mirror of
https://github.com/sqlite/sqlite.git
synced 2025-07-30 19:03:16 +03:00
Initial work on documentation describing the optimizer. (CVS 2645)
FossilOrigin-Name: 5cebd7ba3ccbdd0f4c8fe77091992f52d3a4b24c
This commit is contained in:
16
manifest
16
manifest
@ -1,5 +1,5 @@
|
|||||||
C The\sCSV\soutput\smode\sdoes\snot\ssign-extend\sbytes\swhere\sthe\shigh-order\sbit\sis\sset.\nTicket\s#1397.\s(CVS\s2644)
|
C Initial\swork\son\sdocumentation\sdescribing\sthe\soptimizer.\s(CVS\s2645)
|
||||||
D 2005-08-30T20:12:02
|
D 2005-08-30T22:44:06
|
||||||
F Makefile.in 12784cdce5ffc8dfb707300c34e4f1eb3b8a14f1
|
F Makefile.in 12784cdce5ffc8dfb707300c34e4f1eb3b8a14f1
|
||||||
F Makefile.linux-gcc 06be33b2a9ad4f005a5f42b22c4a19dab3cbb5c7
|
F Makefile.linux-gcc 06be33b2a9ad4f005a5f42b22c4a19dab3cbb5c7
|
||||||
F README 9c4e2d6706bdcc3efdd773ce752a8cdab4f90028
|
F README 9c4e2d6706bdcc3efdd773ce752a8cdab4f90028
|
||||||
@ -275,13 +275,17 @@ F www/copyright.tcl 82c9670c7ddb0311912ab7fe24703f33c531066c
|
|||||||
F www/datatype3.tcl 1d14f70ab73075556b95e76a5c13e5b03f7f6c47
|
F www/datatype3.tcl 1d14f70ab73075556b95e76a5c13e5b03f7f6c47
|
||||||
F www/datatypes.tcl 7c786d2e8ff434346764534ec015966d17efce60
|
F www/datatypes.tcl 7c786d2e8ff434346764534ec015966d17efce60
|
||||||
F www/different.tcl d01064946c588db0a0e87563a30aef1b3efb4434
|
F www/different.tcl d01064946c588db0a0e87563a30aef1b3efb4434
|
||||||
|
F www/direct1b.gif 32b48b764244817b6b591898dc52a04299a7b8a7
|
||||||
F www/docs.tcl 6c0b2c567404b15bd46a0cda2dc69615a8e679a8
|
F www/docs.tcl 6c0b2c567404b15bd46a0cda2dc69615a8e679a8
|
||||||
F www/download.tcl ceaa742d5b8137bce31e9dcc4e44494b38211490
|
F www/download.tcl ceaa742d5b8137bce31e9dcc4e44494b38211490
|
||||||
F www/dynload.tcl 02eb8273aa78cfa9070dd4501dca937fb22b466c
|
F www/dynload.tcl 02eb8273aa78cfa9070dd4501dca937fb22b466c
|
||||||
F www/faq.tcl 49f31a703f74c71ce66da646aaf18b07a5042672
|
F www/faq.tcl 49f31a703f74c71ce66da646aaf18b07a5042672
|
||||||
F www/fileformat.tcl 900c95b9633abc3dcfc384d9ddd8eb4876793059
|
F www/fileformat.tcl 900c95b9633abc3dcfc384d9ddd8eb4876793059
|
||||||
F www/formatchng.tcl 053ddb73646701353a5b1c9ca6274d5900739b45
|
F www/formatchng.tcl 053ddb73646701353a5b1c9ca6274d5900739b45
|
||||||
|
F www/fullscanb.gif f7c94cb227f060511f8909e10f570157263e9a25
|
||||||
|
F www/index-ex1-x-b.gif f9b1d85c3fa2435cf38b15970c7e3aa1edae23a3
|
||||||
F www/index.tcl 853525c11fb519dac801bcbbe0488c447e526e7b
|
F www/index.tcl 853525c11fb519dac801bcbbe0488c447e526e7b
|
||||||
|
F www/indirect1b1.gif adfca361d2df59e34f9c5cac52a670c2bfc303a1
|
||||||
F www/lang.tcl 422b21b899f6d84dd3fdd2d4b204061b6912efd2
|
F www/lang.tcl 422b21b899f6d84dd3fdd2d4b204061b6912efd2
