mirror of
https://github.com/sqlite/sqlite.git
synced 2025-11-09 14:21:03 +03:00
Break up the mutex implementation into separate source files, one
each for unix, w32, and os2. (CVS 4312) FossilOrigin-Name: fc5cd71aef5ac194f51d73350d773d532020967e
This commit is contained in:
471
src/mutex.c
471
src/mutex.c
@@ -9,116 +9,22 @@
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
** This file contains the C functions that implement mutexes for
|
||||
** use by the SQLite core.
|
||||
** This file contains the C functions that implement mutexes.
|
||||
**
|
||||
** $Id: mutex.c,v 1.14 2007/08/27 17:27:49 danielk1977 Exp $
|
||||
*/
|
||||
/*
|
||||
** If SQLITE_MUTEX_APPDEF is defined, then this whole module is
|
||||
** omitted and equivalent functionality must be provided by the
|
||||
** application that links against the SQLite library.
|
||||
*/
|
||||
#ifndef SQLITE_MUTEX_APPDEF
|
||||
|
||||
|
||||
/* This is the beginning of internal implementation of mutexes
|
||||
** for SQLite.
|
||||
** The implementation in this file does not provide any mutual
|
||||
** exclusion and is thus suitable for use only in applications
|
||||
** that use SQLite in a single thread. But this implementation
|
||||
** does do a lot of error checking on mutexes to make sure they
|
||||
** are called correctly and at appropriate times. Hence, this
|
||||
** implementation is suitable for testing.
|
||||
** debugging purposes
|
||||
**
|
||||
** $Id: mutex.c,v 1.15 2007/08/28 16:34:43 drh Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
|
||||
/*
|
||||
** Figure out what version of the code to use. The choices are
|
||||
**
|
||||
** SQLITE_MUTEX_NOOP For single-threaded applications that
|
||||
** do not desire error checking.
|
||||
**
|
||||
** SQLITE_MUTEX_NOOP_DEBUG For single-threaded applications with
|
||||
** error checking to help verify that mutexes
|
||||
** are being used correctly even though they
|
||||
** are not needed. Used when SQLITE_DEBUG is
|
||||
** defined on single-threaded builds.
|
||||
**
|
||||
** SQLITE_MUTEX_PTHREADS For multi-threaded applications on Unix.
|
||||
**
|
||||
** SQLITE_MUTEX_WIN For multi-threaded applications on Win32.
|
||||
*/
|
||||
#define SQLITE_MUTEX_NOOP 1 /* The default */
|
||||
#if defined(SQLITE_DEBUG) && !SQLITE_THREADSAFE
|
||||
# undef SQLITE_MUTEX_NOOP
|
||||
# define SQLITE_MUTEX_NOOP_DEBUG
|
||||
#endif
|
||||
#if defined(SQLITE_MUTEX_NOOP) && SQLITE_THREADSAFE && OS_UNIX
|
||||
# undef SQLITE_MUTEX_NOOP
|
||||
# define SQLITE_MUTEX_PTHREAD
|
||||
#endif
|
||||
#if defined(SQLITE_MUTEX_NOOP) && SQLITE_THREADSAFE && OS_WIN
|
||||
# undef SQLITE_MUTEX_NOOP
|
||||
# define SQLITE_MUTEX_WIN
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
#ifdef SQLITE_MUTEX_NOOP
|
||||
