mirror of
https://github.com/sqlite/sqlite.git
synced 2025-11-08 03:22:21 +03:00
Infrastructure changes to handle name resolution differently. This is needed
to fix various long-standing problems with column names in joins. It will also make the implementation of correlated subqueries easier. (CVS 2228) FossilOrigin-Name: 4a7534396a72ccb300303df28798bb2c50293782
This commit is contained in:
830
src/expr.c
830
src/expr.c
@@ -12,7 +12,7 @@
|
||||
** This file contains routines used for analyzing expressions and
|
||||
** for generating VDBE code that evaluates expressions in SQLite.
|
||||
**
|
||||
** $Id: expr.c,v 1.178 2005/01/15 01:52:32 drh Exp $
|
||||
** $Id: expr.c,v 1.179 2005/01/17 22:08:19 drh Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
#include <ctype.h>
|
||||
@@ -62,8 +62,8 @@ CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
|
||||
}
|
||||
|
||||
/*
|
||||
** pExpr is the left operand of a comparison operator. aff2 is the
|
||||
** type affinity of the right operand. This routine returns the
|
||||
** pExpr is an operand of a comparison operator. aff2 is the
|
||||
** type affinity of the other operand. This routine returns the
|
||||
** type affinity that should be used for the comparison operator.
|
||||
*/
|
||||
char sqlite3CompareAffinity(Expr *pExpr, char aff2){
|
||||
@@ -560,6 +560,59 @@ void sqlite3ExprListDelete(ExprList *pList){
|
||||
sqliteFree(pList);
|
||||
}
|
||||
|
||||
/*
|
||||
** Walk an expression tree. Call xFunc for each node visited.
|
||||
** The return value from xFunc determines whether the tree walk continues.
|
||||
** 0 means continue walking the tree. 1 means do not walk children
|
||||
** of the current node but continue with siblings. 2 means abandon
|
||||
** the tree walk completely.
|
||||
**
|
||||
** The return value from this routine is 1 to abandon the tree walk
|
||||
** and 0 to continue.
|
||||
*/
|
||||
static int walkExprTree(Expr *pExpr, int (*xFunc)(void*,Expr*), void *pArg){
|
||||
ExprList *pList;
|
||||
int rc;
|
||||
if( pExpr==0 ) return 0;
|
||||
rc = (*xFunc)(pArg, pExpr);
|
||||
if( rc==0 ){
|
||||
if( walkExprTree(pExpr->pLeft, xFunc, pArg) ) return 1;
|
||||
if( walkExprTree(pExpr->pRight, xFunc, pArg) ) return 1;
|
||||
pList = pExpr->pList;
|
||||
if( pList ){
|
||||
int i;
|
||||
struct ExprList_item *pItem;
|
||||
for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
|
||||
if( walkExprTree(pItem->pExpr, xFunc, pArg) ) return 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
return rc>1;
|
||||
}
|
||||
|
||||
/*
|
||||
** This routine is designed as an xFunc for walkExprTree().
|
||||
**
|
||||
** pArg is really a pointer to an integer. If we can tell by looking
|
||||
** at just pExpr and none of its children that the expression is a
|
||||
** constant, then set *pArg to 1 and return 0. If we can tell that
|
||||
** the expression is not a constant, then set *pArg to 0 and return 0.
|
||||
** If we need to look at child nodes, return 1.
|
||||
*/
|
||||
static int exprNodeIsConstant(void *pArg, Expr *pExpr){
|
||||
switch( pExpr->op ){
|
||||
case TK_ID:
|
||||
case TK_COLUMN:
|
||||
case TK_DOT:
|
||||
case TK_AGG_FUNCTION:
|
||||
case TK_FUNCTION:
|
||||
*((int*)pArg) = 0;
|
||||
return 2;
|
||||
default:
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Walk an expression tree. Return 1 if the expression is constant