|
||||||
F www/lockingv3.tcl f59b19d6c8920a931f096699d6faaf61c05db55f
|
F www/lockingv3.tcl f59b19d6c8920a931f096699d6faaf61c05db55f
|
||||||
F www/mingw.tcl d96b451568c5d28545fefe0c80bee3431c73f69c
|
F www/mingw.tcl d96b451568c5d28545fefe0c80bee3431c73f69c
|
||||||
@ -289,17 +293,19 @@ F www/nulls.tcl ec35193f92485b87b90a994a01d0171b58823fcf
|
|||||||
F www/oldnews.tcl 1a808d86882621557774bf7741ed81c7f4ef9f19
|
F www/oldnews.tcl 1a808d86882621557774bf7741ed81c7f4ef9f19
|
||||||
F www/omitted.tcl f1e57977299c3ed54fbae55e4b5ea6a64de39e19
|
F www/omitted.tcl f1e57977299c3ed54fbae55e4b5ea6a64de39e19
|
||||||
F www/opcode.tcl 5bd68059416b223515a680d410a9f7cb6736485f
|
F www/opcode.tcl 5bd68059416b223515a680d410a9f7cb6736485f
|
||||||
|
F www/optimizer.tcl d6812a10269bd0d7c488987aac0ad5036cace9dc
|
||||||
F www/optimizing.tcl f0b2538988d1bbad16cbfe63ec6e8f48c9eb04e5
|
F www/optimizing.tcl f0b2538988d1bbad16cbfe63ec6e8f48c9eb04e5
|
||||||
F www/pragma.tcl 44f7b665ca598ad24724f35991653638a36a6e3f
|
F www/pragma.tcl 44f7b665ca598ad24724f35991653638a36a6e3f
|
||||||
F www/quickstart.tcl 6f6f694b6139be2d967b1492eb9a6bdf7058aa60
|
F www/quickstart.tcl 6f6f694b6139be2d967b1492eb9a6bdf7058aa60
|
||||||
F www/speed.tcl 656ed5be8cc9d536353e1a96927b925634a62933
|
F www/speed.tcl 656ed5be8cc9d536353e1a96927b925634a62933
|
||||||
F www/sqlite.tcl b51fd15f0531a54874de785a9efba323eecd5975
|
F www/sqlite.tcl b51fd15f0531a54874de785a9efba323eecd5975
|
||||||
F www/support.tcl 3955da0fd82be68cc5c83d347c05095e80967051
|
F www/support.tcl 3955da0fd82be68cc5c83d347c05095e80967051
|
||||||
|
F www/table-ex1b2.gif a588d21a2d88bb2a2ef0431fcc5ed5aa48c0bbc5
|
||||||
F www/tclsqlite.tcl 3df553505b6efcad08f91e9b975deb2e6c9bb955
|
F www/tclsqlite.tcl 3df553505b6efcad08f91e9b975deb2e6c9bb955
|
||||||
F www/vdbe.tcl 87a31ace769f20d3627a64fa1fade7fed47b90d0
|
F www/vdbe.tcl 87a31ace769f20d3627a64fa1fade7fed47b90d0
|
||||||
F www/version3.tcl a99cf5f6d8bd4d5537584a2b342f0fb9fa601d8b
|
F www/version3.tcl a99cf5f6d8bd4d5537584a2b342f0fb9fa601d8b
|
||||||
F www/whentouse.tcl 97e2b5cd296f7d8057e11f44427dea8a4c2db513
|
F www/whentouse.tcl 97e2b5cd296f7d8057e11f44427dea8a4c2db513
|
||||||
P 0f7a53f78d9dd5c426be834f2d50a6fe4e860141
|
P 528df777e5d76077d8766f04ee222fd64d9373a6
|
||||||
R f1bc0e4a2c4ceb3e245064f15c4dbe8a
|
R 8ad712df9db8cfcf34688500c6dc35e9
|
||||||
U drh
|
U drh
|
||||||
Z 6881c22eb7e94b960094ada2d2c618e3
|
Z 9fa61a38e2d65d933c87842c6fb4f4c0
|
||||||
|
@ -1 +1 @@
|
|||||||
528df777e5d76077d8766f04ee222fd64d9373a6
|
5cebd7ba3ccbdd0f4c8fe77091992f52d3a4b24c
|
BIN
www/direct1b.gif
Normal file
BIN
www/direct1b.gif
Normal file
Binary file not shown.
