1
0
mirror of https://github.com/sqlite/sqlite.git synced 2025-08-07 02:42:48 +03:00

Continued work on btree (CVS 219)

FossilOrigin-Name: 18500cdcc1a42118cdf650681ebb1cbeac106aa7
This commit is contained in:
drh
2001-05-24 21:06:34 +00:00
parent 306dc21379
commit 72f8286960
7 changed files with 372 additions and 80 deletions

View File

@@ -1,5 +1,5 @@
C :-)\s(CVS\s218) C Continued\swork\son\sbtree\s(CVS\s219)
D 2001-05-21T13:45:10 D 2001-05-24T21:06:35
F COPYRIGHT 74a8a6531a42e124df07ab5599aad63870fa0bd4 F COPYRIGHT 74a8a6531a42e124df07ab5599aad63870fa0bd4
F Makefile.in acef0f0275a5ca8e68bda165f7f05d810a207664 F Makefile.in acef0f0275a5ca8e68bda165f7f05d810a207664
F README 51f6a4e7408b34afa5bc1c0485f61b6a4efb6958 F README 51f6a4e7408b34afa5bc1c0485f61b6a4efb6958
@@ -12,8 +12,8 @@ F notes/notes1.txt b7c0812b704a022e88c621146ae50955c923d464
F notes/notes2.txt 49b4d7ba35f183feb1fb098a27272b82f5c76eca F notes/notes2.txt 49b4d7ba35f183feb1fb098a27272b82f5c76eca
F notes/notes3.txt cd5e7bd2167d7ef89b1077abdfa68f0af6337744 F notes/notes3.txt cd5e7bd2167d7ef89b1077abdfa68f0af6337744
F src/TODO 38a68a489e56e9fd4a96263e0ff9404a47368ad4 F src/TODO 38a68a489e56e9fd4a96263e0ff9404a47368ad4
F src/btree.c bc1525234a8b169cae6f903f9cfacbcf971be942 F src/btree.c 5749821afaee09f1cf87b55a4897fd65ed197dd3
F src/btree.h f21c240d0c95f93e2a128106d04a6c448ed0eb94 F src/btree.h a0ef90514e16fab863c7825ab22724317894e1ac
F src/build.c 4f6a2d551c56342cd4a0420654835be3ad179651 F src/build.c 4f6a2d551c56342cd4a0420654835be3ad179651
F src/dbbe.c b18259f99d87240cbe751021cf14dd3aa83a48af F src/dbbe.c b18259f99d87240cbe751021cf14dd3aa83a48af
F src/dbbe.h 7235b15c6c5d8be0c4da469cef9620cee70b1cc8 F src/dbbe.h 7235b15c6c5d8be0c4da469cef9620cee70b1cc8
@@ -31,8 +31,8 @@ F src/ex/sizes.tcl f54bad4a2ac567624be59131a6ee42d71b41a3d7
F src/expr.c c4c24c3af1eba094a816522eb0e085bed518ee16 F src/expr.c c4c24c3af1eba094a816522eb0e085bed518ee16
F src/insert.c aa528e20a787af85432a61daaea6df394bd251d7 F src/insert.c aa528e20a787af85432a61daaea6df394bd251d7
F src/main.c 0a13c7a2beb8ce36aee43daf8c95989b200727a7 F src/main.c 0a13c7a2beb8ce36aee43daf8c95989b200727a7
F src/pager.c e45946aaf080aed251653f21667d62c89e539a97 F src/pager.c debcf7b00e73c031c47ffc12cdeed5cb5f02b761
F src/pager.h ed12ac3ddebd3afe61a0ed4bf530e7846d578e46 F src/pager.h e527411d88e31085f07eba6776dc337b8b027921
F src/parse.y 8fc096948994a7ffbf61ba13129cc589f794a9cb F src/parse.y 8fc096948994a7ffbf61ba13129cc589f794a9cb
F src/printf.c b1e22a47be8cdf707815647239991e08e8cb69f9 F src/printf.c b1e22a47be8cdf707815647239991e08e8cb69f9
F src/random.c b36c3f57dc80c8f354e6bfbf39cf1e1de021d54a F src/random.c b36c3f57dc80c8f354e6bfbf39cf1e1de021d54a
@@ -64,7 +64,7 @@ F test/insert2.test 732405e30331635af8d159fccabe835eea5cd0c6
F test/lock.test bca7d53de73138b1f670a2fbdb1f481ff7eaa45a F test/lock.test bca7d53de73138b1f670a2fbdb1f481ff7eaa45a
F test/main.test da635f9e078cd21ddf074e727381a715064489ff F test/main.test da635f9e078cd21ddf074e727381a715064489ff
F test/malloc.test 3daa97f6a9577d8f4c6e468b274333af19ce5861 F test/malloc.test 3daa97f6a9577d8f4c6e468b274333af19ce5861
F test/pager.test c1eb25faa0938f803d1e6eb5201e5e976ea88256 F test/pager.test 475835b84cbec423a7dd3d0492b2c8701435d375
F test/printf.test 4c71871e1a75a2dacb673945fc13ddb30168798f F test/printf.test 4c71871e1a75a2dacb673945fc13ddb30168798f
F test/rowid.test 128453599def7435e988216f7fe89c7450b8a9a3 F test/rowid.test 128453599def7435e988216f7fe89c7450b8a9a3
F test/select1.test 223507655cdb4f9901d83fa7f5c5328e022c211f F test/select1.test 223507655cdb4f9901d83fa7f5c5328e022c211f
@@ -106,7 +106,7 @@ F www/opcode.tcl cb3a1abf8b7b9be9f3a228d097d6bf8b742c2b6f
F www/sqlite.tcl cb0d23d8f061a80543928755ec7775da6e4f362f F www/sqlite.tcl cb0d23d8f061a80543928755ec7775da6e4f362f
F www/tclsqlite.tcl 06f81c401f79a04f2c5ebfb97e7c176225c0aef2 F www/tclsqlite.tcl 06f81c401f79a04f2c5ebfb97e7c176225c0aef2
F www/vdbe.tcl 0c8aaa529dd216ccbf7daaabd80985e413d5f9ad F www/vdbe.tcl 0c8aaa529dd216ccbf7daaabd80985e413d5f9ad
P ee6760fb62e81af95796c0fcf1e65e5dc0701194 P 523d52dfa6ae3028cbcc88d406501f3ebb6cbd2d
R 6bf7ed657f22039e86c99aa04cca003e R a283ec9b97efb19cc771715467ad06bd
U drh U drh
Z 4c32ca5182d7191fa6afdab861fed35d Z b4b0b3463533c30725394cfe4ae63d4d