|
||||
** and 0 if it involves variables.
|
||||
@@ -569,35 +622,9 @@ void sqlite3ExprListDelete(ExprList *pList){
|
||||
** a constant.
|
||||
*/
|
||||
int sqlite3ExprIsConstant(Expr *p){
|
||||
switch( p->op ){
|
||||
case TK_ID:
|
||||
case TK_COLUMN:
|
||||
case TK_DOT:
|
||||
case TK_FUNCTION:
|
||||
return 0;
|
||||
case TK_NULL:
|
||||
case TK_STRING:
|
||||
case TK_BLOB:
|
||||
case TK_INTEGER:
|
||||
case TK_FLOAT:
|
||||
case TK_VARIABLE:
|
||||
case TK_CTIME:
|
||||
case TK_CTIMESTAMP:
|
||||
case TK_CDATE:
|
||||
return 1;
|
||||
default: {
|
||||
if( p->pLeft && !sqlite3ExprIsConstant(p->pLeft) ) return 0;
|
||||
if( p->pRight && !sqlite3ExprIsConstant(p->pRight) ) return 0;
|
||||
if( p->pList ){
|
||||
int i;
|
||||
for(i=0; i<p->pList->nExpr; i++){
|
||||
if( !sqlite3ExprIsConstant(p->pList->a[i].pExpr) ) return 0;
|
||||
}
|
||||
}
|
||||
return p->pLeft!=0 || p->pRight!=0 || (p->pList && p->pList->nExpr>0);
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
int isConst = 1;
|
||||
walkExprTree(p, exprNodeIsConstant, &isConst);
|
||||
return isConst;
|
||||
}
|
||||
|
||||
/*
|
||||
@@ -670,8 +697,7 @@ static int lookupName(
|
||||
Token *pDbToken, /* Name of the database containing table, or NULL */
|
||||
Token *pTableToken, /* Name of table containing column, or NULL */
|
||||
Token *pColumnToken, /* Name of the column. */
|
||||
SrcList *pSrcList, /* List of tables used to resolve column names */
|
||||
ExprList *pEList, /* List of expressions used to resolve "AS" */
|
||||
NameContext *pNC, /* The name context used to resolve the name */
|
||||
Expr *pExpr /* Make this EXPR node point to the selected column */
|
||||
){
|
||||
char *zDb = 0; /* Name of the database. The "X" in X.Y.Z */
|
||||
@@ -680,7 +706,7 @@ static int lookupName(
|
||||
int i, j; /* Loop counters */
|
||||
int cnt = 0; /* Number of matching column names */
|
||||
int cntTab = 0; /* Number of matching table names */
|
||||
sqlite3 *db = pParse->db; /* The database */
|
||||
sqlite3 *db = pParse->db; /* The database */
|
||||
struct SrcList_item *pItem; /* Use for looping over pSrcList items */
|
||||
struct SrcList_item *pMatch = 0; /* The matching pSrcList item */
|
||||
|
||||
@@ -691,73 +717,44 @@ static int lookupName(
|
||||
if( sqlite3_malloc_failed ){
|
||||
return 1; /* Leak memory (zDb and zTab) if malloc fails */
|
||||
}
|
||||
assert( zTab==0 || pEList==0 );
|
||||
|
||||
pExpr->iTable = -1;
|
||||
for(i=0, pItem=pSrcList->a; i<pSrcList->nSrc; i++, pItem++){
|
||||
Table *pTab = pItem->pTab;
|
||||
Column *pCol;
|
||||
while( pNC && cnt==0 ){
|
||||
SrcList *pSrcList = pNC->pSrcList;
|
||||
ExprList *pEList = pNC->pEList;
|
||||
|
||||
if( pTab==0 ) continue;
|
||||
assert( pTab->nCol>0 );
|
||||
if( zTab ){
|
||||
if( pItem->zAlias ){
|
||||
char *zTabName = pItem->zAlias;
|
||||
if( sqlite3StrICmp(zTabName, zTab)!=0 ) continue;
|
||||
}else{
|
||||
char *zTabName = pTab->zName;
|
||||
if( zTabName==0 || sqlite3StrICmp(zTabName, zTab)!=0 ) continue;
|
||||
if( zDb!=0 && sqlite3StrICmp(db->aDb[pTab->iDb].zName, zDb)!=0 ){
|
||||
continue;
|
||||
pNC->nRef++;
|
||||
/* assert( zTab==0 || pEList==0 ); */
|
||||
for(i=0, pItem=pSrcList->a; i<pSrcList->nSrc; i++, pItem++){
|
||||
Table *pTab = pItem->pTab;
|
||||
Column *pCol;
|
||||
|
||||
if( pTab==0 ) continue;
|
||||
assert( pTab->nCol>0 );
|
||||
if( zTab ){
|
||||
if( pItem->zAlias ){
|
||||
char *zTabName = pItem->zAlias;
|
||||
if( sqlite3StrICmp(zTabName, zTab)!=0 ) continue;
|
||||
}else{
|
||||
char *zTabName = pTab->zName;
|
||||
if( zTabName==0 || sqlite3StrICmp(zTabName, zTab)!=0 ) continue;
|
||||
if( zDb!=0 && sqlite3StrICmp(db->aDb[pTab->iDb].zName, zDb)!=0 ){
|
||||
continue;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
if( 0==(cntTab++) ){
|
||||
pExpr->iTable = pItem->iCursor;
|
||||
pExpr->iDb = pTab->iDb;
|
||||
pMatch = pItem;
|
||||
}
|
||||
for(j=0, pCol=pTab->aCol; j<pTab->nCol; j++, pCol++){
|
||||
if( sqlite3StrICmp(pCol->zName, zCol)==0 ){
|
||||
cnt++;
|
||||
if( 0==(cntTab++) ){
|
||||
pExpr->iTable = pItem->iCursor;
|
||||
pMatch = pItem;
|
||||
pExpr->iDb = pTab->iDb;
|
||||
/* Substitute the rowid (column -1) for the INTEGER PRIMARY KEY */
|
||||
pExpr->iColumn = j==pTab->iPKey ? -1 : j;
|
||||
