */
|
||||
OP_IdxGE, /* 1: (end_constraints && !bRev) */
|
||||
OP_IdxLT /* 2: (end_constraints && bRev) */
|
||||
};
|
||||
int nEq = pLevel->nEq;
|
||||
int topEq=0; /* True if top limit uses ==. False is strictly < */
|
||||
int btmEq=0; /* True if btm limit uses ==. False if strictly > */
|
||||
int topOp, btmOp; /* Operators for the top and bottom search bounds */
|
||||
int testOp;
|
||||
int topLimit = (pLevel->flags & WHERE_TOP_LIMIT)!=0;
|
||||
int btmLimit = (pLevel->flags & WHERE_BTM_LIMIT)!=0;
|
||||
int isMinQuery = 0; /* If this is an optimized SELECT min(x) ... */
|
||||
int regBase; /* Base register holding constraint values */
|
||||
int r1; /* Temp register */
|
||||
int isMinQuery = 0; /* If this is an optimized SELECT min(x).. */
|
||||
int regBase; /* Base register holding constraint values */
|
||||
int r1; /* Temp register */
|
||||
WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */
|
||||
WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */
|
||||
int startEq; /* True if range start uses ==, >= or <= */
|
||||
int endEq; /* True if range end uses ==, >= or <= */
|
||||
int start_constraints; /* Start of range is constrained */
|
||||
int k = pIdx->aiColumn[nEq]; /* Column for inequality constraints */
|
||||
char *ptr;
|
||||
int op;
|
||||
|
||||
/* Generate code to evaluate all constraint terms using == or IN
|
||||
** and level the values of those terms on the stack.
|
||||
** and store the values of those terms in an array of registers
|
||||
** starting at regBase.
|
||||
*/
|
||||
regBase = codeAllEqualityTerms(pParse, pLevel, &wc, notReady, 2);
|
||||
|
||||
/* Figure out what comparison operators to use for top and bottom
|
||||
** search bounds. For an ascending index, the bottom bound is a > or >=
|
||||
** operator and the top bound is a < or <= operator. For a descending
|
||||
** index the operators are reversed.
|
||||
*/
|
||||
if( pIdx->aSortOrder[nEq]==SQLITE_SO_ASC ){
|
||||
topOp = WO_LT|WO_LE;
|
||||
btmOp = WO_GT|WO_GE;
|
||||
}else{
|
||||
topOp = WO_GT|WO_GE;
|
||||
btmOp = WO_LT|WO_LE;
|
||||
SWAP(int, topLimit, btmLimit);
|
||||
}
|
||||
nxt = pLevel->nxt;
|
||||
|
||||
/* If this loop satisfies a sort order (pOrderBy) request that
|
||||
** was passed to this function to implement a "SELECT min(x) ..."
|
||||
@@ -2522,121 +2526,95 @@ WhereInfo *sqlite3WhereBegin(
|
||||
isMinQuery = 1;