/************************ No-op Mutex Implementation **********************
|
||||
**
|
||||
** This first implementation of mutexes is really a no-op. In other words,
|
||||
** no real locking occurs. This implementation is appropriate for use
|
||||
** in single threaded applications which do not want the extra overhead
|
||||
** of thread locking primitives.
|
||||
*/
|
||||
|
||||
/*
|
||||
** The sqlite3_mutex_alloc() routine allocates a new
|
||||
** mutex and returns a pointer to it. If it returns NULL
|
||||
** that means that a mutex could not be allocated.
|
||||
*/
|
||||
sqlite3_mutex *sqlite3_mutex_alloc(int idNotUsed){
|
||||
return (sqlite3_mutex*)8;
|
||||
}
|
||||
|
||||
/*
|
||||
** This routine deallocates a previously allocated mutex.
|
||||
*/
|
||||
void sqlite3_mutex_free(sqlite3_mutex *pNotUsed){}
|
||||
|
||||
/*
|
||||
** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
|
||||
** to enter a mutex. If another thread is already within the mutex,
|
||||
** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
|
||||
** SQLITE_BUSY. The sqlite3_mutex_try() interface returns SQLITE_OK
|
||||
** upon successful entry. Mutexes created using SQLITE_MUTEX_RECURSIVE can
|
||||
** be entered multiple times by the same thread. In such cases the,
|
||||
** mutex must be exited an equal number of times before another thread
|
||||
** can enter. If the same thread tries to enter any other kind of mutex
|
||||
** more than once, the behavior is undefined.
|
||||
*/
|
||||
void sqlite3_mutex_enter(sqlite3_mutex *pNotUsed){}
|
||||
int sqlite3_mutex_try(sqlite3_mutex *pNotUsed){ return SQLITE_OK; }
|
||||
|
||||
/*
|
||||
** The sqlite3_mutex_leave() routine exits a mutex that was
|
||||
** previously entered by the same thread. The behavior
|
||||
** is undefined if the mutex is not currently entered or
|
||||
** is not currently allocated. SQLite will never do either.
|
||||
*/
|
||||
void sqlite3_mutex_leave(sqlite3_mutex *pNotUsed){}
|
||||
|
||||
/*
|
||||
** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
|
||||
** intended for use inside assert() statements.
|
||||
*/
|
||||
int sqlite3_mutex_held(sqlite3_mutex *pNotUsed){
|
||||
return 1;
|
||||
}
|
||||
int sqlite3_mutex_notheld(sqlite3_mutex *pNotUsed){
|
||||
return 1;
|
||||
}
|
||||
#endif /* SQLITE_MUTEX_NOOP */
|
||||
|
||||
#ifdef SQLITE_MUTEX_NOOP_DEBUG
|
||||
/*************** Error-checking No-op Mutex Implementation *******************
|
||||
**
|
||||
/*
|
||||
** In this implementation, mutexes do not provide any mutual exclusion.
|
||||
** But the error checking is provided. This implementation is useful
|
||||
** for test purposes.
|
||||
@@ -218,358 +124,3 @@ int sqlite3_mutex_notheld(sqlite3_mutex *p){
|
||||
return p==0 || p->cnt==0;
