mirror of
https://github.com/sqlite/sqlite.git
synced 2025-08-07 02:42:48 +03:00
Continued work on btree (CVS 219)
FossilOrigin-Name: 18500cdcc1a42118cdf650681ebb1cbeac106aa7
This commit is contained in:
361
src/btree.c
361
src/btree.c
@@ -21,7 +21,7 @@
|
||||
** http://www.hwaci.com/drh/
|
||||
**
|
||||
*************************************************************************
|
||||
** $Id: btree.c,v 1.6 2001/05/21 13:45:10 drh Exp $
|
||||
** $Id: btree.c,v 1.7 2001/05/24 21:06:35 drh Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
#include "pager.h"
|
||||
@@ -97,7 +97,7 @@ struct Page1Header {
|
||||
/*
|
||||
** Each database page has a header as follows:
|
||||
**
|
||||
** page1_header Extra numbers found on page 1 only.
|
||||
** page1_header Optional instance of Page1Header structure
|
||||
** rightmost_pgno Page number of the right-most child page
|
||||
** first_cell Index into MemPage.aPage of first cell
|
||||
** first_free Index of first free block
|
||||
@@ -138,10 +138,11 @@ struct Cell {
|
||||
/*
|
||||
** Free space on a page is remembered using a linked list of the FreeBlk
|
||||
** structures. Space on a database page is allocated in increments of
|
||||
** at least 4 bytes and is always aligned to a 4-byte boundry.
|
||||
** at least 4 bytes and is always aligned to a 4-byte boundry. The
|
||||
** linked list of freeblocks is always kept in order by address.
|
||||
*/
|
||||
struct FreeBlk {
|
||||
u16 iSize; /* Number of u32-sized slots in the block of free space */
|
||||
u16 iSize; /* Number of bytes in this block of free space */
|
||||
u16 iNext; /* Index in MemPage.aPage[] of the next free block */
|
||||
};
|
||||
|
||||
@@ -158,7 +159,7 @@ struct FreeBlk {
|
||||
*/
|
||||
struct OverflowPage {
|
||||
Pgno next;
|
||||
char aData[SQLITE_PAGE_SIZE-sizeof(Pgno)];
|
||||
char aData[OVERFLOW_SIZE];
|
||||
};
|
||||
|
||||
/*
|
||||
@@ -169,17 +170,21 @@ struct OverflowPage {
|
||||
** data is meaningless for overflow pages and pages on the freelist.
|
||||
**
|
||||
** Of particular interest in the auxiliary data is the aCell[] entry. Each
|
||||
** aCell[] entry is a pointer to a Cell structure in aPage[]. The cells
|
||||
** aCell[] entry is a pointer to a Cell structure in aPage[]. The cells are
|
||||
** put in this array so that they can be accessed in constant time, rather
|
||||
** than in linear time which would be needed if we walked the linked list.
|
||||
**
|
||||
** The pParent field points back to the parent page. This allows us to
|
||||
** walk up the BTree from any leaf to the root. Care must be taken to
|
||||
** unref() the parent page pointer when this page is no longer referenced.
|
||||
** The pageDestructor() routine handles that.
|
||||
*/
|
||||
struct MemPage {
|
||||
char aPage[SQLITE_PAGE_SIZE]; /* Page data stored on disk */
|
||||
unsigned char isInit; /* True if auxiliary data is initialized */
|
||||
unsigned char validUp; /* True if MemPage.up is valid */
|
||||
unsigned char validLeft; /* True if MemPage.left is valid */
|
||||
unsigned char validRight; /* True if MemPage.right is valid */
|
||||
Pgno up; /* The parent page. 0 means this is the root */
|
||||
MemPage *pParent; /* The parent of this page. NULL for root */
|
||||
Pgno left; /* Left sibling page. 0==none */
|
||||
Pgno right; /* Right sibling page. 0==none */
|
||||
int idxStart; /* Index in aPage[] of real data */
|
||||
@@ -205,18 +210,18 @@ typedef Btree Bt;