|
||||
}
|
||||
|
||||
/* Generate the termination key. This is the key value that
|
||||
** will end the search. There is no termination key if there
|
||||
** are no equality terms and no "X<..." term.
|
||||
**
|
||||
** 2002-Dec-04: On a reverse-order scan, the so-called "termination"
|
||||
** key computed here really ends up being the start key.
|
||||
/* Find the inequality constraint terms for the start and end
|
||||
** of the range.
|
||||
*/
|
||||
nxt = pLevel->nxt;
|
||||
if( topLimit ){
|
||||
Expr *pX;
|
||||
int k = pIdx->aiColumn[nEq];
|
||||
pTerm = findTerm(&wc, iCur, k, notReady, topOp, pIdx);
|
||||
assert( pTerm!=0 );
|
||||
pX = pTerm->pExpr;
|
||||
assert( (pTerm->flags & TERM_CODED)==0 );
|
||||
sqlite3ExprCode(pParse, pX->pRight, regBase+nEq);
|
||||
sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, nxt);
|
||||
topEq = pTerm->eOperator & (WO_LE|WO_GE);
|
||||
disableTerm(pLevel, pTerm);
|
||||
testOp = OP_IdxGE;
|
||||
}else{
|
||||
testOp = nEq>0 ? OP_IdxGE : OP_Noop;
|
||||
topEq = 1;
|
||||
if( pLevel->flags & WHERE_TOP_LIMIT ){
|
||||
pRangeEnd = findTerm(&wc, iCur, k, notReady, (WO_LT|WO_LE), pIdx);
|
||||
}
|
||||
if( testOp!=OP_Noop || (isMinQuery&&bRev) ){
|
||||
int nCol = nEq + topLimit;
|
||||
if( isMinQuery && bRev && !topLimit ){
|
||||
sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nCol);
|
||||
nCol++;
|
||||
topEq = 0;
|
||||
}
|
||||
buildIndexProbe(pParse, nCol, pIdx, regBase, pLevel->iMem);
|
||||
if( bRev ){
|
||||
int op = topEq ? OP_MoveLe : OP_MoveLt;
|
||||
sqlite3VdbeAddOp3(v, op, iIdxCur, nxt, pLevel->iMem);
|
||||
}
|
||||
}else if( bRev ){
|
||||
sqlite3VdbeAddOp2(v, OP_Last, iIdxCur, brk);
|
||||
}
|
||||
|
||||
/* Generate the start key. This is the key that defines the lower
|
||||
** bound on the search. There is no start key if there are no
|
||||
** equality terms and if there is no "X>..." term. In
|
||||
** that case, generate a "Rewind" instruction in place of the
|
||||
** start key search.
|
||||
**
|
||||
** 2002-Dec-04: In the case of a reverse-order search, the so-called
|
||||
** "start" key really ends up being used as the termination key.
|
||||
*/
|
||||
if( btmLimit ){
|
||||
Expr *pX;
|
||||
int k = pIdx->aiColumn[nEq];
|
||||
pTerm = findTerm(&wc, iCur, k, notReady, btmOp, pIdx);
|
||||
assert( pTerm!=0 );
|
||||
pX = pTerm->pExpr;
|
||||
assert( (pTerm->flags & TERM_CODED)==0 );
|
||||
sqlite3ExprCode(pParse, pX->pRight, regBase+nEq);
|
||||
sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, nxt);
|
||||
btmEq = pTerm->eOperator & (WO_LE|WO_GE);
|
||||
disableTerm(pLevel, pTerm);
|
||||
}else{
|
||||
btmEq = 1;
|
||||
}
|
||||
if( nEq>0 || btmLimit || (isMinQuery&&!bRev) ){
|
||||
int nCol = nEq + btmLimit;
|
||||
if( isMinQuery && !bRev && !btmLimit ){
|
||||
sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nCol);
|
||||
nCol++;
|
||||
btmEq = 0;
|
||||
}
|
||||
if( bRev ){
|
||||
r1 = pLevel->iMem;
|
||||
testOp = OP_IdxLT;
|
||||
}else{
|
||||
r1 = sqlite3GetTempReg(pParse);
|
||||
}
|
||||
buildIndexProbe(pParse, nCol, pIdx, regBase, r1);
|
||||
if( !bRev ){
|
||||
int op = btmEq ? OP_MoveGe : OP_MoveGt;
|
||||
sqlite3VdbeAddOp3(v, op, iIdxCur, nxt, r1);
|
||||
sqlite3ReleaseTempReg(pParse, r1);
|
||||
}
|
||||
}else if( bRev ){
|
||||
testOp = OP_Noop;
|
||||
}else{
|
||||
sqlite3VdbeAddOp2(v, OP_Rewind, iIdxCur, brk);
|
||||
if( pLevel->flags & WHERE_BTM_LIMIT ){
|
||||
pRangeStart = findTerm(&wc, iCur, k, notReady, (WO_GT|WO_GE), pIdx);
