1
0
mirror of https://github.com/sqlite/sqlite.git synced 2025-11-02 05:54:29 +03:00

Merge all recent enhancements from trunk.

FossilOrigin-Name: f3f9200115caf4b356f90ec97c351d1afbcb9bf6
This commit is contained in:
drh
2016-02-02 02:22:30 +00:00
79 changed files with 3330 additions and 1132 deletions

View File

@@ -172,7 +172,7 @@ int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
i = p->nOp;
assert( p->magic==VDBE_MAGIC_INIT );
assert( op>0 && op<0xff );
assert( op>=0 && op<0xff );
if( p->pParse->nOpAlloc<=i ){
return growOp3(p, op, p1, p2, p3);
}
@@ -535,7 +535,7 @@ static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
u8 opcode = pOp->opcode;
/* NOTE: Be sure to update mkopcodeh.awk when adding or removing
/* NOTE: Be sure to update mkopcodeh.tcl when adding or removing
** cases from this switch! */
switch( opcode ){
case OP_Transaction: {
@@ -1118,28 +1118,27 @@ static int displayComment(
** Translate the P4.pExpr value for an OP_CursorHint opcode into text
** that can be displayed in the P4 column of EXPLAIN output.
*/
static int displayP4Expr(int nTemp, char *zTemp, Expr *pExpr){
static void displayP4Expr(StrAccum *p, Expr *pExpr){
const char *zOp = 0;
int n;
switch( pExpr->op ){
case TK_STRING:
sqlite3_snprintf(nTemp, zTemp, "%Q", pExpr->u.zToken);
sqlite3XPrintf(p, "%Q", pExpr->u.zToken);
break;
case TK_INTEGER:
sqlite3_snprintf(nTemp, zTemp, "%d", pExpr->u.iValue);
sqlite3XPrintf(p, "%d", pExpr->u.iValue);
break;
case TK_NULL:
sqlite3_snprintf(nTemp, zTemp, "NULL");
sqlite3XPrintf(p, "NULL");
break;
case TK_REGISTER: {
sqlite3_snprintf(nTemp, zTemp, "r[%d]", pExpr->iTable);
sqlite3XPrintf(p, "r[%d]", pExpr->iTable);
break;
}
case TK_COLUMN: {
if( pExpr->iColumn<0 ){
sqlite3_snprintf(nTemp, zTemp, "rowid");
sqlite3XPrintf(p, "rowid");
}else{
sqlite3_snprintf(nTemp, zTemp, "c%d", (int)pExpr->iColumn);
sqlite3XPrintf(p, "c%d", (int)pExpr->iColumn);
}
break;
}
@@ -1171,21 +1170,19 @@ static int displayP4Expr(int nTemp, char *zTemp, Expr *pExpr){
case TK_NOTNULL: zOp = "NOTNULL"; break;
default:
sqlite3_snprintf(nTemp, zTemp, "%s", "expr");
sqlite3XPrintf(p, "%s", "expr");
break;
}
if( zOp ){
sqlite3_snprintf(nTemp, zTemp, "%s(", zOp);
n = sqlite3Strlen30(zTemp);
n += displayP4Expr(nTemp-n, zTemp+n, pExpr->pLeft);
if( n<nTemp-1 && pExpr->pRight ){
zTemp[n++] = ',';
n += displayP4Expr(nTemp-n, zTemp+n, pExpr->pRight);
sqlite3XPrintf(p, "%s(", zOp);
displayP4Expr(p, pExpr->pLeft);
if( pExpr->pRight ){
sqlite3StrAccumAppend(p, ",", 1);
displayP4Expr(p, pExpr->pRight);
}
sqlite3_snprintf(nTemp-n, zTemp+n, ")");
sqlite3StrAccumAppend(p, ")", 1);
}
return sqlite3Strlen30(zTemp);
}
#endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */
@@ -1197,72 +1194,57 @@ static int displayP4Expr(int nTemp, char *zTemp, Expr *pExpr){
*/
static char *displayP4(Op *pOp, char *zTemp, int nTemp){
char *zP4 = zTemp;
StrAccum x;
assert( nTemp>=20 );
sqlite3StrAccumInit(&x, 0, zTemp, nTemp, 0);
switch( pOp->p4type ){
case P4_KEYINFO: {
int i, j;
int j;
KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
assert( pKeyInfo->aSortOrder!=0 );
sqlite3_snprintf(nTemp, zTemp, "k(%d", pKeyInfo->nField);
i = sqlite3Strlen30(zTemp);