View File

@@ -1 +1 @@
523d52dfa6ae3028cbcc88d406501f3ebb6cbd2d 18500cdcc1a42118cdf650681ebb1cbeac106aa7

View File

@@ -21,7 +21,7 @@
** http://www.hwaci.com/drh/ ** http://www.hwaci.com/drh/
** **
************************************************************************* *************************************************************************
** $Id: btree.c,v 1.6 2001/05/21 13:45:10 drh Exp $ ** $Id: btree.c,v 1.7 2001/05/24 21:06:35 drh Exp $
*/ */
#include "sqliteInt.h" #include "sqliteInt.h"
#include "pager.h" #include "pager.h"
@@ -97,7 +97,7 @@ struct Page1Header {
/* /*
** Each database page has a header as follows: ** Each database page has a header as follows:
** **
** page1_header Extra numbers found on page 1 only. ** page1_header Optional instance of Page1Header structure
** rightmost_pgno Page number of the right-most child page ** rightmost_pgno Page number of the right-most child page
** first_cell Index into MemPage.aPage of first cell ** first_cell Index into MemPage.aPage of first cell
** first_free Index of first free block ** first_free Index of first free block
@@ -138,10 +138,11 @@ struct Cell {
/* /*
** Free space on a page is remembered using a linked list of the FreeBlk ** Free space on a page is remembered using a linked list of the FreeBlk
** structures. Space on a database page is allocated in increments of ** structures. Space on a database page is allocated in increments of
** at least 4 bytes and is always aligned to a 4-byte boundry. ** at least 4 bytes and is always aligned to a 4-byte boundry. The
** linked list of freeblocks is always kept in order by address.
*/ */
struct FreeBlk { struct FreeBlk {
u16 iSize; /* Number of u32-sized slots in the block of free space */ u16 iSize; /* Number of bytes in this block of free space */
u16 iNext; /* Index in MemPage.aPage[] of the next free block */ u16 iNext; /* Index in MemPage.aPage[] of the next free block */
}; };
@@ -158,7 +159,7 @@ struct FreeBlk {
*/ */
struct OverflowPage { struct OverflowPage {
Pgno next; Pgno next;
char aData[SQLITE_PAGE_SIZE-sizeof(Pgno)]; char aData[OVERFLOW_SIZE];
}; };
/* /*
@@ -169,17 +170,21 @@ struct OverflowPage {
** data is meaningless for overflow pages and pages on the freelist. ** data is meaningless for overflow pages and pages on the freelist.
** **
** Of particular interest in the auxiliary data is the aCell[] entry. Each ** Of particular interest in the auxiliary data is the aCell[] entry. Each
** aCell[] entry is a pointer to a Cell structure in aPage[]. The cells ** aCell[] entry is a pointer to a Cell structure in aPage[]. The cells are
** put in this array so that they can be accessed in constant time, rather ** put in this array so that they can be accessed in constant time, rather
** than in linear time which would be needed if we walked the linked list. ** than in linear time which would be needed if we walked the linked list.
**
** The pParent field points back to the parent page. This allows us to
** walk up the BTree from any leaf to the root. Care must be taken to
** unref() the parent page pointer when this page is no longer referenced.
** The pageDestructor() routine handles that.
*/ */
struct MemPage { struct MemPage {
char aPage[SQLITE_PAGE_SIZE]; /* Page data stored on disk */ char aPage[SQLITE_PAGE_SIZE]; /* Page data stored on disk */
unsigned char isInit; /* True if auxiliary data is initialized */ unsigned char isInit; /* True if auxiliary data is initialized */
unsigned char validUp; /* True if MemPage.up is valid */
unsigned char validLeft; /* True if MemPage.left is valid */ unsigned char validLeft; /* True if MemPage.left is valid */
unsigned char validRight; /* True if MemPage.right is valid */ unsigned char validRight; /* True if MemPage.right is valid */
Pgno up; /* The parent page. 0 means this is the root */ MemPage *pParent; /* The parent of this page. NULL for root */
Pgno left; /* Left sibling page. 0==none */ Pgno left; /* Left sibling page. 0==none */
Pgno right; /* Right sibling page. 0==none */ Pgno right; /* Right sibling page. 0==none */