|
||||
}
|
||||
#endif /* SQLITE_MUTEX_NOOP_DEBUG */
|
||||
|
||||
|
||||
|
||||
#ifdef SQLITE_MUTEX_PTHREAD
|
||||
/******************** Pthread Mutex Implementation *********************
|
||||
**
|
||||
** This implementation of mutexes is built using a version of pthreads that
|
||||
** has native support for recursive mutexes.
|
||||
*/
|
||||
#include <pthread.h>
|
||||
|
||||
/*
|
||||
** Each recursive mutex is an instance of the following structure.
|
||||
*/
|
||||
struct sqlite3_mutex {
|
||||
pthread_mutex_t mutex; /* Mutex controlling the lock */
|
||||
int id; /* Mutex type */
|
||||
int nRef; /* Number of entrances */
|
||||
pthread_t owner; /* Thread that is within this mutex */
|
||||
};
|
||||
|
||||
/*
|
||||
** The sqlite3_mutex_alloc() routine allocates a new
|
||||
** mutex and returns a pointer to it. If it returns NULL
|
||||
** that means that a mutex could not be allocated. SQLite
|
||||
** will unwind its stack and return an error. The argument
|
||||
** to sqlite3_mutex_alloc() is one of these integer constants:
|
||||
**
|
||||
** <ul>
|
||||
** <li> SQLITE_MUTEX_FAST
|
||||
** <li> SQLITE_MUTEX_RECURSIVE
|
||||
** <li> SQLITE_MUTEX_STATIC_MASTER
|
||||
** <li> SQLITE_MUTEX_STATIC_MEM
|
||||
** <li> SQLITE_MUTEX_STATIC_MEM2
|
||||
** <li> SQLITE_MUTEX_STATIC_PRNG
|
||||
** <li> SQLITE_MUTEX_STATIC_LRU
|
||||
** </ul>
|
||||
**
|
||||
** The first two constants cause sqlite3_mutex_alloc() to create
|
||||
** a new mutex. The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
|
||||
** is used but not necessarily so when SQLITE_MUTEX_FAST is used.
|
||||
** The mutex implementation does not need to make a distinction
|
||||
** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
|
||||
** not want to. But SQLite will only request a recursive mutex in
|
||||
** cases where it really needs one. If a faster non-recursive mutex
|
||||
** implementation is available on the host platform, the mutex subsystem
|
||||
** might return such a mutex in response to SQLITE_MUTEX_FAST.
|
||||
**
|
||||
** The other allowed parameters to sqlite3_mutex_alloc() each return
|
||||
** a pointer to a static preexisting mutex. Three static mutexes are
|
||||
** used by the current version of SQLite. Future versions of SQLite
|
||||
** may add additional static mutexes. Static mutexes are for internal
|
||||
** use by SQLite only. Applications that use SQLite mutexes should
|
||||
** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
|
||||
** SQLITE_MUTEX_RECURSIVE.
|
||||
**
|
||||
** Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
|
||||
** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
|
||||
** returns a different mutex on every call. But for the static
|
||||
** mutex types, the same mutex is returned on every call that has
|
||||
** the same type number.
|
||||
*/
|
||||
sqlite3_mutex *sqlite3_mutex_alloc(int iType){
|
||||
static sqlite3_mutex staticMutexes[] = {
|
||||
{ PTHREAD_MUTEX_INITIALIZER, },
|
||||
{ PTHREAD_MUTEX_INITIALIZER, },
|
||||
{ PTHREAD_MUTEX_INITIALIZER, },
|
||||
{ PTHREAD_MUTEX_INITIALIZER, },
|
||||
{ PTHREAD_MUTEX_INITIALIZER, },
|
||||
};
|
||||
sqlite3_mutex *p;
|
||||
switch( iType ){
|
||||
case SQLITE_MUTEX_RECURSIVE: {
|
||||
p = sqlite3MallocZero( sizeof(*p) );
|
||||
if( p ){
|
||||
pthread_mutexattr_t recursiveAttr;
|
||||
pthread_mutexattr_init(&recursiveAttr);
|
||||
pthread_mutexattr_settype(&recursiveAttr, PTHREAD_MUTEX_RECURSIVE);
|
||||
pthread_mutex_init(&p->mutex, &recursiveAttr);
|
||||
pthread_mutexattr_destroy(&recursiveAttr);
|
||||
p->id = iType;
|
||||
}
|
||||
break;
|
||||
}
|
||||
case SQLITE_MUTEX_FAST: {
|
||||
p = sqlite3MallocZero( sizeof(*p) );
|
||||
if( p ){
|
||||
p->id = iType;
|
||||
pthread_mutex_init(&p->mutex, 0);
|
||||
}
|
||||
break;
|
||||
}
|
||||
default: {
|
||||
assert( iType-2 >= 0 );
|
||||
assert( iType-2 < sizeof(staticMutexes)/sizeof(staticMutexes[0]) );
|
||||
p = &staticMutexes[iType-2];
|
||||
p->id = iType;
|
||||
break;