sqlite3XPrintf(&x, "k(%d", pKeyInfo->nField);
for(j=0; j<pKeyInfo->nField; j++){
CollSeq *pColl = pKeyInfo->aColl[j];
const char *zColl = pColl ? pColl->zName : "nil";
int n = sqlite3Strlen30(zColl);
if( n==6 && memcmp(zColl,"BINARY",6)==0 ){
zColl = "B";
n = 1;
}
if( i+n>nTemp-7 ){
memcpy(&zTemp[i],",...",4);
i += 4;
break;
}
zTemp[i++] = ',';
if( pKeyInfo->aSortOrder[j] ){
zTemp[i++] = '-';
}
memcpy(&zTemp[i], zColl, n+1);
i += n;
const char *zColl = pColl ? pColl->zName : "";
if( strcmp(zColl, "BINARY")==0 ) zColl = "B";
sqlite3XPrintf(&x, ",%s%s", pKeyInfo->aSortOrder[j] ? "-" : "", zColl);
}
zTemp[i++] = ')';
zTemp[i] = 0;
assert( i<nTemp );
sqlite3StrAccumAppend(&x, ")", 1);
break;
}
#ifdef SQLITE_ENABLE_CURSOR_HINTS
case P4_EXPR: {
displayP4Expr(nTemp, zTemp, pOp->p4.pExpr);
displayP4Expr(&x, pOp->p4.pExpr);
break;
}
#endif
case P4_COLLSEQ: {
CollSeq *pColl = pOp->p4.pColl;
sqlite3_snprintf(nTemp, zTemp, "(%.20s)", pColl->zName);
sqlite3XPrintf(&x, "(%.20s)", pColl->zName);
break;
}
case P4_FUNCDEF: {
FuncDef *pDef = pOp->p4.pFunc;
sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg);
sqlite3XPrintf(&x, "%s(%d)", pDef->zName, pDef->nArg);
break;
}
#ifdef SQLITE_DEBUG
case P4_FUNCCTX: {
FuncDef *pDef = pOp->p4.pCtx->pFunc;
sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg);
sqlite3XPrintf(&x, "%s(%d)", pDef->zName, pDef->nArg);
break;
}
#endif
case P4_INT64: {
sqlite3_snprintf(nTemp, zTemp, "%lld", *pOp->p4.pI64);
sqlite3XPrintf(&x, "%lld", *pOp->p4.pI64);
break;
}
case P4_INT32: {
sqlite3_snprintf(nTemp, zTemp, "%d", pOp->p4.i);
sqlite3XPrintf(&x, "%d", pOp->p4.i);
break;
}
case P4_REAL: {
sqlite3_snprintf(nTemp, zTemp, "%.16g", *pOp->p4.pReal);
sqlite3XPrintf(&x, "%.16g", *pOp->p4.pReal);
break;
}
case P4_MEM: {
@@ -1270,11 +1252,11 @@ static char *displayP4(Op *pOp, char *zTemp, int nTemp){
if( pMem->flags & MEM_Str ){
zP4 = pMem->z;
}else if( pMem->flags & MEM_Int ){
sqlite3_snprintf(nTemp, zTemp, "%lld", pMem->u.i);
sqlite3XPrintf(&x, "%lld", pMem->u.i);
}else if( pMem->flags & MEM_Real ){
sqlite3_snprintf(nTemp, zTemp, "%.16g", pMem->u.r);
sqlite3XPrintf(&x, "%.16g", pMem->u.r);
}else if( pMem->flags & MEM_Null ){
sqlite3_snprintf(nTemp, zTemp, "NULL");
zP4 = "NULL";
}else{
assert( pMem->flags & MEM_Blob );
zP4 = "(blob)";
@@ -1284,16 +1266,24 @@ static char *displayP4(Op *pOp, char *zTemp, int nTemp){
#ifndef SQLITE_OMIT_VIRTUALTABLE
case P4_VTAB: {
sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab;
sqlite3_snprintf(nTemp, zTemp, "vtab:%p", pVtab);
sqlite3XPrintf(&x, "vtab:%p", pVtab);
break;
}
#endif
case P4_INTARRAY: {
sqlite3_snprintf(nTemp, zTemp, "intarray");
int i;
int *ai = pOp->p4.ai;
int n = ai[0]; /* The first element of an INTARRAY is always the
** count of the number of elements to follow */
for(i=1; i<n; i++){
sqlite3XPrintf(&x, ",%d", ai[i]);
}
zTemp[0] = '[';
sqlite3StrAccumAppend(&x, "]", 1);
break;
}
case P4_SUBPROGRAM: {
sqlite3_snprintf(nTemp, zTemp, "program");
sqlite3XPrintf(&x, "program");
break;
}
case P4_ADVANCE: {
@@ -1308,6 +1298,7 @@ static char *displayP4(Op *pOp, char *zTemp, int nTemp){
}
}
}
sqlite3StrAccumFinish(&x);
assert( zP4!=0 );
return zP4;