int idxStart; /* Index in aPage[] of real data */ int idxStart; /* Index in aPage[] of real data */
@@ -205,18 +210,18 @@ typedef Btree Bt;
** The entry is identified by its MemPage and the index in ** The entry is identified by its MemPage and the index in
** MemPage.aCell[] of the entry. ** MemPage.aCell[] of the entry.
*/ */
struct Cursor { struct BtCursor {
Btree *pBt; /* The pointer back to the BTree */ Btree *pBt; /* The pointer back to the BTree */
Cursor *pPrev, *pNext; /* List of all cursors */ BtCursor *pPrev, *pNext; /* List of all cursors */
MemPage *pPage; /* Page that contains the entry */ MemPage *pPage; /* Page that contains the entry */
int idx; /* Index of the entry in pPage->aCell[] */ int idx; /* Index of the entry in pPage->aCell[] */
int skip_incr; /* */ int skip_incr; /* */
}; };
/* /*
** Defragment the page given. All of the free space ** Defragment the page given. All Cells are moved to the
** is collected into one big block at the end of the ** beginning of the page and all free space is collected
** page. ** into one big FreeBlk at the end of the page.
*/ */
static void defragmentPage(MemPage *pPage){ static void defragmentPage(MemPage *pPage){
int pc; int pc;
@@ -238,7 +243,7 @@ static void defragmentPage(MemPage *pPage){
pPage->aCell[i] = (Cell*)&pPage->aPage[pc]; pPage->aCell[i] = (Cell*)&pPage->aPage[pc];
pc += n; pc += n;
} }
assert( pPage->nFree==pc ); assert( pPage->nFree==SQLITE_PAGE_SIZE-pc );
memcpy(pPage->aPage, newPage, pc); memcpy(pPage->aPage, newPage, pc);
pFBlk = &pPage->aPage[pc]; pFBlk = &pPage->aPage[pc];
pFBlk->iSize = SQLITE_PAGE_SIZE - pc; pFBlk->iSize = SQLITE_PAGE_SIZE - pc;
@@ -255,13 +260,16 @@ static void defragmentPage(MemPage *pPage){
** Or return 0 if there is not enough free space on the page to ** Or return 0 if there is not enough free space on the page to
** satisfy the allocation request. ** satisfy the allocation request.
** **
** This routine will call defragmentPage if necessary to consolidate ** If the page contains nBytes of free space but does not contain
** free space. ** nBytes of contiguous free space, then defragementPage() is
** called to consolidate all free space before allocating the
** new chunk.
*/ */
static int allocSpace(MemPage *pPage, int nByte){ static int allocSpace(MemPage *pPage, int nByte){
FreeBlk *p; FreeBlk *p;
u16 *pIdx; u16 *pIdx;
int start; int start;
nByte = ROUNDUP(nByte); nByte = ROUNDUP(nByte);
if( pPage->nFree<nByte ) return 0; if( pPage->nFree<nByte ) return 0;
pIdx = &pPage->pStart->firstFree; pIdx = &pPage->pStart->firstFree;
@@ -279,8 +287,11 @@ static int allocSpace(MemPage *pPage, int nByte){
start = *pIdx; start = *pIdx;
*pIdx = p->iNext; *pIdx = p->iNext;
}else{ }else{
p->iSize -= nByte; start = *pIdx;
start = *pIdx + p->iSize; FreeBlk *pNew = (FreeBlk*)&pPage->aPage[start + nByte];
pNew->iNext = p->iNext;
pNew->iSize = p->iSize - nByte;
*pIdx = start + nByte;
} }
pPage->nFree -= nByte; pPage->nFree -= nByte;
return start; return start;
@@ -335,8 +346,14 @@ static void freeSpace(MemPage *pPage, int start, int size){
/* /*
** Initialize the auxiliary information for a disk block. ** Initialize the auxiliary information for a disk block.
**
** Return SQLITE_OK on success. If we see that the page does
** not contained a well-formed database page, then return
** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
** guarantee that the page is well-formed. It only shows that
** we failed to detect any corruption.
*/ */
static int initPage(MemPage *pPage, Pgno pgnoThis, Pgno pgnoParent){ static int initPage(MemPage *pPage, Pgno pgnoThis, MemPage *pParent){
int idx; int idx;
Cell *pCell; Cell *pCell;
FreeBlk *pFBlk; FreeBlk *pFBlk;
@@ -344,8 +361,9 @@ static int initPage(MemPage *pPage, Pgno pgnoThis, Pgno pgnoParent){
pPage->idxStart = (pgnoThis==1) ? sizeof(Page1Header) : 0; pPage->idxStart = (pgnoThis==1) ? sizeof(Page1Header) : 0;
pPage->pStart = (PageHdr*)&pPage->aPage[pPage->idxStart]; pPage->pStart = (PageHdr*)&pPage->aPage[pPage->idxStart];
pPage->isInit = 1; pPage->isInit = 1;
pPage->validUp = 1; assert( pPage->pParent==0 );