|
||||
** The entry is identified by its MemPage and the index in
|
||||
** MemPage.aCell[] of the entry.
|
||||
*/
|
||||
struct Cursor {
|
||||
Btree *pBt; /* The pointer back to the BTree */
|
||||
Cursor *pPrev, *pNext; /* List of all cursors */
|
||||
MemPage *pPage; /* Page that contains the entry */
|
||||
int idx; /* Index of the entry in pPage->aCell[] */
|
||||
int skip_incr; /* */
|
||||
struct BtCursor {
|
||||
Btree *pBt; /* The pointer back to the BTree */
|
||||
BtCursor *pPrev, *pNext; /* List of all cursors */
|
||||
MemPage *pPage; /* Page that contains the entry */
|
||||
int idx; /* Index of the entry in pPage->aCell[] */
|
||||
int skip_incr; /* */
|
||||
};
|
||||
|
||||
/*
|
||||
** Defragment the page given. All of the free space
|
||||
** is collected into one big block at the end of the
|
||||
** page.
|
||||
** Defragment the page given. All Cells are moved to the
|
||||
** beginning of the page and all free space is collected
|
||||
** into one big FreeBlk at the end of the page.
|
||||
*/
|
||||
static void defragmentPage(MemPage *pPage){
|
||||
int pc;
|
||||
@@ -238,7 +243,7 @@ static void defragmentPage(MemPage *pPage){
|
||||
pPage->aCell[i] = (Cell*)&pPage->aPage[pc];
|
||||
pc += n;
|
||||
}
|
||||
assert( pPage->nFree==pc );
|
||||
assert( pPage->nFree==SQLITE_PAGE_SIZE-pc );
|
||||
memcpy(pPage->aPage, newPage, pc);
|
||||
pFBlk = &pPage->aPage[pc];
|
||||
pFBlk->iSize = SQLITE_PAGE_SIZE - pc;
|
||||
@@ -255,13 +260,16 @@ static void defragmentPage(MemPage *pPage){
|
||||
** Or return 0 if there is not enough free space on the page to
|
||||
** satisfy the allocation request.
|
||||
**
|
||||
** This routine will call defragmentPage if necessary to consolidate
|
||||
** free space.
|
||||
** If the page contains nBytes of free space but does not contain
|
||||
** nBytes of contiguous free space, then defragementPage() is
|
||||
** called to consolidate all free space before allocating the
|
||||
** new chunk.
|
||||
*/
|
||||
static int allocSpace(MemPage *pPage, int nByte){
|
||||
FreeBlk *p;
|
||||
u16 *pIdx;
|
||||
int start;
|
||||
|
||||
nByte = ROUNDUP(nByte);
|
||||
if( pPage->nFree<nByte ) return 0;
|
||||
pIdx = &pPage->pStart->firstFree;
|
||||
@@ -279,8 +287,11 @@ static int allocSpace(MemPage *pPage, int nByte){
|
||||
start = *pIdx;
|
||||
*pIdx = p->iNext;
|
||||
}else{
|
||||
p->iSize -= nByte;
|
||||
start = *pIdx + p->iSize;
|
||||
start = *pIdx;
|
||||
FreeBlk *pNew = (FreeBlk*)&pPage->aPage[start + nByte];
|
||||
pNew->iNext = p->iNext;
|
||||
pNew->iSize = p->iSize - nByte;
|
||||
*pIdx = start + nByte;
|
||||
}
|
||||
pPage->nFree -= nByte;
|
||||
return start;