After Width: | Height: | Size: 11 KiB |
BIN
www/fullscanb.gif
Normal file
BIN
www/fullscanb.gif
Normal file
Binary file not shown.
After Width: | Height: | Size: 12 KiB |
BIN
www/index-ex1-x-b.gif
Normal file
BIN
www/index-ex1-x-b.gif
Normal file
Binary file not shown.
After Width: | Height: | Size: 23 KiB |
BIN
www/indirect1b1.gif
Normal file
BIN
www/indirect1b1.gif
Normal file
Binary file not shown.
After Width: | Height: | Size: 18 KiB |
265
www/optimizer.tcl
Normal file
265
www/optimizer.tcl
Normal file
@ -0,0 +1,265 @@
|
|||||||
|
#
|
||||||
|
# Run this TCL script to generate HTML for the goals.html file.
|
||||||
|
#
|
||||||
|
set rcsid {$Id: optimizer.tcl,v 1.1 2005/08/30 22:44:06 drh Exp $}
|
||||||
|
source common.tcl
|
||||||
|
header {The SQLite Query Optimizer}
|
||||||
|
|
||||||
|
proc CODE {text} {
|
||||||
|
puts "<blockquote><pre>"
|
||||||
|
puts $text
|
||||||
|
puts "</pre></blockquote>"
|
||||||
|
}
|
||||||
|
proc IMAGE {name {caption {}}} {
|
||||||
|
puts "<center><img src=\"$name\">"
|
||||||
|
if {$caption!=""} {
|
||||||
|
puts "<br>$caption"
|
||||||
|
}
|
||||||
|
puts "</center>"
|
||||||
|
}
|
||||||
|
proc PARAGRAPH {text} {
|
||||||
|
puts "<p>$text</p>\n"
|
||||||
|
}
|
||||||
|
proc HEADING {level name} {
|
||||||
|
puts "<h$level>$name</h$level>"
|
||||||
|
}
|
||||||
|
|
||||||
|
HEADING 1 {The SQLite Query Optimizer}
|
||||||
|
|
||||||
|
PARAGRAPH {
|
||||||
|
This article describes how the SQLite query optimizer works.
|
||||||
|
This is not something you have to know in order to use SQLite - many
|
||||||
|
programmers use SQLite successfully without the slightest hint of what
|
||||||
|
goes on in the inside.
|
||||||
|
But a basic understanding of what SQLite is doing
|
||||||
|
behind the scenes will help you to write more efficient SQL. And the
|
||||||
|
knowledge gained by studying the SQLite query optimizer has broad
|
||||||
|
application since most other relational database engines operate
|
||||||
|
similarly.
|
||||||
|
A solid understanding of how the query optimizer works is also
|
||||||
|
required before making meaningful changes or additions to the SQLite, so
|
||||||
|
this article should be read closely by anyone aspiring
|
||||||
|
to hack the source code.
|
||||||
|
}
|
||||||
|
|
||||||
|
HEADING 2 Background
|
||||||
|
|
||||||
|
PARAGRAPH {
|
||||||
|
It is important to understand that SQL is a programming language.