pPage->up = pgnoParent; pPage->pParent = pParent;
if( pParent ) sqlitepager_ref(pParent);
pPage->nCell = 0; pPage->nCell = 0;
idx = pPage->pStart->firstCell; idx = pPage->pStart->firstCell;
while( idx!=0 ){ while( idx!=0 ){
@@ -371,12 +389,26 @@ page_format_error:
return SQLITE_CORRUPT; return SQLITE_CORRUPT;
} }
/*
** This routine is called when the reference count for a page
** reaches zero. We need to unref the pParent pointer when that
** happens.
*/
static void pageDestructor(void *pData){
MemPage *pPage = (MemPage*)pData;
if( pPage->pParent ){
MemPage *pParent = pPage->pParent;
pPage->pParent = 0;
sqlitepager_unref(pParent);
}
}
/* /*
** Open a new database. ** Open a new database.
** **
** Actually, this routine just sets up the internal data structures ** Actually, this routine just sets up the internal data structures
** for accessing the database. We do not actually open the database ** for accessing the database. We do not open the database file
** file until the first page is loaded. ** until the first page is loaded.
*/ */
int sqliteBtreeOpen(const char *zFilename, int mode, Btree **ppBtree){ int sqliteBtreeOpen(const char *zFilename, int mode, Btree **ppBtree){
Btree *pBt; Btree *pBt;
@@ -393,6 +425,7 @@ int sqliteBtreeOpen(const char *zFilename, int mode, Btree **ppBtree){
*ppBtree = 0; *ppBtree = 0;
return rc; return rc;
} }
sqlitepager_set_destructor(pBt->pPager, pageDestructor);
pBt->pCursor = 0; pBt->pCursor = 0;
pBt->page1 = 0; pBt->page1 = 0;
*ppBtree = pBt; *ppBtree = pBt;
@@ -427,7 +460,7 @@ static int lockBtree(Btree *pBt){
rc = sqlitepager_get(pBt->pPager, 1, &pBt->page1); rc = sqlitepager_get(pBt->pPager, 1, &pBt->page1);
if( rc!=SQLITE_OK ) return rc; if( rc!=SQLITE_OK ) return rc;
rc = initPage(pBt->page1, 1, 0); rc = initPage(pBt->page1, 1, 0);
if( rc!=SQLITE_OK ) goto lock_failed; if( rc!=SQLITE_OK ) goto page1_init_failed;
/* Do some checking to help insure the file we opened really is /* Do some checking to help insure the file we opened really is
** a valid database file. ** a valid database file.
@@ -436,21 +469,23 @@ static int lockBtree(Btree *pBt){
Page1Header *pP1 = (Page1Header*)pBt->page1; Page1Header *pP1 = (Page1Header*)pBt->page1;
if( pP1->magic1!=MAGIC_1 || pP1->magic2!=MAGIC_2 ){ if( pP1->magic1!=MAGIC_1 || pP1->magic2!=MAGIC_2 ){
rc = SQLITE_CORRUPT; rc = SQLITE_CORRUPT;
goto lock_failed; goto page1_init_failed;
} }
} }
return rc; return rc;
lock_failed: page1_init_failed:
sqlitepager_unref(pBt->page1); sqlitepager_unref(pBt->page1);
pBt->page1 = 0; pBt->page1 = 0;
return rc;
} }
/* /*
** Start a new transaction ** Attempt to start a new transaction.
*/ */
int sqliteBtreeBeginTrans(Btree *pBt){ int sqliteBtreeBeginTrans(Btree *pBt){
int rc; int rc;
Page1Header *pP1;
if( pBt->inTrans ) return SQLITE_ERROR; if( pBt->inTrans ) return SQLITE_ERROR;
if( pBt->page1==0 ){ if( pBt->page1==0 ){
rc = lockBtree(pBt); rc = lockBtree(pBt);
@@ -460,6 +495,11 @@ int sqliteBtreeBeginTrans(Btree *pBt){
if( rc==SQLITE_OK ){ if( rc==SQLITE_OK ){
pBt->inTrans = 1; pBt->inTrans = 1;
} }
pP1 = (Page1Header*)pBt->page1;
if( pP1->magic1==0 ){
pP1->magic1 = MAGIC_1;
pP1->magic2 = MAGIC_2;
}
return rc; return rc;
} }
@@ -481,7 +521,7 @@ static void unlockBtree(Btree *pBt){
*/ */
int sqliteBtreeCommit(Btree *pBt){ int sqliteBtreeCommit(Btree *pBt){
int rc; int rc;
assert( pBt->pCursor==0 ); if( pBt->pCursor!=0 ) return SQLITE_ERROR;
rc = sqlitepager_commit(pBt->pPager); rc = sqlitepager_commit(pBt->pPager);
unlockBtree(pBt); unlockBtree(pBt);
return rc; return rc;
@@ -493,7 +533,7 @@ int sqliteBtreeCommit(Btree *pBt){
*/ */
int sqliteBtreeRollback(Btree *pBt){ int sqliteBtreeRollback(Btree *pBt){
int rc; int rc;
assert( pBt->pCursor==0 ); if( pBt->pCursor!=0 ) return SQLITE_ERROR;
rc = sqlitepager_rollback(pBt->pPager); rc = sqlitepager_rollback(pBt->pPager);
unlockBtree(pBt); unlockBtree(pBt);
return rc; return rc;
@@ -533,9 +573,11 @@ int sqliteBtreeCursor(Btree *pBt, BtCursor **ppCur){
return rc; return rc;
} }
if( !pCur->pPage->isInit ){ if( !pCur->pPage->isInit ){
initPage(pCur->pPage); initPage(pCur->pPage, 1, 0);
} }