|
||||
}
|
||||
}
|
||||
return p;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
** This routine deallocates a previously
|
||||
** allocated mutex. SQLite is careful to deallocate every
|
||||
** mutex that it allocates.
|
||||
*/
|
||||
void sqlite3_mutex_free(sqlite3_mutex *p){
|
||||
assert( p );
|
||||
assert( p->nRef==0 );
|
||||
assert( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE );
|
||||
pthread_mutex_destroy(&p->mutex);
|
||||
sqlite3_free(p);
|
||||
}
|
||||
|
||||
/*
|
||||
** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
|
||||
** to enter a mutex. If another thread is already within the mutex,
|
||||
** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
|
||||
** SQLITE_BUSY. The sqlite3_mutex_try() interface returns SQLITE_OK
|
||||
** upon successful entry. Mutexes created using SQLITE_MUTEX_RECURSIVE can
|
||||
** be entered multiple times by the same thread. In such cases the,
|
||||
** mutex must be exited an equal number of times before another thread
|
||||
** can enter. If the same thread tries to enter any other kind of mutex
|
||||
** more than once, the behavior is undefined.
|
||||
*/
|
||||
void sqlite3_mutex_enter(sqlite3_mutex *p){
|
||||
assert( p );
|
||||
assert( p->id==SQLITE_MUTEX_RECURSIVE || sqlite3_mutex_notheld(p) );
|
||||
pthread_mutex_lock(&p->mutex);
|
||||
p->owner = pthread_self();
|
||||
p->nRef++;
|
||||
}
|
||||
int sqlite3_mutex_try(sqlite3_mutex *p){
|
||||
int rc;
|
||||
assert( p );
|
||||
assert( p->id==SQLITE_MUTEX_RECURSIVE || sqlite3_mutex_notheld(p) );
|
||||
if( pthread_mutex_trylock(&p->mutex)==0 ){
|
||||
p->owner = pthread_self();
|
||||
p->nRef++;
|
||||
rc = SQLITE_OK;
|
||||
}else{
|
||||
rc = SQLITE_BUSY;
|
||||
}
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
** The sqlite3_mutex_leave() routine exits a mutex that was
|
||||
** previously entered by the same thread. The behavior
|
||||
** is undefined if the mutex is not currently entered or
|
||||
** is not currently allocated. SQLite will never do either.
|
||||
*/
|
||||
void sqlite3_mutex_leave(sqlite3_mutex *p){
|
||||
assert( p );
|
||||
assert( sqlite3_mutex_held(p) );
|
||||
p->nRef--;
|
||||
assert( p->nRef==0 || p->id==SQLITE_MUTEX_RECURSIVE );
|
||||
pthread_mutex_unlock(&p->mutex);
|
||||
}
|
||||
|
||||
/*
|
||||
** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
|
||||
** intended for use only inside assert() statements. On some platforms,
|
||||
** there might be race conditions that can cause these routines to
|
||||
** deliver incorrect results. In particular, if pthread_equal() is
|
||||
** not an atomic operation, then these routines might delivery
|
||||
** incorrect results. On most platforms, pthread_equal() is a
|
||||
** comparison of two integers and is therefore atomic. But we are
|
||||
** told that HPUX is not such a platform. If so, then these routines
|
||||
** will not always work correctly on HPUX.
|
||||
**
|
||||
** On those platforms where pthread_equal() is not atomic, SQLite
|
||||
** should be compiled without -DSQLITE_DEBUG and with -DNDEBUG to
|
||||
** make sure no assert() statements are evaluated and hence these
|
||||
** routines are never called.
|
||||
*/
|
||||
#ifndef NDEBUG
|
||||
int sqlite3_mutex_held(sqlite3_mutex *p){
|
||||
return p==0 || (p->nRef!=0 && pthread_equal(p->owner, pthread_self()));
|
||||
}
|
||||
int sqlite3_mutex_notheld(sqlite3_mutex *p){
|
||||
return p==0 || p->nRef==0 || pthread_equal(p->owner, pthread_self())==0;