|
||||
@@ -335,8 +346,14 @@ static void freeSpace(MemPage *pPage, int start, int size){
|
||||
|
||||
/*
|
||||
** Initialize the auxiliary information for a disk block.
|
||||
**
|
||||
** Return SQLITE_OK on success. If we see that the page does
|
||||
** not contained a well-formed database page, then return
|
||||
** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
|
||||
** guarantee that the page is well-formed. It only shows that
|
||||
** we failed to detect any corruption.
|
||||
*/
|
||||
static int initPage(MemPage *pPage, Pgno pgnoThis, Pgno pgnoParent){
|
||||
static int initPage(MemPage *pPage, Pgno pgnoThis, MemPage *pParent){
|
||||
int idx;
|
||||
Cell *pCell;
|
||||
FreeBlk *pFBlk;
|
||||
@@ -344,8 +361,9 @@ static int initPage(MemPage *pPage, Pgno pgnoThis, Pgno pgnoParent){
|
||||
pPage->idxStart = (pgnoThis==1) ? sizeof(Page1Header) : 0;
|
||||
pPage->pStart = (PageHdr*)&pPage->aPage[pPage->idxStart];
|
||||
pPage->isInit = 1;
|
||||
pPage->validUp = 1;
|
||||
pPage->up = pgnoParent;
|
||||
assert( pPage->pParent==0 );
|
||||
pPage->pParent = pParent;
|
||||
if( pParent ) sqlitepager_ref(pParent);
|
||||
pPage->nCell = 0;
|
||||
idx = pPage->pStart->firstCell;
|
||||
while( idx!=0 ){
|
||||
@@ -371,12 +389,26 @@ page_format_error:
|
||||
return SQLITE_CORRUPT;
|
||||
}
|
||||
|
||||
/*
|
||||
** This routine is called when the reference count for a page
|
||||
** reaches zero. We need to unref the pParent pointer when that
|
||||
** happens.
|
||||
*/
|
||||
static void pageDestructor(void *pData){
|
||||
MemPage *pPage = (MemPage*)pData;
|
||||
if( pPage->pParent ){
|
||||
MemPage *pParent = pPage->pParent;
|
||||
pPage->pParent = 0;
|
||||
sqlitepager_unref(pParent);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Open a new database.
|
||||
**
|
||||
** Actually, this routine just sets up the internal data structures
|
||||
** for accessing the database. We do not actually open the database
|
||||
** file until the first page is loaded.
|
||||
** for accessing the database. We do not open the database file
|
||||
** until the first page is loaded.
|
||||
*/
|
||||
int sqliteBtreeOpen(const char *zFilename, int mode, Btree **ppBtree){
|
||||
Btree *pBt;
|
||||
@@ -393,6 +425,7 @@ int sqliteBtreeOpen(const char *zFilename, int mode, Btree **ppBtree){
|
||||
*ppBtree = 0;
|
||||
return rc;
|
||||
}
|
||||
sqlitepager_set_destructor(pBt->pPager, pageDestructor);
|
||||
pBt->pCursor = 0;
|
||||
pBt->page1 = 0;
|
||||
*ppBtree = pBt;
|
||||
@@ -427,7 +460,7 @@ static int lockBtree(Btree *pBt){
|
||||
rc = sqlitepager_get(pBt->pPager, 1, &pBt->page1);
|
||||
if( rc!=SQLITE_OK ) return rc;
|
||||
rc = initPage(pBt->page1, 1, 0);
|
||||
if( rc!=SQLITE_OK ) goto lock_failed;
|
||||
if( rc!=SQLITE_OK ) goto page1_init_failed;
|
||||
|
||||
/* Do some checking to help insure the file we opened really is
|
||||
** a valid database file.
|
||||
@@ -436,21 +469,23 @@ static int lockBtree(Btree *pBt){
|
||||
Page1Header *pP1 = (Page1Header*)pBt->page1;
|
||||
if( pP1->magic1!=MAGIC_1 || pP1->magic2!=MAGIC_2 ){
|
||||
rc = SQLITE_CORRUPT;
|
||||
goto lock_failed;
|
||||
goto page1_init_failed;
|
||||
}
|
||||
}
|
||||
return rc;
|
||||
|
||||
lock_failed:
|
||||
page1_init_failed:
|
||||
sqlitepager_unref(pBt->page1);
|
||||
pBt->page1 = 0;