pCur->idx = 0; pCur->idx = 0;
pCur->depth = 0;
pCur->aPage[0] = pCur->pPage;
*ppCur = pCur; *ppCur = pCur;
return SQLITE_OK; return SQLITE_OK;
} }
@@ -562,23 +604,38 @@ int sqliteBtreeCloseCursor(BtCursor *pCur){
} }
/* /*
** Return the number of bytes in the key of the entry to which ** Write the number of bytes of key for the entry the cursor is
** the cursor is currently point. If the cursor has not been ** pointing to into *pSize. Return SQLITE_OK. Failure is not
** initialized or is pointed to a deleted entry, then return 0. ** possible.
*/ */
int sqliteBtreeKeySize(BtCursor *pCur){ int sqliteBtreeKeySize(BtCursor *pCur, int *pSize){
Cell *pCell; Cell *pCell;
MemPage *pPage; MemPage *pPage;
pPage = pCur->pPage; pPage = pCur->pPage;
if( pCur->idx >= pPage->nCell ) return 0; assert( pPage!=0 );
if( pCur->idx >= pPage->nCell ){
*pSize = 0;
}else{
pCell = pPage->aCell[pCur->idx]; pCell = pPage->aCell[pCur->idx];
return pCell->nKey; *psize = pCell->nKey;
}
return SQLITE_OK;
} }
/*
** Read payload information from the entry that the pCur cursor is
** pointing to. Begin reading the payload at "offset" and read
** a total of "amt" bytes. Put the result in zBuf.
**
** This routine does not make a distinction between key and data.
** It just reads bytes from the payload area.
*/
static int getPayload(BtCursor *pCur, int offset, int amt, char *zBuf){ static int getPayload(BtCursor *pCur, int offset, int amt, char *zBuf){
char *aData; char *aData;
Pgno nextPage; Pgno nextPage;
assert( pCur!=0 && pCur->pPage!=0 );
assert( pCur->idx>=0 && pCur->idx<pCur->nCell );
aData = pCur->pPage->aCell[pCur->idx].aData; aData = pCur->pPage->aCell[pCur->idx].aData;
if( offset<MX_LOCAL_PAYLOAD ){ if( offset<MX_LOCAL_PAYLOAD ){
int a = amt; int a = amt;
@@ -619,10 +676,73 @@ static int getPayload(BtCursor *pCur, int offset, int amt, char *zBuf){
return amt==0 ? SQLITE_OK : SQLITE_CORRUPT; return amt==0 ? SQLITE_OK : SQLITE_CORRUPT;
} }
int sqliteBtreeKey(BtCursor*, int offset, int amt, char *zBuf); /*
int sqliteBtreeDataSize(BtCursor*); ** Read part of the key associated with cursor pCur. A total
int sqliteBtreeData(BtCursor*, int offset, int amt, char *zBuf); ** of "amt" bytes will be transfered into zBuf[]. The transfer
** begins at "offset". If the key does not contain enough data
** to satisfy the request, no data is fetched and this routine
** returns SQLITE_ERROR.
*/
int sqliteBtreeKey(BtCursor *pCur, int offset, int amt, char *zBuf){
Cell *pCell;
MemPage *pPage;
if( amt<0 ) return SQLITE_ERROR;
if( offset<0 ) return SQLITE_ERROR;
if( amt==0 ) return SQLITE_OK;
pPage = pCur->pPage;
assert( pPage!=0 );
if( pCur->idx >= pPage->nCell ){
return SQLITE_ERROR;
}
pCell = pPage->aCell[pCur->idx];
if( amt+offset > pCell->nKey ){
return getPayload(pCur, offset, amt, zBuf);
}
/*
** Write the number of bytes of data on the entry that the cursor
** is pointing to into *pSize. Return SQLITE_OK. Failure is
** not possible.
*/
int sqliteBtreeDataSize(BtCursor *pCur, int *pSize){
Cell *pCell;
MemPage *pPage;
pPage = pCur->pPage;
assert( pPage!=0 );
if( pCur->idx >= pPage->nCell ){
*pSize = 0;
}else{
pCell = pPage->aCell[pCur->idx];
*pSize = pCell->nData;
}
return SQLITE_OK;
}
/*
** Read part of the data associated with cursor pCur. A total
** of "amt" bytes will be transfered into zBuf[]. The transfer
** begins at "offset". If the size of the data in the record
** is insufficent to satisfy this request then no data is read
** and this routine returns SQLITE_ERROR.
*/
int sqliteBtreeData(BtCursor *pCur, int offset, int amt, char *zBuf){
Cell *pCell;
MemPage *pPage;
if( amt<0 ) return SQLITE_ERROR;
if( offset<0 ) return SQLITE_ERROR;
if( amt==0 ) return SQLITE_OK;
pPage = pCur->pPage;
assert( pPage!=0 );
if( pCur->idx >= pPage->nCell ){
return SQLITE_ERROR;
}
pCell = pPage->aCell[pCur->idx];
if( amt+offset > pCell->nKey ){
return getPayload(pCur, offset + pCell->nKey, amt, zBuf);
}
/* /*
** Compare the key for the entry that pCur points to against the ** Compare the key for the entry that pCur points to against the
@@ -665,7 +785,7 @@ static int compareKey(BtCursor *pCur, char *pKey, int nKeyOrig, int *pResult){