|
||||
}
|
||||
#endif
|
||||
#endif /* SQLITE_MUTEX_PTHREAD */
|
||||
|
||||
#ifdef SQLITE_MUTEX_WIN
|
||||
/********************** Windows Mutex Implementation **********************
|
||||
**
|
||||
** This implementation of mutexes is built using the win32 API.
|
||||
*/
|
||||
|
||||
/*
|
||||
** Each recursive mutex is an instance of the following structure.
|
||||
*/
|
||||
struct sqlite3_mutex {
|
||||
CRITICAL_SECTION mutex; /* Mutex controlling the lock */
|
||||
int id; /* Mutex type */
|
||||
int nRef; /* Number of enterances */
|
||||
DWORD owner; /* Thread holding this mutex */
|
||||
};
|
||||
|
||||
/*
|
||||
** The sqlite3_mutex_alloc() routine allocates a new
|
||||
** mutex and returns a pointer to it. If it returns NULL
|
||||
** that means that a mutex could not be allocated. SQLite
|
||||
** will unwind its stack and return an error. The argument
|
||||
** to sqlite3_mutex_alloc() is one of these integer constants:
|
||||
**
|
||||
** <ul>
|
||||
** <li> SQLITE_MUTEX_FAST 0
|
||||
** <li> SQLITE_MUTEX_RECURSIVE 1
|
||||
** <li> SQLITE_MUTEX_STATIC_MASTER 2
|
||||
** <li> SQLITE_MUTEX_STATIC_MEM 3
|
||||
** <li> SQLITE_MUTEX_STATIC_PRNG 4
|
||||
** </ul>
|
||||
**
|
||||
** The first two constants cause sqlite3_mutex_alloc() to create
|
||||
** a new mutex. The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
|
||||
** is used but not necessarily so when SQLITE_MUTEX_FAST is used.
|
||||
** The mutex implementation does not need to make a distinction
|
||||
** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
|
||||
** not want to. But SQLite will only request a recursive mutex in
|
||||
** cases where it really needs one. If a faster non-recursive mutex
|
||||
** implementation is available on the host platform, the mutex subsystem
|
||||
** might return such a mutex in response to SQLITE_MUTEX_FAST.
|
||||
**
|
||||
** The other allowed parameters to sqlite3_mutex_alloc() each return
|
||||
** a pointer to a static preexisting mutex. Three static mutexes are
|
||||
** used by the current version of SQLite. Future versions of SQLite
|
||||
** may add additional static mutexes. Static mutexes are for internal
|
||||
** use by SQLite only. Applications that use SQLite mutexes should
|
||||
** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
|
||||
** SQLITE_MUTEX_RECURSIVE.
|
||||
**
|
||||
** Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
|
||||
** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
|
||||
** returns a different mutex on every call. But for the static
|
||||
** mutex types, the same mutex is returned on every call that has
|
||||
** the same type number.
|
||||
*/
|
||||
sqlite3_mutex *sqlite3_mutex_alloc(int iType){
|
||||
sqlite3_mutex *p;
|
||||
|
||||
switch( iType ){
|
||||
case SQLITE_MUTEX_FAST:
|
||||
case SQLITE_MUTEX_RECURSIVE: {
|
||||
p = sqlite3MallocZero( sizeof(*p) );
|
||||
if( p ){
|
||||
p->id = iType;
|
||||
InitializeCriticalSection(&p->mutex);
|
||||
}
|
||||
break;
|
||||
}
|
||||
default: {
|
||||
static sqlite3_mutex staticMutexes[5];
|
||||
static int isInit = 0;
|
||||
while( !isInit ){
|
||||
static long lock = 0;
|
||||
if( InterlockedIncrement(&lock)==1 ){
|
||||
int i;
|
||||
for(i=0; i<sizeof(staticMutexes)/sizeof(staticMutexes[0]); i++){
|
||||
InitializeCriticalSection(&staticMutexes[i].mutex);
|
||||
}
|
||||
isInit = 1;
|
||||
}else{
|
||||
Sleep(1);
|
||||
}
|
||||
}
|
||||
assert( iType-2 >= 0 );
|
||||
assert( iType-2 < sizeof(staticMutexes)/sizeof(staticMutexes[0]) );
|
||||
p = &staticMutexes[iType-2];
|
||||
p->id = iType;
|
||||
break;