|
||||||
|
SQL is a perculiar programming language in that it
|
||||||
|
describes <u>what</u> the programmer wants to compute not <u>how</u>
|
||||||
|
to compute it as most other programming languages do.
|
||||||
|
But perculiar or not, SQL is still just a programming language.
|
||||||
|
}
|
||||||
|
|
||||||
|
PARAGRAPH {
|
||||||
|
It is very helpful to think of each SQL statement as a separate
|
||||||
|
program.
|
||||||
|
An important job of the SQL database engine is to translate each
|
||||||
|
SQL statement from its descriptive form that specifies what the
|
||||||
|
information is desired (the <u>what</u>)
|
||||||
|
into a procedural form that specifies how to go
|
||||||
|
about acquiring the desired information (the <u>how</u>).
|
||||||
|
The task of translating the <u>what</u> into a
|
||||||
|
<u>how</u> is assigned to the query optimizer.
|
||||||
|
}
|
||||||
|
|
||||||
|
PARAGRAPH {
|
||||||
|
The beauty of SQL comes from the fact that the optimizer frees the programmer
|
||||||
|
from having to worry over the details of <u>how</u>. The programmer
|
||||||
|
only has to specify the <u>what</u> and then leave the optimizer
|
||||||
|
to deal with all of the minutae of implementing the
|
||||||
|
<u>how</u>. Thus the programmer is able to think and work at a
|
||||||
|
much higher level and leave the optimizer to stress over the low-level
|
||||||
|
work.
|
||||||
|
}
|
||||||
|
|
||||||
|
HEADING 2 {Database Layout}
|
||||||
|
|
||||||
|
PARAGRAPH {
|
||||||
|
An SQLite database consists of one or more "b-trees".
|
||||||
|
Each b-tree contains zero or more "rows".
|
||||||
|
A single row contains a "key" and some "data".
|
||||||
|
In general, both the key and the data are arbitrary binary
|
||||||
|
data of any length.
|
||||||
|
The keys must all be unique within a single b-tree.
|
||||||
|
Rows are stored in order of increasing key values - each
|
||||||
|
b-tree has a comparision functions for keys that determines
|
||||||
|
this order.
|
||||||
|
}
|
||||||
|
|
||||||
|
PARAGRAPH {
|
||||||
|
In SQLite, each SQL table is stored as a b-tree where the
|
||||||
|
key is a 64-bit integer and the data is the content of the
|
||||||
|
table row. The 64-bit integer key is the ROWID. And, of course,
|
||||||
|
if the table has an INTEGER PRIMARY KEY, then that integer is just
|
||||||
|
an alias for the ROWID.
|
||||||
|
}
|
||||||
|
|
||||||
|
PARAGRAPH {
|
||||||
|
Consider the following block of SQL code:
|
||||||
|
}
|
||||||
|
|
||||||
|
CODE {
|
||||||
|
CREATE TABLE ex1(
|
||||||
|
id INTEGER PRIMARY KEY,
|
||||||
|
x VARCHAR(30),
|
||||||
|
y INTEGER
|
||||||
|
);
|
||||||
|
INSERT INTO ex1 VALUES(NULL,'abc',12345);
|
||||||
|
INSERT INTO ex1 VALUES(NULL,456,'def');
|
||||||
|
INSERT INTO ex1 VALUES(100,'hello','world');
|
||||||
|
INSERT INTO ex1 VALUES(-5,'abc','xyz');
|
||||||
|
INSERT INTO ex1 VALUES(54321,NULL,987);
|
||||||
|
}
|
||||||
|
|
||||||
|
PARAGRAPH {
|
||||||
|
This code generates a new b-tree (named "ex1") containing 5 rows.