return SQLITE_CORRUPT; return SQLITE_CORRUPT;
} }
rc = sqlitepager_get(pCur->pBt->pPager, nextPage, &pOvfl); rc = sqlitepager_get(pCur->pBt->pPager, nextPage, &pOvfl);
if( rc!=0 ){ if( rc ){
return rc; return rc;
} }
nextPage = pOvfl->next; nextPage = pOvfl->next;
@@ -687,13 +807,152 @@ static int compareKey(BtCursor *pCur, char *pKey, int nKeyOrig, int *pResult){
return SQLITE_OK; return SQLITE_OK;
} }
/*
** Move the cursor down to a new child page.
*/
static int childPage(BtCursor *pCur, int newPgno){
int rc;
MemPage *pNewPage;
rc = sqlitepager_get(pCur->pBt->pPager, newPgno, &pNewPage);
if( rc ){
return rc;
}
if( !pNewPage->isInit ){
initPage(pNewPage, newPgno, pCur->pPage);
}
sqlitepager_unref(pCur->pPage);
pCur->pPage = pNewPage;
pCur->idx = 0;
return SQLITE_OK;
}
/*
** Move the cursor up to the parent page
*/
static int parentPage(BtCursor *pCur){
Pgno oldPgno;
MemPage *pParent;
pParent = pCur->pPage->pParent;
oldPgno = sqlitepager_pagenumber(pCur->pPage);
if( pParent==0 ){
return SQLITE_INTERNAL;
}
sqlitepager_ref(pParent);
sqlitepager_unref(pCur->pPage);
pCur->pPage = pParent;
pCur->idx = pPage->nCell;
for(i=0; i<pPage->nCell; i++){
if( pPage->aCell[i].pgno==oldPgno ){
pCur->idx = i;
break;
}
}
}
/*
** Move the cursor to the root page
*/
static int rootPage(BtCursor *pCur){
MemPage *pNew;
pNew = pCur->pBt->page1;
sqlitepager_ref(pNew);
sqlitepager_unref(pCur->pPage);
pCur->pPage = pNew;
pCur->idx = 0;
return SQLITE_OK;
}
/* Move the cursor so that it points to an entry near pKey. /* Move the cursor so that it points to an entry near pKey.
** Return 0 if the cursor is left pointing exactly at pKey. ** Return a success code.
** Return -1 if the cursor points to the largest entry less than pKey. **
** Return 1 if the cursor points to the smallest entry greater than pKey. ** If pRes!=NULL, then *pRes is written with an integer code to
** describe the results. *pRes is set to 0 if the cursor is left
** pointing at an entry that exactly matches pKey. *pRes is made
** negative if the cursor is on the largest entry less than pKey.
** *pRes is set positive if the cursor is on the smallest entry
** greater than pKey. *pRes is not changed if the return value
** is something other than SQLITE_OK;
*/ */
int sqliteBtreeMoveto(BtCursor*, void *pKey, int nKey); int sqliteBtreeMoveto(BtCursor *pCur, void *pKey, int nKey, int *pRes){
int sqliteBtreeDelete(BtCursor*); int rc;
rc = rootPage(pCur);
if( rc ) return rc;
for(;;){
int lwr, upr;
Pgno chldPg;
MemPage *pPage = pCur->pPage;
lwr = 0;
upr = pPage->nCell-1;
while( lwr<=upr ){
int c;
pCur->idx = (lwr+upr)/2;
rc = compareKey(pCur, pKey, nKey, &c);
if( rc ) return rc;
if( c==0 ){
if( pRes ) *pRes = 0;
return SQLITE_OK;
}
if( c<0 ){
lwr = pCur->idx+1;
}else{
upr = pCur->idx-1;
}
}
assert( lwr==upr+1 );
if( lwr>=pPage->nCell ){
chldPg = pPage->pStart->pgno;
}else{
chldPg = pPage->aCell[lwr].pgno;
}
if( chldPg==0 ){
if( pRes ) *pRes = c;
return SQLITE_OK;
}
rc = childPage(pCur, chldPg);
if( rc ) return rc;
}
}
/*
** Advance the cursor to the next entry in the database. If pRes!=NULL
** then set *pRes=0 on success and set *pRes=1 if the cursor was
** pointing to the last entry in the database.
*/
int sqliteBtreeNext(BtCursor *pCur, int *pRes){
MemPage *pPage;
int rc;
int moved = 0;
if( pCur->skip_next ){
pCur->skip_next = 0;
if( pRes ) *pRes = 0;
return SQLITE_OK;
}
pPage = pCur->pPage;
pCur->idx++;
while( pCur->idx>=pPage->nCell ){
if( pCur->depth==0 ){
if( pRes ) *pRes = 1;
return SQLITE_OK;
}
rc = parentPage(pCur);
if( rc ) return rc;
moved = 1;
pPage = pCur->pPage;
}
if( moved ){
if( pRes ) *pRes = 0;
return SQLITE_OK;
}
while( pCur->idx<pPage->nCell && pPage->aCell[pCur->idx].pgno>0 ){
rc = childPage(pCur, pPage->aCell[pCur->idx].pgno);
if( rc ) return rc;
pPage = pCur->pPage;
}
if( pRes ) *pRes = 0;
return SQLITE_OK;
}
int sqliteBtreeInsert(BtCursor*, void *pKey, int nKey, void *pData, int nData); int sqliteBtreeInsert(BtCursor*, void *pKey, int nKey, void *pData, int nData);
int sqliteBtreeNext(BtCursor*); int sqliteBtreeDelete(BtCursor*);