pExpr->affinity = pTab->aCol[j].affinity;
|
||||
pExpr->pColl = pTab->aCol[j].pColl;
|
||||
break;
|
||||
pMatch = pItem;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#ifndef SQLITE_OMIT_TRIGGER
|
||||
/* If we have not already resolved the name, then maybe
|
||||
** it is a new.* or old.* trigger argument reference
|
||||
*/
|
||||
if( zDb==0 && zTab!=0 && cnt==0 && pParse->trigStack!=0 ){
|
||||
TriggerStack *pTriggerStack = pParse->trigStack;
|
||||
Table *pTab = 0;
|
||||
if( pTriggerStack->newIdx != -1 && sqlite3StrICmp("new", zTab) == 0 ){
|
||||
pExpr->iTable = pTriggerStack->newIdx;
|
||||
assert( pTriggerStack->pTab );
|
||||
pTab = pTriggerStack->pTab;
|
||||
}else if( pTriggerStack->oldIdx != -1 && sqlite3StrICmp("old", zTab) == 0 ){
|
||||
pExpr->iTable = pTriggerStack->oldIdx;
|
||||
assert( pTriggerStack->pTab );
|
||||
pTab = pTriggerStack->pTab;
|
||||
}
|
||||
|
||||
if( pTab ){
|
||||
int j;
|
||||
Column *pCol = pTab->aCol;
|
||||
|
||||
pExpr->iDb = pTab->iDb;
|
||||
cntTab++;
|
||||
for(j=0; j < pTab->nCol; j++, pCol++) {
|
||||
for(j=0, pCol=pTab->aCol; j<pTab->nCol; j++, pCol++){
|
||||
if( sqlite3StrICmp(pCol->zName, zCol)==0 ){
|
||||
cnt++;
|
||||
pExpr->iTable = pItem->iCursor;
|
||||
pMatch = pItem;
|
||||
pExpr->iDb = pTab->iDb;
|
||||
/* Substitute the rowid (column -1) for the INTEGER PRIMARY KEY */
|
||||
pExpr->iColumn = j==pTab->iPKey ? -1 : j;
|
||||
pExpr->affinity = pTab->aCol[j].affinity;
|
||||
pExpr->pColl = pTab->aCol[j].pColl;
|
||||
@@ -765,43 +762,85 @@ static int lookupName(
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#ifndef SQLITE_OMIT_TRIGGER
|
||||
/* If we have not already resolved the name, then maybe
|
||||
** it is a new.* or old.* trigger argument reference
|
||||
*/
|
||||
if( zDb==0 && zTab!=0 && cnt==0 && pParse->trigStack!=0 ){
|
||||
TriggerStack *pTriggerStack = pParse->trigStack;
|
||||
Table *pTab = 0;
|
||||
if( pTriggerStack->newIdx != -1 && sqlite3StrICmp("new", zTab) == 0 ){
|
||||
pExpr->iTable = pTriggerStack->newIdx;
|
||||
assert( pTriggerStack->pTab );
|
||||
pTab = pTriggerStack->pTab;
|
||||
}else if( pTriggerStack->oldIdx != -1 && sqlite3StrICmp("old", zTab)==0 ){
|
||||
pExpr->iTable = pTriggerStack->oldIdx;
|
||||
assert( pTriggerStack->pTab );
|
||||
pTab = pTriggerStack->pTab;
|
||||
}
|
||||
|
||||
if( pTab ){
|
||||
int j;
|
||||
Column *pCol = pTab->aCol;
|
||||
|
||||
pExpr->iDb = pTab->iDb;
|
||||
cntTab++;
|
||||
for(j=0; j < pTab->nCol; j++, pCol++) {
|
||||
if( sqlite3StrICmp(pCol->zName, zCol)==0 ){
|
||||
cnt++;
|
||||
pExpr->iColumn = j==pTab->iPKey ? -1 : j;
|
||||
pExpr->affinity = pTab->aCol[j].affinity;
|
||||
pExpr->pColl = pTab->aCol[j].pColl;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif /* !defined(SQLITE_OMIT_TRIGGER) */
|
||||
|
||||
/*
|
||||
** Perhaps the name is a reference to the ROWID
|
||||
*/
|
||||
if( cnt==0 && cntTab==1 && sqlite3IsRowid(zCol) ){
|
||||
cnt = 1;
|
||||
pExpr->iColumn = -1;
|
||||
pExpr->affinity = SQLITE_AFF_INTEGER;
|
||||
}
|
||||
/*
|
||||
** Perhaps the name is a reference to the ROWID
|
||||
*/
|
||||
if( cnt==0 && cntTab==1 && sqlite3IsRowid(zCol) ){
|
||||
cnt = 1;
|
||||
pExpr->iColumn = -1;
|
||||
pExpr->affinity = SQLITE_AFF_INTEGER;
|
||||
}
|
||||
|
||||
/*
|
||||
** If the input is of the form Z (not Y.Z or X.Y.Z) then the name Z
|
||||
** might refer to an result-set alias. This happens, for example, when
|
||||
** we are resolving names in the WHERE clause of the following command:
|
||||
**
|
||||
** SELECT a+b AS x FROM table WHERE x<10;
|
||||
**
|
||||
** In cases like this, replace pExpr with a copy of the expression that
|
||||
** forms the result set entry ("a+b" in the example) and return immediately.
|
||||
** Note that the expression in the result set should have already been
|
||||
** resolved by the time the WHERE clause is resolved.
|
||||
*/
|
||||
if( cnt==0 && pEList!=0 ){
|
||||
for(j=0; j<pEList->nExpr; j++){
|
||||
char *zAs = pEList->a[j].zName;
|
||||
if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){
|
||||
assert( pExpr->pLeft==0 && pExpr->pRight==0 );
|
||||
pExpr->op = TK_AS;
|
||||
pExpr->iColumn = j;
|
||||
pExpr->pLeft = sqlite3ExprDup(pEList->a[j].pExpr);
|
||||
sqliteFree(zCol);
|
||||
assert( zTab==0 && zDb==0 );