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
** Start a new transaction
|
||||
** Attempt to start a new transaction.
|
||||
*/
|
||||
int sqliteBtreeBeginTrans(Btree *pBt){
|
||||
int rc;
|
||||
Page1Header *pP1;
|
||||
if( pBt->inTrans ) return SQLITE_ERROR;
|
||||
if( pBt->page1==0 ){
|
||||
rc = lockBtree(pBt);
|
||||
@@ -460,6 +495,11 @@ int sqliteBtreeBeginTrans(Btree *pBt){
|
||||
if( rc==SQLITE_OK ){
|
||||
pBt->inTrans = 1;
|
||||
}
|
||||
pP1 = (Page1Header*)pBt->page1;
|
||||
if( pP1->magic1==0 ){
|
||||
pP1->magic1 = MAGIC_1;
|
||||
pP1->magic2 = MAGIC_2;
|
||||
}
|
||||
return rc;
|
||||
}
|
||||
|
||||
@@ -481,7 +521,7 @@ static void unlockBtree(Btree *pBt){
|
||||
*/
|
||||
int sqliteBtreeCommit(Btree *pBt){
|
||||
int rc;
|
||||
assert( pBt->pCursor==0 );
|
||||
if( pBt->pCursor!=0 ) return SQLITE_ERROR;
|
||||
rc = sqlitepager_commit(pBt->pPager);
|
||||
unlockBtree(pBt);
|
||||
return rc;
|
||||
@@ -493,7 +533,7 @@ int sqliteBtreeCommit(Btree *pBt){
|
||||
*/
|
||||
int sqliteBtreeRollback(Btree *pBt){
|
||||
int rc;
|
||||
assert( pBt->pCursor==0 );
|
||||
if( pBt->pCursor!=0 ) return SQLITE_ERROR;
|
||||
rc = sqlitepager_rollback(pBt->pPager);
|
||||
unlockBtree(pBt);
|
||||
return rc;
|
||||
@@ -533,9 +573,11 @@ int sqliteBtreeCursor(Btree *pBt, BtCursor **ppCur){
|
||||
return rc;
|
||||
}
|
||||
if( !pCur->pPage->isInit ){
|
||||
initPage(pCur->pPage);
|
||||
initPage(pCur->pPage, 1, 0);
|
||||
}
|
||||
pCur->idx = 0;
|
||||
pCur->depth = 0;
|
||||
pCur->aPage[0] = pCur->pPage;
|
||||
*ppCur = pCur;
|
||||
return SQLITE_OK;
|
||||
}
|
||||
@@ -562,23 +604,38 @@ int sqliteBtreeCloseCursor(BtCursor *pCur){
|
||||
}
|
||||
|
||||
/*
|
||||
** Return the number of bytes in the key of the entry to which
|
||||
** the cursor is currently point. If the cursor has not been
|
||||
** initialized or is pointed to a deleted entry, then return 0.
|
||||
** Write the number of bytes of key for the entry the cursor is
|
||||
** pointing to into *pSize. Return SQLITE_OK. Failure is not
|
||||
** possible.
|
||||
*/
|
||||
int sqliteBtreeKeySize(BtCursor *pCur){
|
||||
int sqliteBtreeKeySize(BtCursor *pCur, int *pSize){
|
||||
Cell *pCell;
|
||||
MemPage *pPage;
|
||||
|
||||
pPage = pCur->pPage;
|
||||
if( pCur->idx >= pPage->nCell ) return 0;
|
||||
pCell = pPage->aCell[pCur->idx];
|
||||
return pCell->nKey;
|
||||
assert( pPage!=0 );
|
||||
if( pCur->idx >= pPage->nCell ){
|
||||
*pSize = 0;
|
||||
}else{
|
||||
pCell = pPage->aCell[pCur->idx];
|
||||
*psize = pCell->nKey;
|
||||
}
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** Read payload information from the entry that the pCur cursor is