View File

@@ -24,7 +24,7 @@
** This header file defines the interface that the sqlite B-Tree file ** This header file defines the interface that the sqlite B-Tree file
** subsystem. ** subsystem.
** **
** @(#) $Id: btree.h,v 1.1 2001/04/17 20:09:11 drh Exp $ ** @(#) $Id: btree.h,v 1.2 2001/05/24 21:06:36 drh Exp $
*/ */
typedef struct Btree Btree; typedef struct Btree Btree;
@@ -39,18 +39,12 @@ int sqliteBtreeRollback(Btree*);
int sqliteBtreeCursor(Btree*, BtCursor **ppCur); int sqliteBtreeCursor(Btree*, BtCursor **ppCur);
int sqliteBtreeMoveto(BtCursor*, void *pKey, int nKey, *pRes);
/* Move the cursor so that it points to an entry near pKey.
** Return 0 if the cursor is left pointing exactly at pKey.
** Return -1 if the cursor points to the largest entry less than pKey.
** Return 1 if the cursor points to the smallest entry greater than pKey.
*/
int sqliteBtreeMoveto(BtCursor*, void *pKey, int nKey);
int sqliteBtreeDelete(BtCursor*); int sqliteBtreeDelete(BtCursor*);
int sqliteBtreeInsert(BtCursor*, void *pKey, int nKey, void *pData, int nData); int sqliteBtreeInsert(BtCursor*, void *pKey, int nKey, void *pData, int nData);
int sqliteBtreeNext(BtCursor*); int sqliteBtreeNext(BtCursor*, int *pRes);
int sqliteBtreeKeySize(BtCursor*); int sqliteBtreeKeySize(BtCursor*, int *pSize);
int sqliteBtreeKey(BtCursor*, int offset, int amt, char *zBuf); int sqliteBtreeKey(BtCursor*, int offset, int amt, char *zBuf);
int sqliteBtreeDataSize(BtCursor*); int sqliteBtreeDataSize(BtCursor*, int *pSize);
int sqliteBtreeData(BtCursor*, int offset, int amt, char *zBuf); int sqliteBtreeData(BtCursor*, int offset, int amt, char *zBuf);
int sqliteBtreeCloseCursor(BtCursor*); int sqliteBtreeCloseCursor(BtCursor*);