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
/*
|
||||
** If the input is of the form Z (not Y.Z or X.Y.Z) then the name Z
|
||||
** might refer to an result-set alias. This happens, for example, when
|
||||
** we are resolving names in the WHERE clause of the following command:
|
||||
**
|
||||
** SELECT a+b AS x FROM table WHERE x<10;
|
||||
**
|
||||
** In cases like this, replace pExpr with a copy of the expression that
|
||||
** forms the result set entry ("a+b" in the example) and return immediately.
|
||||
** Note that the expression in the result set should have already been
|
||||
** resolved by the time the WHERE clause is resolved.
|
||||
*/
|
||||
if( cnt==0 && pEList!=0 ){
|
||||
for(j=0; j<pEList->nExpr; j++){
|
||||
char *zAs = pEList->a[j].zName;
|
||||
if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){
|
||||
assert( pExpr->pLeft==0 && pExpr->pRight==0 );
|
||||
pExpr->op = TK_AS;
|
||||
pExpr->iColumn = j;
|
||||
pExpr->pLeft = sqlite3ExprDup(pEList->a[j].pExpr);
|
||||
sqliteFree(zCol);
|
||||
assert( zTab==0 && zDb==0 );
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Advance to the next name context. The loop will exit when either
|
||||
** we have a match (cnt>0) or when we run out of name contexts.
|
||||
*/
|
||||
if( cnt==0 ){
|
||||
pNC = pNC->pNext;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
@@ -860,10 +899,195 @@ static int lookupName(
|
||||
sqlite3ExprDelete(pExpr->pRight);
|
||||
pExpr->pRight = 0;
|
||||
pExpr->op = TK_COLUMN;
|
||||
sqlite3AuthRead(pParse, pExpr, pSrcList);
|
||||
if( cnt==1 ){
|
||||
assert( pNC!=0 && pNC->pSrcList!=0 );
|
||||
sqlite3AuthRead(pParse, pExpr, pNC->pSrcList);
|
||||
}
|
||||
return cnt!=1;
|
||||
}
|
||||
|
||||
/*
|
||||
** pExpr is a node that defines a function of some kind. It might
|
||||
** be a syntactic function like "count(x)" or it might be a function
|
||||
** that implements an operator, like "a LIKE b".
|
||||
**
|
||||
** This routine makes *pzName point to the name of the function and
|
||||
** *pnName hold the number of characters in the function name.
|
||||
*/
|
||||
static void getFunctionName(Expr *pExpr, const char **pzName, int *pnName){
|
||||
switch( pExpr->op ){
|
||||
case TK_FUNCTION: {
|
||||
*pzName = pExpr->token.z;
|
||||
*pnName = pExpr->token.n;
|
||||
break;
|
||||
}
|
||||
case TK_LIKE: {
|
||||
*pzName = "like";
|
||||
*pnName = 4;
|
||||
break;
|
||||
}
|
||||
case TK_GLOB: {
|
||||
*pzName = "glob";
|
||||
*pnName = 4;
|
||||
break;
|
||||
}
|
||||
case TK_CTIME: {
|
||||
*pzName = "current_time";
|
||||
*pnName = 12;
|
||||
break;
|
||||
}
|
||||
case TK_CDATE: {
|
||||
*pzName = "current_date";
|
||||
*pnName = 12;
|
||||
break;
|
||||
}
|
||||
case TK_CTIMESTAMP: {
|
||||
*pzName = "current_timestamp";
|
||||
*pnName = 17;
|
||||
break;
|
||||
}
|
||||
default: {
|
||||
*pzName = "can't happen";
|
||||
*pnName = 12;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** This routine is designed as an xFunc for walkExprTree().
|
||||
**
|
||||
** Resolve symbolic names into TK_COLUMN operands for the current
|
||||
** node in the expression tree. Return 0 to continue the search down
|
||||
** the tree or 1 to abort the tree walk.
|
||||
*/
|
||||
static int nameResolverStep(void *pArg, Expr *pExpr){
|
||||
NameContext *pNC = (NameContext*)pArg;
|
||||
SrcList *pSrcList;
|
||||
Parse *pParse;
|
||||
int i;
|
||||
|
||||
assert( pNC!=0 );
|
||||
pSrcList = pNC->pSrcList;
|
||||
pParse = pNC->pParse;
|
||||
if( pExpr==0 ) return 1;
|
||||
if( ExprHasAnyProperty(pExpr, EP_Resolved) ) return 1;
|
||||
ExprSetProperty(pExpr, EP_Resolved);
|
||||
#ifndef NDEBUG
|
||||
if( pSrcList ){
|
||||
for(i=0; i<pSrcList->nSrc; i++){
|
||||
assert( pSrcList->a[i].iCursor>=0 && pSrcList->a[i].iCursor<pParse->nTab);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
switch( pExpr->op ){
|
||||
/* Double-quoted strings (ex: "abc") are used as identifiers if
|
||||
** possible. Otherwise they remain as strings. Single-quoted
|
||||
** strings (ex: 'abc') are always string literals.
|
||||
*/
|
||||
case TK_STRING: {
|
||||
if( pExpr->token.z[0]=='\'' ) break;
|
||||
/* Fall thru into the TK_ID case if this is a double-quoted string */
|
||||
}
|
||||
/* A lone identifier is the name of a column.