|
||||
** pointing to. Begin reading the payload at "offset" and read
|
||||
** a total of "amt" bytes. Put the result in zBuf.
|
||||
**
|
||||
** This routine does not make a distinction between key and data.
|
||||
** It just reads bytes from the payload area.
|
||||
*/
|
||||
static int getPayload(BtCursor *pCur, int offset, int amt, char *zBuf){
|
||||
char *aData;
|
||||
Pgno nextPage;
|
||||
assert( pCur!=0 && pCur->pPage!=0 );
|
||||
assert( pCur->idx>=0 && pCur->idx<pCur->nCell );
|
||||
aData = pCur->pPage->aCell[pCur->idx].aData;
|
||||
if( offset<MX_LOCAL_PAYLOAD ){
|
||||
int a = amt;
|
||||
@@ -619,10 +676,73 @@ static int getPayload(BtCursor *pCur, int offset, int amt, char *zBuf){
|
||||
return amt==0 ? SQLITE_OK : SQLITE_CORRUPT;
|
||||
}
|
||||
|
||||
int sqliteBtreeKey(BtCursor*, int offset, int amt, char *zBuf);
|
||||
int sqliteBtreeDataSize(BtCursor*);
|
||||
int sqliteBtreeData(BtCursor*, int offset, int amt, char *zBuf);
|
||||
/*
|
||||
** Read part of the key associated with cursor pCur. A total
|
||||
** of "amt" bytes will be transfered into zBuf[]. The transfer
|
||||
** begins at "offset". If the key does not contain enough data
|
||||
** to satisfy the request, no data is fetched and this routine
|
||||
** returns SQLITE_ERROR.
|
||||
*/
|
||||
int sqliteBtreeKey(BtCursor *pCur, int offset, int amt, char *zBuf){
|
||||
Cell *pCell;
|
||||
MemPage *pPage;
|
||||
|
||||
if( amt<0 ) return SQLITE_ERROR;
|
||||
if( offset<0 ) return SQLITE_ERROR;
|
||||
if( amt==0 ) return SQLITE_OK;
|
||||
pPage = pCur->pPage;
|
||||
assert( pPage!=0 );
|
||||
if( pCur->idx >= pPage->nCell ){
|
||||
return SQLITE_ERROR;
|
||||
}
|
||||
pCell = pPage->aCell[pCur->idx];
|
||||
if( amt+offset > pCell->nKey ){
|
||||
return getPayload(pCur, offset, amt, zBuf);
|
||||
}
|
||||
|
||||
/*
|
||||
** Write the number of bytes of data on the entry that the cursor
|
||||
** is pointing to into *pSize. Return SQLITE_OK. Failure is
|
||||
** not possible.
|
||||
*/
|
||||
int sqliteBtreeDataSize(BtCursor *pCur, int *pSize){
|
||||
Cell *pCell;
|
||||
MemPage *pPage;
|
||||
|
||||
pPage = pCur->pPage;
|
||||
assert( pPage!=0 );
|
||||
if( pCur->idx >= pPage->nCell ){
|
||||
*pSize = 0;
|
||||
}else{
|
||||
pCell = pPage->aCell[pCur->idx];
|
||||
*pSize = pCell->nData;
|
||||
}
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** Read part of the data associated with cursor pCur. A total