|
||||
}
|
||||
|
||||
/* Generate the the top of the loop. If there is a termination
|
||||
** key we have to test for that key and abort at the top of the
|
||||
** loop.
|
||||
/* If we are doing a reverse order scan on an ascending index, or
|
||||
** a forward order scan on a descending index, interchange the
|
||||
** start and end terms (pRangeStart and pRangeEnd).
|
||||
*/
|
||||
start = sqlite3VdbeCurrentAddr(v);
|
||||
if( testOp!=OP_Noop ){
|
||||
sqlite3VdbeAddOp3(v, testOp, iIdxCur, nxt, pLevel->iMem);
|
||||
if( (topEq && !bRev) || (!btmEq && bRev) ){
|
||||
sqlite3VdbeChangeP5(v, 1);
|
||||
}
|
||||
if( bRev==((pIdx->aSortOrder[nEq]==SQLITE_SO_ASC)?1:0) ){
|
||||
SWAP(WhereTerm *, pRangeEnd, pRangeStart);
|
||||
}
|
||||
|
||||
startEq = ((!pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE))?1:0);
|
||||
endEq = ((!pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE))?1:0);
|
||||
start_constraints = ((pRangeStart || nEq>0)?1:0);
|
||||
|
||||
/* Seek the index cursor to the start of the range. */
|
||||
ptr = (char *)(sqlite3_intptr_t)nEq;
|
||||
if( pRangeStart ){
|
||||
int dcc = pParse->disableColCache;
|
||||
if( pRangeEnd ){
|
||||
pParse->disableColCache = 1;
|
||||
}
|
||||
sqlite3ExprCode(pParse, pRangeStart->pExpr->pRight, regBase+nEq);
|
||||
pParse->disableColCache = dcc;
|
||||
sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, nxt);
|
||||
ptr++;
|
||||
}else if( isMinQuery ){
|
||||
sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
|
||||
ptr++;
|
||||
startEq = 0;
|
||||
start_constraints = 1;
|
||||
}
|
||||
sqlite3VdbeAddOp2(v, OP_Affinity, regBase, (int)ptr);
|
||||
sqlite3IndexAffinityStr(v, pIdx);
|
||||
op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev];
|
||||
sqlite3VdbeAddOp4(v, op, iIdxCur, nxt, regBase, ptr, P4_INT32);
|
||||
|
||||
/* Load the value for the inequality constraint at the end of the
|
||||
** range (if any).
|
||||
*/
|
||||
ptr = (char *)(sqlite3_intptr_t)nEq;
|
||||
if( pRangeEnd ){
|
||||
sqlite3ExprCode(pParse, pRangeEnd->pExpr->pRight, regBase+nEq);
|
||||
sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, nxt);
|
||||
ptr++;
|
||||
}
|
||||
sqlite3VdbeAddOp2(v, OP_Affinity, regBase, (int)ptr);
|
||||
sqlite3IndexAffinityStr(v, pIdx);
|
||||
|
||||
/* Top of the loop body */
|
||||
pLevel->p2 = sqlite3VdbeCurrentAddr(v);
|
||||
|
||||
/* Check if the index cursor is past the end of the range. */
|
||||
op = aEndOp[((pRangeEnd || nEq)?1:0) * (1 + bRev)];
|
||||
sqlite3VdbeAddOp4(v, op, iIdxCur, nxt, regBase, ptr, P4_INT32);
|
||||
sqlite3VdbeChangeP5(v, endEq!=bRev);
|
||||
|
||||
/* If there are inequality constraints (there may not be if the
|
||||
** index is only being used to optimize ORDER BY), check that the
|
||||
** value of the table column the inequality contrains is not NULL.
|
||||
** If it is, jump to the next iteration of the loop.
|
||||
*/
|
||||
r1 = sqlite3GetTempReg(pParse);
|
||||
if( topLimit | btmLimit ){
|
||||
if( pLevel->flags & (WHERE_BTM_LIMIT|WHERE_TOP_LIMIT) ){
|
||||
sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, nEq, r1);
|
||||
sqlite3VdbeAddOp2(v, OP_IsNull, r1, cont);
|
||||
}
|
||||
|
||||
/* Seek the table cursor, if required */
|
||||
if( !omitTable ){
|
||||
sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, r1);
|
||||
sqlite3VdbeAddOp3(v, OP_MoveGe, iCur, 0, r1); /* Deferred seek */
|
||||
}
|
||||
sqlite3ReleaseTempReg(pParse, r1);
|
||||
|
||||
/* Record the instruction used to terminate the loop.
|
||||
/* Record the instruction used to terminate the loop. Disable
|
||||
** WHERE clause terms made redundant by the index range scan.
|
||||
*/
|
||||
pLevel->op = bRev ? OP_Prev : OP_Next;
|
||||
pLevel->p1 = iIdxCur;
|
||||
pLevel->p2 = start;
|
||||
disableTerm(pLevel, pRangeStart);
|
||||
disableTerm(pLevel, pRangeEnd);
|
||||
}else if( pLevel->flags & WHERE_COLUMN_EQ ){
|
||||
/* Case 4: There is an index and all terms of the WHERE clause that
|
||||
** refer to the index using the "==" or "IN" operators.
|
||||
|
||||
Reference in New Issue
Block a user