|
||||||
|
This table can be visualized as follows:
|
||||||
|
}
|
||||||
|
IMAGE table-ex1b2.gif
|
||||||
|
|
||||||
|
PARAGRAPH {
|
||||||
|
Note that the key for each row if the b-tree is the INTEGER PRIMARY KEY
|
||||||
|
for that row. (Remember that the INTEGER PRIMARY KEY is just an alias
|
||||||
|
for the ROWID.) The other fields of the table form the data for each
|
||||||
|
entry in the b-tree. Note also that the b-tree entries are in ROWID order
|
||||||
|
which is different from the order that they were originally inserted.
|
||||||
|
}
|
||||||
|
|
||||||
|
PARAGRAPH {
|
||||||
|
Now consider the following SQL query:
|
||||||
|
}
|
||||||
|
CODE {
|
||||||
|
SELECT y FROM ex1 WHERE x=456;
|
||||||
|
}
|
||||||
|
|
||||||
|
PARAGRAPH {
|
||||||
|
When the SQLite parser and query optimizer are handed this query, they
|
||||||
|
have to translate it into a procedure that will find the desired result.
|
||||||
|
In this case, they do what is call a "full table scan". They start
|
||||||
|
at the beginning of the b-tree that contains the table and visit each
|
||||||
|
row. Within each row, the value of the "x" column is tested and when it
|
||||||
|
is found to match 456, the value of the "y" column is output.
|
||||||
|
We can represent this procedure graphically as follows:
|
||||||
|
}
|
||||||
|
IMAGE fullscanb.gif
|
||||||
|
|
||||||
|
PARAGRAPH {
|
||||||
|
A full table scan is the access method of last resort. It will always
|
||||||
|
work. But if the table contains millions of rows and you are only looking
|
||||||
|
a single one, it might take a very long time to find the particular row
|
||||||
|
you are interested in.
|
||||||
|
In particular, the time needed to access a single row of the table is
|
||||||
|
proportional to the total number of rows in the table.
|
||||||
|
So a big part of the job of the optimizer is to try to find ways to
|
||||||
|
satisfy the query without doing a full table scan.
|
||||||
|
}
|
||||||
|
PARAGRAPH {
|
||||||
|
The usual way to avoid doing a full table scan is use a binary search
|
||||||
|
to find the particular row or rows of interest in the table.
|
||||||
|
Consider the next query which searches on rowid instead of x:
|
||||||
|
}
|
||||||
|
CODE {
|
||||||
|
SELECT y FROM ex1 WHERE rowid=2;
|
||||||
|
}
|
||||||
|
|
||||||
|
PARAGRAPH {
|
||||||
|
In the previous query, we could not use a binary search for x because
|
||||||
|
the values of x were not ordered. But the rowid values are ordered.
|
||||||
|
So instead of having to visit every row of the b-tree looking for one
|
||||||
|
that has a rowid value of 2, we can do a binary search for that particular
|
||||||
|
row and output its corresponding y value. We show this graphically
|
||||||
|
as follows:
|
||||||
|
}
|
||||||
|
IMAGE direct1b.gif
|
||||||
|
|
||||||
|
PARAGRAPH {
|
||||||
|
When doing a binary search, we only have to look at a number of
|
||||||
|
rows with is proportional to the logorithm of the number of entries
|
||||||
|
in the table. For a table with just 5 entires as in the example above,
|
||||||
|
the difference between a full table scan and a binary search is
|
||||||
|
negligible. In fact, the full table scan might be faster. But in
|
||||||
|
a database that has 5 million rows, a binary search will be able to
|
||||||
|
find the desired row in only about 23 tries, whereas the full table
|
||||||
|
scan will need to look at all 5 million rows. So the binary search
|
||||||
|
is about 200,000 times faster in that case.
|
||||||
|
}
|
||||||
|
PARAGRAPH {
|
||||||
|
A 200,000-fold speed improvement is huge. So we always want to do
|
||||||
|
a binary search rather than a full table scan when we can.