|
||||
** of "amt" bytes will be transfered into zBuf[]. The transfer
|
||||
** begins at "offset". If the size of the data in the record
|
||||
** is insufficent to satisfy this request then no data is read
|
||||
** and this routine returns SQLITE_ERROR.
|
||||
*/
|
||||
int sqliteBtreeData(BtCursor *pCur, int offset, int amt, char *zBuf){
|
||||
Cell *pCell;
|
||||
MemPage *pPage;
|
||||
|
||||
if( amt<0 ) return SQLITE_ERROR;
|
||||
if( offset<0 ) return SQLITE_ERROR;
|
||||
if( amt==0 ) return SQLITE_OK;
|
||||
pPage = pCur->pPage;
|
||||
assert( pPage!=0 );
|
||||
if( pCur->idx >= pPage->nCell ){
|
||||
return SQLITE_ERROR;
|
||||
}
|
||||
pCell = pPage->aCell[pCur->idx];
|
||||
if( amt+offset > pCell->nKey ){
|
||||
return getPayload(pCur, offset + pCell->nKey, amt, zBuf);
|
||||
}
|
||||
|
||||
/*
|
||||
** Compare the key for the entry that pCur points to against the
|
||||
@@ -665,7 +785,7 @@ static int compareKey(BtCursor *pCur, char *pKey, int nKeyOrig, int *pResult){
|
||||
return SQLITE_CORRUPT;
|
||||
}
|
||||
rc = sqlitepager_get(pCur->pBt->pPager, nextPage, &pOvfl);
|
||||
if( rc!=0 ){
|
||||
if( rc ){
|
||||
return rc;
|
||||
}
|
||||
nextPage = pOvfl->next;
|
||||
@@ -687,13 +807,152 @@ static int compareKey(BtCursor *pCur, char *pKey, int nKeyOrig, int *pResult){
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** Move the cursor down to a new child page.
|
||||
*/
|
||||
static int childPage(BtCursor *pCur, int newPgno){
|
||||
int rc;
|
||||
MemPage *pNewPage;
|
||||
|
||||
rc = sqlitepager_get(pCur->pBt->pPager, newPgno, &pNewPage);
|
||||
if( rc ){
|
||||
return rc;
|
||||
}
|
||||
if( !pNewPage->isInit ){
|
||||
initPage(pNewPage, newPgno, pCur->pPage);
|
||||
}
|
||||
sqlitepager_unref(pCur->pPage);
|
||||
pCur->pPage = pNewPage;
|
||||
pCur->idx = 0;
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** Move the cursor up to the parent page
|
||||
*/
|
||||
static int parentPage(BtCursor *pCur){
|
||||
Pgno oldPgno;
|
||||
MemPage *pParent;
|
||||
|
||||
pParent = pCur->pPage->pParent;
|
||||
oldPgno = sqlitepager_pagenumber(pCur->pPage);
|
||||
if( pParent==0 ){
|
||||
return SQLITE_INTERNAL;
|
||||
}
|
||||
sqlitepager_ref(pParent);
|
||||
sqlitepager_unref(pCur->pPage);
|
||||
pCur->pPage = pParent;
|
||||
pCur->idx = pPage->nCell;
|
||||
for(i=0; i<pPage->nCell; i++){
|
||||
if( pPage->aCell[i].pgno==oldPgno ){
|
||||
pCur->idx = i;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Move the cursor to the root page
|
||||
*/
|
||||
static int rootPage(BtCursor *pCur){
|
||||
MemPage *pNew;
|
||||
pNew = pCur->pBt->page1;
|
||||
sqlitepager_ref(pNew);
|
||||
sqlitepager_unref(pCur->pPage);
|
||||
pCur->pPage = pNew;
|
||||
pCur->idx = 0;
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/* Move the cursor so that it points to an entry near pKey.
