1
0
mirror of https://github.com/sqlite/sqlite.git synced 2025-10-27 08:52:26 +03:00

Try to get threads working again on Linux. (CVS 1755)

FossilOrigin-Name: a8417cb83e9d070f46e7505f92a95f057b992658
This commit is contained in:
drh
2004-06-29 03:29:00 +00:00
parent f46188911d
commit 5fdae7711a
5 changed files with 139 additions and 53 deletions

View File

@@ -148,19 +148,38 @@
** key because close() clears lock on all threads, not just the current
** thread. Were it not for this goofiness in linux threads, we could
** combine the lockInfo and openCnt structures into a single structure.
**
** 2004-Jun-28:
** On some versions of linux, threads can override each others locks.
** On others not. Sometimes you can change the behavior on the same
** system by setting the LD_ASSUME_KERNEL environment variable. The
** POSIX standard is silent as to which behavior is correct, as far
** as I can tell, so other versions of unix might show the same
** inconsistency. There is no little doubt in my mind that posix
** advisory locks and linux threads are profoundly broken.
**
** To work around the inconsistencies, we have to test at runtime
** whether or not threads can override each others locks. This test
** is run once, the first time any lock is attempted. A static
** variable is set to record the results of this test for future
** use.
*/
/*
** An instance of the following structure serves as the key used
** to locate a particular lockInfo structure given its inode. Note
** that we have to include the process ID as part of the key. On some
** threading implementations (ex: linux), each thread has a separate
** process ID.
** to locate a particular lockInfo structure given its inode.
**
** If threads cannot override each others locks, then we set the
** lockKey.tid field to the thread ID. If threads can override
** each others locks then tid is always set to zero. tid is also
** set to zero if we compile without threading support.
*/
struct lockKey {
dev_t dev; /* Device number */
ino_t ino; /* Inode number */
pid_t pid; /* Process ID */
dev_t dev; /* Device number */
ino_t ino; /* Inode number */
#ifdef SQLITE_UNIX_THREADS
pthread_t tid; /* Thread ID or zero if threads cannot override each other */
#endif
};
/*
@@ -182,7 +201,7 @@ struct lockInfo {
/*
** An instance of the following structure serves as the key used
** to locate a particular openCnt structure given its inode. This
** is the same as the lockKey except that the process ID is omitted.
** is the same as the lockKey except that the thread ID is omitted.
*/
struct openKey {
dev_t dev; /* Device number */
@@ -211,6 +230,70 @@ struct openCnt {
static Hash lockHash = { SQLITE_HASH_BINARY, 0, 0, 0, 0, 0 };
static Hash openHash = { SQLITE_HASH_BINARY, 0, 0, 0, 0, 0 };
#ifdef SQLITE_UNIX_THREADS
/*
** This variable records whether or not threads can override each others
** locks.
**
** 0: No. Threads cannot override each others locks.
** 1: Yes. Threads can override each others locks.
** -1: We don't know yet.
*/
static int threadsOverrideEachOthersLocks = -1;
/*
** This structure holds information passed into individual test
** threads by the testThreadLockingBehavior() routine.
*/
struct threadTestData {
int fd; /* File to be locked */
struct flock lock; /* The locking operation */
int result; /* Result of the locking operation */
};
/*
** The testThreadLockingBehavior() routine launches two separate
** threads on this routine. This routine attempts to lock a file
** descriptor then returns. The success or failure of that attempt
** allows the testThreadLockingBehavior() procedure to determine
** whether or not threads can override each others locks.
*/
static void *threadLockingTest(void *pArg){
struct threadTestData *pData = (struct threadTestData*)pArg;
pData->result = fcntl(pData->fd, F_SETLK, &pData->lock);
return pArg;
}
/*
** This procedure attempts to determine whether or not threads
** can override each others locks then sets the
** threadsOverrideEachOthersLocks variable appropriately.
*/
static void testThreadLockingBehavior(fd_orig){
int fd;
struct threadTestData d[2];
pthread_t t[2];
fd = dup(fd_orig);
if( fd<0 ) return;
memset(d, 0, sizeof(d));
d[0].fd = fd;
d[0].lock.l_type = F_RDLCK;
d[0].lock.l_len = 1;
d[0].lock.l_start = 0;
d[0].lock.l_whence = SEEK_SET;
d[1] = d[0];
d[1].lock.l_type = F_WRLCK;
pthread_create(&t[0], 0, threadLockingTest, &d[0]);
pthread_create(&t[1], 0, threadLockingTest, &d[1]);
pthread_join(t[0], 0);
pthread_join(t[1], 0);
close(fd);
threadsOverrideEachOthersLocks = d[0].result==0 && d[1].result==0;
}
#endif /* SQLITE_UNIX_THREADS */
/*
** Release a lockInfo structure previously allocated by findLockInfo().
*/
@@ -244,7 +327,7 @@ static void releaseOpenCnt(struct openCnt *pOpen){
static int findLockInfo(
int fd, /* The file descriptor used in the key */
struct lockInfo **ppLock, /* Return the lockInfo structure here */
struct openCnt **ppOpen /* Return the openCnt structure here */
struct openCnt **ppOpen /* Return the openCnt structure here */
){
int rc;
struct lockKey key1;
@@ -257,7 +340,12 @@ static int findLockInfo(
memset(&key1, 0, sizeof(key1));
key1.dev = statbuf.st_dev;
key1.ino = statbuf.st_ino;
key1.pid = getpid();
#ifdef SQLITE_UNIX_THREADS
if( threadsOverrideEachOthersLocks<0 ){
testThreadLockingBehavior(fd);
}
key1.tid = threadsOverrideEachOthersLocks ? 0 : pthread_self();
#endif
memset(&key2, 0, sizeof(key2));
key2.dev = statbuf.st_dev;
key2.ino = statbuf.st_ino;