|
||||
}
|
||||
}
|
||||
return p;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
** This routine deallocates a previously
|
||||
** allocated mutex. SQLite is careful to deallocate every
|
||||
** mutex that it allocates.
|
||||
*/
|
||||
void sqlite3_mutex_free(sqlite3_mutex *p){
|
||||
assert( p );
|
||||
assert( p->nRef==0 );
|
||||
assert( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE );
|
||||
DeleteCriticalSection(&p->mutex);
|
||||
sqlite3_free(p);
|
||||
}
|
||||
|
||||
/*
|
||||
** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
|
||||
** to enter a mutex. If another thread is already within the mutex,
|
||||
** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
|
||||
** SQLITE_BUSY. The sqlite3_mutex_try() interface returns SQLITE_OK
|
||||
** upon successful entry. Mutexes created using SQLITE_MUTEX_RECURSIVE can
|
||||
** be entered multiple times by the same thread. In such cases the,
|
||||
** mutex must be exited an equal number of times before another thread
|
||||
** can enter. If the same thread tries to enter any other kind of mutex
|
||||
** more than once, the behavior is undefined.
|
||||
*/
|
||||
void sqlite3_mutex_enter(sqlite3_mutex *p){
|
||||
assert( p );
|
||||
assert( p->id==SQLITE_MUTEX_RECURSIVE || sqlite3_mutex_notheld(p) );
|
||||
EnterCriticalSection(&p->mutex);
|
||||
p->owner = GetCurrentThreadId();
|
||||
p->nRef++;
|
||||
}
|
||||
int sqlite3_mutex_try(sqlite3_mutex *p){
|
||||
int rc;
|
||||
assert( p );
|
||||
assert( p->id==SQLITE_MUTEX_RECURSIVE || sqlite3_mutex_notheld(p) );
|
||||
if( TryEnterCriticalSection(&p->mutex) ){
|
||||
p->owner = GetCurrentThreadId();
|
||||
p->nRef++;
|
||||
rc = SQLITE_OK;
|
||||
}else{
|
||||
rc = SQLITE_BUSY;
|
||||
}
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*
|
||||
** The sqlite3_mutex_leave() routine exits a mutex that was
|
||||
** previously entered by the same thread. The behavior
|
||||
** is undefined if the mutex is not currently entered or
|
||||
** is not currently allocated. SQLite will never do either.
|
||||
*/
|
||||
void sqlite3_mutex_leave(sqlite3_mutex *p){
|
||||
assert( p->nRef>0 );
|
||||
assert( p->owner==GetCurrentThreadId() );
|
||||
p->nRef--;
|
||||
assert( p->nRef==0 || p->id==SQLITE_MUTEX_RECURSIVE );
|
||||
LeaveCriticalSection(&p->mutex);
|
||||
}
|
||||
|
||||
/*
|
||||
** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
|
||||
** intended for use only inside assert() statements.
|
||||
*/
|
||||
int sqlite3_mutex_held(sqlite3_mutex *p){
|
||||
return p==0 || (p->nRef!=0 && p->owner==GetCurrentThreadId());
|
||||
}
|
||||
int sqlite3_mutex_notheld(sqlite3_mutex *p){
|
||||
return p==0 || p->nRef==0 || p->owner!=GetCurrentThreadId();
|
||||
}
|
||||
#endif /* SQLITE_MUTEX_WIN */
|
||||
|
||||
#endif /* !defined(SQLITE_MUTEX_APPDEF) */
|
||||
|
||||
Reference in New Issue
Block a user