|
||||||
|
}
|
||||||
|
PARAGRAPH {
|
||||||
|
The problem with a binary search is that the it only works if the
|
||||||
|
fields you are search for are in sorted order. So we can do a binary
|
||||||
|
search when looking up the rowid because the rows of the table are
|
||||||
|
sorted by rowid. But we cannot use a binary search when looking up
|
||||||
|
x because the values in the x column are in no particular order.
|
||||||
|
}
|
||||||
|
PARAGRAPH {
|
||||||
|
The way to work around this problem and to permit binary searching on
|
||||||
|
fields like x is to provide an index.
|
||||||
|
An index is another b-tree.
|
||||||
|
But in the index b-tree the key is not the rowid but rather the field
|
||||||
|
or fields being indexed followed by the rowid.
|
||||||
|
The data in an index b-tree is empty - it is not needed or used.
|
||||||
|
The following diagram shows an index on the x field of our example table:
|
||||||
|
}
|
||||||
|
IMAGE index-ex1-x-b.gif
|
||||||
|
|
||||||
|
PARAGRAPH {
|
||||||
|
An important point to note in the index are that they keys of the
|
||||||
|
b-tree are in sorted order. (Recall that NULL values in SQLite sort
|
||||||
|
first, followed by numeric values in numerical order, then strings, and
|
||||||
|
finally BLOBs.) This is the property that will allow use to do a
|
||||||
|
binary search for the field x. The rowid is also included in every
|
||||||
|
key for two reasons. First, by including the rowid we guarantee that
|
||||||
|
every key will be unique. And second, the rowid will be used to look
|
||||||
|
up the actual table entry after doing the binary search. Finally, note
|
||||||
|
that the data portion of the index b-tree serves no purpose and is thus
|
||||||
|
kept empty to save space in the disk file.
|
||||||
|
}
|
||||||
|
PARAGRAPH {
|
||||||
|
Remember what the original query example looked like:
|
||||||
|
}
|
||||||
|
CODE {
|
||||||
|
SELECT y FROM ex1 WHERE x=456;
|
||||||
|
}
|
||||||
|
|
||||||
|
PARAGRAPH {
|
||||||
|
The first time this query was encountered we had to do a full table
|
||||||
|
scan. But now that we have an index on x, we can do a binary search
|
||||||
|
on that index for the entry where x==456. Then from that entry we
|
||||||
|
can find the rowid value and use the rowid to look up the corresponding
|
||||||
|
entry in the original table. From the entry in the original table,
|
||||||
|
we can find the value y and return it as our result. The following
|
||||||
|
diagram shows this process graphically:
|
||||||
|
}
|
||||||
|
IMAGE indirect1b1.gif
|
||||||
|
|
||||||
|
PARAGRAPH {
|
||||||
|
With the index, we are able to look up an entry based on the value of
|
||||||
|
x after visiting only a logorithmic number of b-tree entries. Unlike
|
||||||
|
the case where we were searching using rowid, we have to do two binary
|
||||||
|
searches for each output row. But for a 5-million row table, that is
|
||||||
|
still only 46 searches instead of 5 million for a 100,000-fold speedup.
|
||||||
|
}
|
||||||
|
|
||||||
|
HEADING 3 {Parsing The WHERE Clause}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# parsing the where clause
|
||||||
|
# rowid lookup
|
||||||
|
# index lookup
|
||||||
|
# index lookup without the table
|
||||||
|
# how an index is chosen
|
||||||
|
# joins
|
||||||
|
# join reordering
|
||||||
|
# order by using an index
|
||||||
|
# group by using an index
|
||||||
|
# OR -> IN optimization
|
||||||
|
# Bitmap indices
|
||||||
|
# LIKE and GLOB optimization
|
||||||
|
# subquery flattening
|
||||||
|
# MIN and MAX optimizations
|
BIN
www/table-ex1b2.gif
Normal file
BIN
www/table-ex1b2.gif
Normal file
Binary file not shown.
After Width: | Height: | Size: 11 KiB |
Reference in New Issue
Block a user