}
@@ -1722,41 +1713,43 @@ void sqlite3VdbeIOTraceSql(Vdbe *p){
}
#endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
/*
** Allocate space from a fixed size buffer and return a pointer to
** that space. If insufficient space is available, return NULL.
/* An instance of this object describes bulk memory available for use
** by subcomponents of a prepared statement. Space is allocated out
** of a ReusableSpace object by the allocSpace() routine below.
*/
struct ReusableSpace {
u8 *pSpace; /* Available memory */
int nFree; /* Bytes of available memory */
int nNeeded; /* Total bytes that could not be allocated */
};
/* Try to allocate nByte bytes of 8-byte aligned bulk memory for pBuf
** from the ReusableSpace object. Return a pointer to the allocated
** memory on success. If insufficient memory is available in the
** ReusableSpace object, increase the ReusableSpace.nNeeded
** value by the amount needed and return NULL.
**
** The pBuf parameter is the initial value of a pointer which will
** receive the new memory. pBuf is normally NULL. If pBuf is not
** NULL, it means that memory space has already been allocated and that
** this routine should not allocate any new memory. When pBuf is not
** NULL simply return pBuf. Only allocate new memory space when pBuf
** is NULL.
** If pBuf is not initially NULL, that means that the memory has already
** been allocated by a prior call to this routine, so just return a copy
** of pBuf and leave ReusableSpace unchanged.
**
** nByte is the number of bytes of space needed.
**
** pFrom points to *pnFrom bytes of available space. New space is allocated
** from the end of the pFrom buffer and *pnFrom is decremented.
**
** *pnNeeded is a counter of the number of bytes of space that have failed
** to allocate. If there is insufficient space in pFrom to satisfy the
** request, then increment *pnNeeded by the amount of the request.
** This allocator is employed to repurpose unused slots at the end of the
** opcode array of prepared state for other memory needs of the prepared
** statement.
*/
static void *allocSpace(
void *pBuf, /* Where return pointer will be stored */
int nByte, /* Number of bytes to allocate */
u8 *pFrom, /* Memory available for allocation */
int *pnFrom, /* IN/OUT: Space available at pFrom */
int *pnNeeded /* If allocation cannot be made, increment *pnByte */
struct ReusableSpace *p, /* Bulk memory available for allocation */
void *pBuf, /* Pointer to a prior allocation */
int nByte /* Bytes of memory needed */
){
assert( EIGHT_BYTE_ALIGNMENT(pFrom) );
assert( EIGHT_BYTE_ALIGNMENT(p->pSpace) );
if( pBuf==0 ){
nByte = ROUND8(nByte);
if( nByte <= *pnFrom ){
*pnFrom -= nByte;
pBuf = &pFrom[*pnFrom];
if( nByte <= p->nFree ){
p->nFree -= nByte;
pBuf = &p->pSpace[p->nFree];
}else{
*pnNeeded += nByte;
p->nNeeded += nByte;
}
}
assert( EIGHT_BYTE_ALIGNMENT(pBuf) );
@@ -1789,7 +1782,6 @@ void sqlite3VdbeRewind(Vdbe *p){
p->pc = -1;
p->rc = SQLITE_OK;
p->errorAction = OE_Abort;
p->magic = VDBE_MAGIC_RUN;
p->nChange = 0;
p->cacheCtr = 1;
p->minWriteFileFormat = 255;
@@ -1832,9 +1824,7 @@ void sqlite3VdbeMakeReady(
int nArg; /* Number of arguments in subprograms */
int nOnce; /* Number of OP_Once instructions */
int n; /* Loop counter */
int nFree; /* Available free space */
u8 *zCsr; /* Memory available for allocation */
int nByte; /* How much extra memory is needed */
struct ReusableSpace x; /* Reusable bulk memory */
assert( p!=0 );
assert( p->nOp>0 );