|
||||
*/
|
||||
case TK_ID: {
|
||||
if( pSrcList==0 ) break;
|
||||
lookupName(pParse, 0, 0, &pExpr->token, pNC, pExpr);
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* A table name and column name: ID.ID
|
||||
** Or a database, table and column: ID.ID.ID
|
||||
*/
|
||||
case TK_DOT: {
|
||||
Token *pColumn;
|
||||
Token *pTable;
|
||||
Token *pDb;
|
||||
Expr *pRight;
|
||||
|
||||
if( pSrcList==0 ) break;
|
||||
pRight = pExpr->pRight;
|
||||
if( pRight->op==TK_ID ){
|
||||
pDb = 0;
|
||||
pTable = &pExpr->pLeft->token;
|
||||
pColumn = &pRight->token;
|
||||
}else{
|
||||
assert( pRight->op==TK_DOT );
|
||||
pDb = &pExpr->pLeft->token;
|
||||
pTable = &pRight->pLeft->token;
|
||||
pColumn = &pRight->pRight->token;
|
||||
}
|
||||
lookupName(pParse, pDb, pTable, pColumn, pNC, pExpr);
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* Resolve function names
|
||||
*/
|
||||
case TK_CTIME:
|
||||
case TK_CTIMESTAMP:
|
||||
case TK_CDATE:
|
||||
/* Note: The above three were a seperate case in sqlmoto. Reason? */
|
||||
case TK_GLOB:
|
||||
case TK_LIKE:
|
||||
case TK_FUNCTION: {
|
||||
ExprList *pList = pExpr->pList; /* The argument list */
|
||||
int n = pList ? pList->nExpr : 0; /* Number of arguments */
|
||||
int no_such_func = 0; /* True if no such function exists */
|
||||
int wrong_num_args = 0; /* True if wrong number of arguments */
|
||||
int is_agg = 0; /* True if is an aggregate function */
|
||||
int i;
|
||||
int nId; /* Number of characters in function name */
|
||||
const char *zId; /* The function name. */
|
||||
FuncDef *pDef;
|
||||
int enc = pParse->db->enc;
|
||||
NameContext ncParam; /* Name context for parameters */
|
||||
|
||||
getFunctionName(pExpr, &zId, &nId);
|
||||
pDef = sqlite3FindFunction(pParse->db, zId, nId, n, enc, 0);
|
||||
if( pDef==0 ){
|
||||
pDef = sqlite3FindFunction(pParse->db, zId, nId, -1, enc, 0);
|
||||
if( pDef==0 ){
|
||||
no_such_func = 1;
|
||||
}else{
|
||||
wrong_num_args = 1;
|
||||
}
|
||||
}else{
|
||||
is_agg = pDef->xFunc==0;
|
||||
}
|
||||
if( is_agg && !pNC->allowAgg ){
|
||||
sqlite3ErrorMsg(pParse, "misuse of aggregate function %.*s()", nId,zId);
|
||||
pNC->nErr++;
|
||||
is_agg = 0;
|
||||
}else if( no_such_func ){
|
||||
sqlite3ErrorMsg(pParse, "no such function: %.*s", nId, zId);
|
||||
pNC->nErr++;
|
||||
}else if( wrong_num_args ){
|
||||
sqlite3ErrorMsg(pParse,"wrong number of arguments to function %.*s()",
|
||||
nId, zId);
|
||||
pNC->nErr++;
|
||||
}
|
||||
if( is_agg ){
|
||||
pExpr->op = TK_AGG_FUNCTION;
|
||||
pNC->hasAgg = 1;
|
||||
}
|
||||
ncParam = *pNC;
|
||||
if( is_agg ) ncParam.allowAgg = 0;
|
||||
for(i=0; pNC->nErr==0 && i<n; i++){
|
||||
walkExprTree(pList->a[i].pExpr, nameResolverStep, &ncParam);
|
||||
pNC->nErr += ncParam.nErr;
|
||||
if( ncParam.hasAgg ) pNC->hasAgg = 1;
|
||||
}
|
||||
if( pNC->nErr ) return 2;
|
||||
/* FIX ME: Compute pExpr->affinity based on the expected return
|
||||
** type of the function
|
||||
*/
|
||||
return is_agg;
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
** This routine walks an expression tree and resolves references to
|
||||
** table columns. Nodes of the form ID.ID or ID resolve into an
|
||||
@@ -877,8 +1101,43 @@ static int lookupName(
|
||||
** ROWID column is -1. Any INTEGER PRIMARY KEY column is tried as an
|
||||
** alias for ROWID.
|
||||
**
|
||||
** We also check for instances of the IN operator. IN comes in two
|
||||
** forms:
|
||||
** Also resolve function names and check the functions for proper
|
||||
** usage. Make sure all function names are recognized and all functions
|
||||
** have the correct number of arguments. Leave an error message
|
||||
** in pParse->zErrMsg if anything is amiss. Return the number of errors.
|
||||
**
|
||||
** if pIsAgg is not null and this expression is an aggregate function
|
||||
** (like count(*) or max(value)) then write a 1 into *pIsAgg.
|
||||
*/
|
||||
int sqlite3ExprResolveNames(
|
||||
Parse *pParse, /* The parser context */
|
||||
SrcList *pSrcList, /* List of tables used to resolve column names */
|
||||
ExprList *pEList, /* List of expressions used to resolve "AS" */
|
||||
Expr *pExpr, /* The expression to be analyzed. */
|
||||
int allowAgg, /* True to allow aggregate expressions */
|
||||
int *pIsAgg, /* Set to TRUE if aggregates are found */
|
||||
int codeSubquery /* If true, then generate code for subqueries too */
|
||||
){
|
||||
NameContext sNC;
|
||||
|
||||
memset(&sNC, 0, sizeof(sNC));
|
||||
sNC.pSrcList = pSrcList;
|
||||
sNC.pParse = pParse;
|
||||
sNC.pEList = pEList;
|
||||
sNC.allowAgg = allowAgg;
|
||||
walkExprTree(pExpr, nameResolverStep, &sNC);
|
||||
if( pIsAgg && sNC.hasAgg ) *pIsAgg = 1;
|
||||
if( sNC.nErr==0 && codeSubquery ){
|
||||
sNC.nErr += sqlite3ExprCodeSubquery(pParse, pExpr);
|
||||
}
|
||||
return sNC.nErr + pParse->nErr;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