View File

@@ -27,7 +27,7 @@
** all writes in order to support rollback. Locking is used to limit ** all writes in order to support rollback. Locking is used to limit
** access to one or more reader or one writer. ** access to one or more reader or one writer.
** **
** @(#) $Id: pager.c,v 1.6 2001/05/21 13:45:10 drh Exp $ ** @(#) $Id: pager.c,v 1.7 2001/05/24 21:06:36 drh Exp $
*/ */
#include "sqliteInt.h" #include "sqliteInt.h"
#include "pager.h" #include "pager.h"
@@ -113,6 +113,7 @@ struct Pager {
int dbSize; /* Number of pages in the file */ int dbSize; /* Number of pages in the file */
int origDbSize; /* dbSize before the current change */ int origDbSize; /* dbSize before the current change */
int nExtra; /* Add this many bytes to each in-memory page */ int nExtra; /* Add this many bytes to each in-memory page */
void (*xDestructor)(void*); /* Call this routine when freeing pages */
int nPage; /* Total number of in-memory pages */ int nPage; /* Total number of in-memory pages */
int nRef; /* Number of in-memory pages with PgHdr.nRef>0 */ int nRef; /* Number of in-memory pages with PgHdr.nRef>0 */
int mxPage; /* Maximum number of pages to hold in cache */ int mxPage; /* Maximum number of pages to hold in cache */
@@ -478,6 +479,17 @@ int sqlitepager_open(
return SQLITE_OK; return SQLITE_OK;
} }
/*
** Set the destructor for this pager. If not NULL, the destructor is called
** when the reference count on the page reaches zero.
**
** The destructor is not called as a result sqlitepager_close().
** Destructors are only called by sqlitepager_unref().
*/
void sqlitepager_set_destructor(Pager *pPager, void (*xDesc)(void*)){
pPager->xDestructor = xDesc;
}
/* /*
** Return the total number of pages in the file opened by pPager. ** Return the total number of pages in the file opened by pPager.
*/ */
@@ -806,8 +818,8 @@ int sqlitepager_unref(void *pData){
pPager = pPg->pPager; pPager = pPg->pPager;
pPg->nRef--; pPg->nRef--;
/* When the number of references to a page reach 0, add the /* When the number of references to a page reach 0, call the
** page to the freelist. ** destructor and add the page to the freelist.
*/ */
if( pPg->nRef==0 ){ if( pPg->nRef==0 ){
pPg->pNextFree = 0; pPg->pNextFree = 0;
@@ -818,6 +830,9 @@ int sqlitepager_unref(void *pData){
}else{ }else{
pPager->pFirst = pPg; pPager->pFirst = pPg;
} }
if( pPager->xDestructor ){
pPager->xDestructor(pData);
}
/* When all pages reach the freelist, drop the read lock from /* When all pages reach the freelist, drop the read lock from
** the database file. ** the database file.

View File

@@ -25,7 +25,7 @@
** subsystem. The page cache subsystem reads and writes a file a page ** subsystem. The page cache subsystem reads and writes a file a page
** at a time and provides a journal for rollback. ** at a time and provides a journal for rollback.
** **
** @(#) $Id: pager.h,v 1.3 2001/04/28 16:52:42 drh Exp $ ** @(#) $Id: pager.h,v 1.4 2001/05/24 21:06:36 drh Exp $
*/ */
/* /*
@@ -44,7 +44,8 @@ typedef unsigned int Pgno;
*/ */
typedef struct Pager Pager; typedef struct Pager Pager;
int sqlitepager_open(Pager **ppPager, const char *zFilename,int nPage,int nEx); int sqlitepager_open(Pager **ppPager,const char *zFilename,int nPage,int nEx);
void sqiltepager_set_destructor(Pager*, void(*)(void*));
int sqlitepager_close(Pager *pPager); int sqlitepager_close(Pager *pPager);
int sqlitepager_get(Pager *pPager, Pgno pgno, void **ppPage); int sqlitepager_get(Pager *pPager, Pgno pgno, void **ppPage);
void *sqlitepager_lookup(Pager *pPager, Pgno pgno); void *sqlitepager_lookup(Pager *pPager, Pgno pgno);

View File

@@ -23,7 +23,7 @@
# This file implements regression tests for SQLite library. The # This file implements regression tests for SQLite library. The
# focus of this script is page cache subsystem. # focus of this script is page cache subsystem.
# #
# $Id: pager.test,v 1.4 2001/05/21 13:45:10 drh Exp $ # $Id: pager.test,v 1.5 2001/05/24 21:06:36 drh Exp $
set testdir [file dirname $argv0] set testdir [file dirname $argv0]
@@ -66,13 +66,36 @@ do_test pager-2.2 {
} msg] } msg]
lappend v $msg lappend v $msg
} {1 SQLITE_ERROR} } {1 SQLITE_ERROR}
do_test pager-2.3 { do_test pager-2.3.1 {
set ::gx [page_lookup $::p1 1]
} {}
do_test pager-2.3.2 {
pager_stats $::p1
} {ref 0 page 0 max 10 size -1 state 0 err 0 hit 0 miss 0 ovfl 0}
do_test pager-2.3.3 {
set v [catch { set v [catch {
set ::g1 [page_get $::p1 1] set ::g1 [page_get $::p1 1]
} msg] } msg]
if {$v} {lappend v $msg} if {$v} {lappend v $msg}
set v set v
} {0} } {0}
do_test pager-2.3.3 {
pager_stats $::p1
} {ref 1 page 1 max 10 size 0 state 1 err 0 hit 0 miss 1 ovfl 0}
do_test pager-2.3.4 {
set ::gx [page_lookup $::p1 1]
expr {$::gx!=""}
} {1}
do_test pager-2.3.5 {
pager_stats $::p1
} {ref 1 page 1 max 10 size 0 state 1 err 0 hit 0 miss 1 ovfl 0}
do_test pager-2.3.6 {
expr $::g1==$::gx
} {1}
do_test pager-2.3.7 {
page_unref $::gx
pager_stats $::p1
} {ref 1 page 1 max 10 size 0 state 1 err 0 hit 0 miss 1 ovfl 0}
do_test pager-2.4 { do_test pager-2.4 {
pager_stats $::p1 pager_stats $::p1
} {ref 1 page 1 max 10 size 0 state 1 err 0 hit 0 miss 1 ovfl 0} } {ref 1 page 1 max 10 size 0 state 1 err 0 hit 0 miss 1 ovfl 0}