|
||||
** Return 0 if the cursor is left pointing exactly at pKey.
|
||||
** Return -1 if the cursor points to the largest entry less than pKey.
|
||||
** Return 1 if the cursor points to the smallest entry greater than pKey.
|
||||
** Return a success code.
|
||||
**
|
||||
** If pRes!=NULL, then *pRes is written with an integer code to
|
||||
** describe the results. *pRes is set to 0 if the cursor is left
|
||||
** pointing at an entry that exactly matches pKey. *pRes is made
|
||||
** negative if the cursor is on the largest entry less than pKey.
|
||||
** *pRes is set positive if the cursor is on the smallest entry
|
||||
** greater than pKey. *pRes is not changed if the return value
|
||||
** is something other than SQLITE_OK;
|
||||
*/
|
||||
int sqliteBtreeMoveto(BtCursor*, void *pKey, int nKey);
|
||||
int sqliteBtreeDelete(BtCursor*);
|
||||
int sqliteBtreeMoveto(BtCursor *pCur, void *pKey, int nKey, int *pRes){
|
||||
int rc;
|
||||
rc = rootPage(pCur);
|
||||
if( rc ) return rc;
|
||||
for(;;){
|
||||
int lwr, upr;
|
||||
Pgno chldPg;
|
||||
MemPage *pPage = pCur->pPage;
|
||||
lwr = 0;
|
||||
upr = pPage->nCell-1;
|
||||
while( lwr<=upr ){
|
||||
int c;
|
||||
pCur->idx = (lwr+upr)/2;
|
||||
rc = compareKey(pCur, pKey, nKey, &c);
|
||||
if( rc ) return rc;
|
||||
if( c==0 ){
|
||||
if( pRes ) *pRes = 0;
|
||||
return SQLITE_OK;
|
||||
}
|
||||
if( c<0 ){
|
||||
lwr = pCur->idx+1;
|
||||
}else{
|
||||
upr = pCur->idx-1;
|
||||
}
|
||||
}
|
||||
assert( lwr==upr+1 );
|
||||
if( lwr>=pPage->nCell ){
|
||||
chldPg = pPage->pStart->pgno;
|
||||
}else{
|
||||
chldPg = pPage->aCell[lwr].pgno;
|
||||
}
|
||||
if( chldPg==0 ){
|
||||
if( pRes ) *pRes = c;
|
||||
return SQLITE_OK;
|
||||
}
|
||||
rc = childPage(pCur, chldPg);
|
||||
if( rc ) return rc;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Advance the cursor to the next entry in the database. If pRes!=NULL
|
||||
** then set *pRes=0 on success and set *pRes=1 if the cursor was
|
||||
** pointing to the last entry in the database.
|
||||
*/
|
||||
int sqliteBtreeNext(BtCursor *pCur, int *pRes){
|
||||
MemPage *pPage;
|
||||
int rc;
|
||||
int moved = 0;
|
||||
if( pCur->skip_next ){
|
||||
pCur->skip_next = 0;
|
||||
if( pRes ) *pRes = 0;
|
||||
return SQLITE_OK;
|
||||
}
|
||||
pPage = pCur->pPage;
|
||||
pCur->idx++;
|
||||
while( pCur->idx>=pPage->nCell ){
|
||||
if( pCur->depth==0 ){
|
||||
if( pRes ) *pRes = 1;
|
||||
return SQLITE_OK;
|
||||
}
|
||||
rc = parentPage(pCur);
|
||||
if( rc ) return rc;
|
||||
moved = 1;
|
||||
pPage = pCur->pPage;
|
||||
}
|
||||
if( moved ){
|
||||
if( pRes ) *pRes = 0;
|
||||
return SQLITE_OK;
|
||||
}
|
||||
while( pCur->idx<pPage->nCell && pPage->aCell[pCur->idx].pgno>0 ){
|
||||
rc = childPage(pCur, pPage->aCell[pCur->idx].pgno);
|
||||
if( rc ) return rc;
|
||||
pPage = pCur->pPage;
|
||||
}
|
||||
if( pRes ) *pRes = 0;
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
int sqliteBtreeInsert(BtCursor*, void *pKey, int nKey, void *pData, int nData);
|
||||
int sqliteBtreeNext(BtCursor*);
|
||||
int sqliteBtreeDelete(BtCursor*);
|
||||
|
Reference in New Issue
Block a user