** Generate code for subqueries and IN operators.
|
||||
**
|
||||
** IN comes in two forms:
|
||||
**
|
||||
** expr IN (exprlist)
|
||||
** and
|
||||
@@ -891,76 +1150,18 @@ static int lookupName(
|
||||
** This routine also looks for scalar SELECTs that are part of an expression.
|
||||
** If it finds any, it generates code to write the value of that select
|
||||
** into a memory cell.
|
||||
**
|
||||
** Unknown columns or tables provoke an error. The function returns
|
||||
** the number of errors seen and leaves an error message on pParse->zErrMsg.
|
||||
*/
|
||||
int sqlite3ExprResolveIds(
|
||||
Parse *pParse, /* The parser context */
|
||||
SrcList *pSrcList, /* List of tables used to resolve column names */
|
||||
ExprList *pEList, /* List of expressions used to resolve "AS" */
|
||||
Expr *pExpr /* The expression to be analyzed. */
|
||||
){
|
||||
int i;
|
||||
static int codeSubqueryStep(void *pArg, Expr *pExpr){
|
||||
Parse *pParse = (Parse*)pArg;
|
||||
|
||||
if( pExpr==0 || pSrcList==0 ) return 0;
|
||||
for(i=0; i<pSrcList->nSrc; i++){
|
||||
assert( pSrcList->a[i].iCursor>=0 && pSrcList->a[i].iCursor<pParse->nTab );
|
||||
}
|
||||
switch( pExpr->op ){
|
||||
/* Double-quoted strings (ex: "abc") are used as identifiers if
|
||||
** possible. Otherwise they remain as strings. Single-quoted
|
||||
** strings (ex: 'abc') are always string literals.
|
||||
*/
|
||||
case TK_STRING: {
|
||||
if( pExpr->token.z[0]=='\'' ) break;
|
||||
/* Fall thru into the TK_ID case if this is a double-quoted string */
|
||||
}
|
||||
/* A lone identifier is the name of a columnd.
|
||||
*/
|
||||
case TK_ID: {
|
||||
if( lookupName(pParse, 0, 0, &pExpr->token, pSrcList, pEList, pExpr) ){
|
||||
return 1;
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
/* A table name and column name: ID.ID
|
||||
** Or a database, table and column: ID.ID.ID
|
||||
*/
|
||||
case TK_DOT: {
|
||||
Token *pColumn;
|
||||
Token *pTable;
|
||||
Token *pDb;
|
||||
Expr *pRight;
|
||||
|
||||
pRight = pExpr->pRight;
|
||||
if( pRight->op==TK_ID ){
|
||||
pDb = 0;
|
||||
pTable = &pExpr->pLeft->token;
|
||||
pColumn = &pRight->token;
|
||||
}else{
|
||||
assert( pRight->op==TK_DOT );
|
||||
pDb = &pExpr->pLeft->token;
|
||||
pTable = &pRight->pLeft->token;
|
||||
pColumn = &pRight->pRight->token;
|
||||
}
|
||||
if( lookupName(pParse, pDb, pTable, pColumn, pSrcList, 0, pExpr) ){
|
||||
return 1;
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
case TK_IN: {
|
||||
char affinity;
|
||||
Vdbe *v = sqlite3GetVdbe(pParse);
|
||||
KeyInfo keyInfo;
|
||||
int addr; /* Address of OP_OpenTemp instruction */
|
||||
|
||||
if( v==0 ) return 1;
|
||||
if( sqlite3ExprResolveIds(pParse, pSrcList, pEList, pExpr->pLeft) ){
|
||||
return 1;
|
||||
}
|
||||
if( v==0 ) return 2;
|
||||
affinity = sqlite3ExprAffinity(pExpr->pLeft);
|
||||
|
||||
/* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
|
||||
@@ -1019,10 +1220,10 @@ int sqlite3ExprResolveIds(
|
||||
if( !sqlite3ExprIsConstant(pE2) ){
|
||||
sqlite3ErrorMsg(pParse,
|
||||
"right-hand side of IN operator must be constant");
|
||||
return 1;
|
||||
return 2;
|
||||
}
|
||||
if( sqlite3ExprCheck(pParse, pE2, 0, 0) ){
|
||||
return 1;
|
||||
if( sqlite3ExprResolveNames(pParse, 0, 0, pE2, 0, 0, 0) ){
|
||||
return 2;
|
||||
}
|
||||
|
||||
/* Evaluate the expression and insert it into the temp table */
|
||||
@@ -1033,8 +1234,7 @@ int sqlite3ExprResolveIds(
|
||||
}
|
||||
}
|
||||
sqlite3VdbeChangeP3(v, addr, (void *)&keyInfo, P3_KEYINFO);
|
||||
|
||||
break;
|
||||
return 1;
|
||||
}
|
||||
|
||||
case TK_SELECT: {
|
||||
@@ -1043,191 +1243,19 @@ int sqlite3ExprResolveIds(
|
||||
** of the memory cell in iColumn.
|
||||
*/
|
||||
pExpr->iColumn = pParse->nMem++;
|
||||
if(sqlite3Select(pParse, pExpr->pSelect, SRT_Mem,pExpr->iColumn,0,0,0,0)){
|
||||
return 1;
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
/* For all else, just recursively walk the tree */
|
||||
default: {
|
||||
if( pExpr->pLeft
|
||||
&& sqlite3ExprResolveIds(pParse, pSrcList, pEList, pExpr->pLeft) ){
|
||||
return 1;
|
||||
}
|
||||
if( pExpr->pRight
|
||||
&& sqlite3ExprResolveIds(pParse, pSrcList, pEList, pExpr->pRight) ){
|
||||
return 1;
|
||||
}
|
||||
if( pExpr->pList ){
|
||||
int i;
|
||||
ExprList *pList = pExpr->pList;
|
||||
for(i=0; i<pList->nExpr; i++){
|
||||
Expr *pArg = pList->a[i].pExpr;
|
||||
if( sqlite3ExprResolveIds(pParse, pSrcList, pEList, pArg) ){
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
sqlite3Select(pParse, pExpr->pSelect, SRT_Mem,pExpr->iColumn,0,0,0,0);
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
** pExpr is a node that defines a function of some kind. It might
|
||||
** be a syntactic function like "count(x)" or it might be a function
|
||||
** that implements an operator, like "a LIKE b".
|
||||
**
|
||||
** This routine makes *pzName point to the name of the function and
|
||||
** *pnName hold the number of characters in the function name.
|
||||
** Generate code to evaluate subqueries and IN operators.
|
||||
*/
|
||||
static void getFunctionName(Expr *pExpr, const char **pzName, int *pnName){
|
||||
switch( pExpr->op ){
|
||||
case TK_FUNCTION: {
|
||||
*pzName = pExpr->token.z;
|
||||
*pnName = pExpr->token.n;
|
||||
break;
|
||||
}
|
||||
case TK_LIKE: {
|
||||
*pzName = "like";
|
||||
*pnName = 4;
|
||||
break;
|
||||
}
|
||||
case TK_GLOB: {
|
||||
*pzName = "glob";
|
||||
*pnName = 4;
|
||||
break;
|
||||
}
|
||||
case TK_CTIME: {
|
||||
*pzName = "current_time";
|
||||
*pnName = 12;
|
||||
break;
|
||||
}
|
||||
case TK_CDATE: {
|
||||
*pzName = "current_date";
|
||||
*pnName = 12;
|
||||
break;
|
||||
}
|
||||
case TK_CTIMESTAMP: {
|
||||
*pzName = "current_timestamp";
|
||||
*pnName = 17;
|
||||
break;
|
||||
}
|
||||
default: {
|
||||
*pzName = "can't happen";
|
||||
*pnName = 12;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Error check the functions in an expression. Make sure all
|
||||
** function names are recognized and all functions have the correct
|
||||
** number of arguments. Leave an error message in pParse->zErrMsg
|
||||
** if anything is amiss. Return the number of errors.
|
||||
**
|
||||
** if pIsAgg is not null and this expression is an aggregate function
|
||||
** (like count(*) or max(value)) then write a 1 into *pIsAgg.
|
||||
*/
|
||||
int sqlite3ExprCheck(Parse *pParse, Expr *pExpr, int allowAgg, int *pIsAgg){
|
||||
int nErr = 0;
|
||||
if( pExpr==0 ) return 0;
|
||||
switch( pExpr->op ){
|
||||
case TK_CTIME:
|
||||
case TK_CTIMESTAMP:
|
||||
case TK_CDATE:
|
||||
/* Note: The above three were a seperate case in sqlmoto. Reason? */
|
||||
case TK_GLOB:
|
||||
case TK_LIKE:
|
||||
case TK_FUNCTION: {
|
||||
int n = pExpr->pList ? pExpr->pList->nExpr : 0; /* Number of arguments */
|
||||
int no_such_func = 0; /* True if no such function exists */
|
||||
int wrong_num_args = 0; /* True if wrong number of arguments */
|
||||
int is_agg = 0; /* True if is an aggregate function */
|
||||
int i;
|
||||
int nId; /* Number of characters in function name */
|
||||
const char *zId; /* The function name. */
|
||||
FuncDef *pDef;
|
||||
int enc = pParse->db->enc;
|
||||
|
||||
getFunctionName(pExpr, &zId, &nId);
|
||||
pDef = sqlite3FindFunction(pParse->db, zId, nId, n, enc, 0);
|
||||
if( pDef==0 ){
|
||||
pDef = sqlite3FindFunction(pParse->db, zId, nId, -1, enc, 0);
|
||||
if( pDef==0 ){
|
||||
no_such_func = 1;
|
||||
}else{
|
||||
wrong_num_args = 1;
|
||||
}
|
||||
}else{
|
||||
is_agg = pDef->xFunc==0;
|
||||
}
|
||||
if( is_agg && !allowAgg ){
|
||||
sqlite3ErrorMsg(pParse, "misuse of aggregate function %.*s()", nId, zId);
|
||||
nErr++;
|
||||
is_agg = 0;
|
||||
}else if( no_such_func ){
|
||||
sqlite3ErrorMsg(pParse, "no such function: %.*s", nId, zId);
|
||||
nErr++;
|
||||
}else if( wrong_num_args ){
|
||||
sqlite3ErrorMsg(pParse,"wrong number of arguments to function %.*s()",
|
||||
nId, zId);
|
||||
nErr++;
|
||||
}
|
||||
if( is_agg ){
|
||||
pExpr->op = TK_AGG_FUNCTION;
|
||||
if( pIsAgg ) *pIsAgg = 1;
|
||||
}
|
||||
for(i=0; nErr==0 && i<n; i++){
|
||||
nErr = sqlite3ExprCheck(pParse, pExpr->pList->a[i].pExpr,
|
||||
allowAgg && !is_agg, pIsAgg);
|
||||
}
|
||||
/* FIX ME: Compute pExpr->affinity based on the expected return
|
||||
** type of the function
|
||||
*/
|
||||
}
|
||||
default: {
|
||||
if( pExpr->pLeft ){
|
||||
nErr = sqlite3ExprCheck(pParse, pExpr->pLeft, allowAgg, pIsAgg);
|
||||
}
|
||||
if( nErr==0 && pExpr->pRight ){
|
||||
nErr = sqlite3ExprCheck(pParse, pExpr->pRight, allowAgg, pIsAgg);
|
||||
}
|
||||
if( nErr==0 && pExpr->pList ){
|
||||
int n = pExpr->pList->nExpr;
|
||||
int i;
|
||||
for(i=0; nErr==0 && i<n; i++){
|
||||
Expr *pE2 = pExpr->pList->a[i].pExpr;
|
||||
nErr = sqlite3ExprCheck(pParse, pE2, allowAgg, pIsAgg);
|
||||
}
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
return nErr;
|
||||
}
|
||||
|
||||
/*
|
||||
** Call sqlite3ExprResolveIds() followed by sqlite3ExprCheck().
|
||||
**
|
||||
** This routine is provided as a convenience since it is very common
|
||||
** to call ResolveIds() and Check() back to back.
|
||||
*/
|
||||
int sqlite3ExprResolveAndCheck(
|
||||
Parse *pParse, /* The parser context */
|
||||
SrcList *pSrcList, /* List of tables used to resolve column names */
|
||||
ExprList *pEList, /* List of expressions used to resolve "AS" */
|
||||
Expr *pExpr, /* The expression to be analyzed. */
|
||||
int allowAgg, /* True to allow aggregate expressions */
|
||||
int *pIsAgg /* Set to TRUE if aggregates are found */
|
||||
){
|
||||
if( pExpr==0 ) return 0;
|
||||
if( sqlite3ExprResolveIds(pParse,pSrcList,pEList,pExpr) ){
|
||||
return 1;
|
||||
}
|
||||
return sqlite3ExprCheck(pParse, pExpr, allowAgg, pIsAgg);
|
||||
int sqlite3ExprCodeSubquery(Parse *pParse, Expr *pExpr){
|
||||
walkExprTree(pExpr, codeSubqueryStep, pParse);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
@@ -1856,22 +1884,17 @@ static int appendAggInfo(Parse *pParse){
|
||||
}
|
||||
|
||||
/*
|
||||
** Analyze the given expression looking for aggregate functions and
|
||||
** for variables that need to be added to the pParse->aAgg[] array.
|
||||
** Make additional entries to the pParse->aAgg[] array as necessary.
|
||||
** This is an xFunc for walkExprTree() used to implement
|
||||
** sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates
|
||||
** for additional information.
|
||||
**
|
||||
** This routine should only be called after the expression has been
|
||||
** analyzed by sqlite3ExprResolveIds() and sqlite3ExprCheck().
|
||||
**
|
||||
** If errors are seen, leave an error message in zErrMsg and return
|
||||
** the number of errors.
|
||||
** This routine analyzes the aggregate function at pExpr.
|
||||
*/
|
||||
int sqlite3ExprAnalyzeAggregates(Parse *pParse, Expr *pExpr){
|
||||
static int analyzeAggregate(void *pArg, Expr *pExpr){
|
||||
int i;
|
||||
AggExpr *aAgg;
|
||||
int nErr = 0;
|
||||
Parse *pParse = (Parse*)pArg;
|
||||
|
||||
if( pExpr==0 ) return 0;
|
||||
switch( pExpr->op ){
|
||||
case TK_COLUMN: {
|
||||
aAgg = pParse->aAgg;
|
||||
@@ -1889,7 +1912,7 @@ int sqlite3ExprAnalyzeAggregates(Parse *pParse, Expr *pExpr){
|
||||
pParse->aAgg[i].pExpr = pExpr;
|
||||
}
|
||||
pExpr->iAgg = i;
|
||||
break;
|
||||
return 1;
|
||||
}
|
||||
case TK_AGG_FUNCTION: {
|
||||
aAgg = pParse->aAgg;
|
||||
@@ -1910,26 +1933,27 @@ int sqlite3ExprAnalyzeAggregates(Parse *pParse, Expr *pExpr){
|
||||
pExpr->pList ? pExpr->pList->nExpr : 0, enc, 0);
|
||||
}
|
||||
pExpr->iAgg = i;
|
||||
break;
|
||||
}
|
||||
default: {
|
||||
if( pExpr->pLeft ){
|
||||
nErr = sqlite3ExprAnalyzeAggregates(pParse, pExpr->pLeft);
|
||||
}
|
||||
if( nErr==0 && pExpr->pRight ){
|
||||
nErr = sqlite3ExprAnalyzeAggregates(pParse, pExpr->pRight);
|
||||
}
|
||||
if( nErr==0 && pExpr->pList ){
|
||||
int n = pExpr->pList->nExpr;
|
||||
int i;
|
||||
for(i=0; nErr==0 && i<n; i++){
|
||||
nErr = sqlite3ExprAnalyzeAggregates(pParse, pExpr->pList->a[i].pExpr);
|
||||
}
|
||||
}
|
||||
break;
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
return nErr;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
** Analyze the given expression looking for aggregate functions and
|
||||
** for variables that need to be added to the pParse->aAgg[] array.
|
||||
** Make additional entries to the pParse->aAgg[] array as necessary.
|
||||
**
|
||||
** This routine should only be called after the expression has been
|
||||
** analyzed by sqlite3ExprResolveNames().
|
||||
**
|
||||
** If errors are seen, leave an error message in zErrMsg and return
|
||||
** the number of errors.
|
||||
*/
|
||||
int sqlite3ExprAnalyzeAggregates(Parse *pParse, Expr *pExpr){
|
||||
int nErr = pParse->nErr;
|
||||
walkExprTree(pExpr, analyzeAggregate, pParse);
|
||||
return pParse->nErr - nErr;
|
||||
}
|
||||
|
||||
/*
|
||||
|
||||
Reference in New Issue
Block a user