@@ -1852,7 +1842,7 @@ void sqlite3VdbeMakeReady(
/* For each cursor required, also allocate a memory cell. Memory
** cells (nMem+1-nCursor)..nMem, inclusive, will never be used by
** the vdbe program. Instead they are used to allocate space for
** the vdbe program. Instead they are used to allocate memory for
** VdbeCursor/BtCursor structures. The blob of memory associated with
** cursor 0 is stored in memory cell nMem. Memory cell (nMem-1)
** stores the blob of memory associated with cursor 1, etc.
@@ -1861,20 +1851,18 @@ void sqlite3VdbeMakeReady(
*/
nMem += nCursor;
/* zCsr will initially point to nFree bytes of unused space at the
** end of the opcode array, p->aOp. The computation of nFree is
** conservative - it might be smaller than the true number of free
** bytes, but never larger. nFree must be a multiple of 8 - it is
** rounded down if is not.
/* Figure out how much reusable memory is available at the end of the
** opcode array. This extra memory will be reallocated for other elements
** of the prepared statement.
*/
n = ROUND8(sizeof(Op)*p->nOp); /* Bytes of opcode space used */
zCsr = &((u8*)p->aOp)[n]; /* Unused opcode space */
assert( EIGHT_BYTE_ALIGNMENT(zCsr) );
nFree = ROUNDDOWN8(pParse->szOpAlloc - n); /* Bytes of unused space */
assert( nFree>=0 );
if( nFree>0 ){
memset(zCsr, 0, nFree);
assert( EIGHT_BYTE_ALIGNMENT(&zCsr[nFree]) );
n = ROUND8(sizeof(Op)*p->nOp); /* Bytes of opcode memory used */
x.pSpace = &((u8*)p->aOp)[n]; /* Unused opcode memory */
assert( EIGHT_BYTE_ALIGNMENT(x.pSpace) );
x.nFree = ROUNDDOWN8(pParse->szOpAlloc - n); /* Bytes of unused memory */
assert( x.nFree>=0 );
if( x.nFree>0 ){
memset(x.pSpace, 0, x.nFree);
assert( EIGHT_BYTE_ALIGNMENT(&x.pSpace[x.nFree]) );
}
resolveP2Values(p, &nArg);
@@ -1884,33 +1872,30 @@ void sqlite3VdbeMakeReady(
}
p->expired = 0;
/* Memory for registers, parameters, cursor, etc, is allocated in two
** passes. On the first pass, we try to reuse unused space at the
/* Memory for registers, parameters, cursor, etc, is allocated in one or two
** passes. On the first pass, we try to reuse unused memory at the
** end of the opcode array. If we are unable to satisfy all memory
** requirements by reusing the opcode array tail, then the second
** pass will fill in the rest using a fresh allocation.
** pass will fill in the remainder using a fresh memory allocation.
**
** This two-pass approach that reuses as much memory as possible from
** the leftover space at the end of the opcode array can significantly
** the leftover memory at the end of the opcode array. This can significantly
** reduce the amount of memory held by a prepared statement.
*/
do {
nByte = 0;
p->aMem = allocSpace(p->aMem, nMem*sizeof(Mem), zCsr, &nFree, &nByte);
p->aVar = allocSpace(p->aVar, nVar*sizeof(Mem), zCsr, &nFree, &nByte);
p->apArg = allocSpace(p->apArg, nArg*sizeof(Mem*), zCsr, &nFree, &nByte);
p->apCsr = allocSpace(p->apCsr, nCursor*sizeof(VdbeCursor*),
zCsr, &nFree, &nByte);
p->aOnceFlag = allocSpace(p->aOnceFlag, nOnce, zCsr, &nFree, &nByte);
x.nNeeded = 0;
p->aMem = allocSpace(&x, p->aMem, nMem*sizeof(Mem));
p->aVar = allocSpace(&x, p->aVar, nVar*sizeof(Mem));
p->apArg = allocSpace(&x, p->apArg, nArg*sizeof(Mem*));
p->apCsr = allocSpace(&x, p->apCsr, nCursor*sizeof(VdbeCursor*));
p->aOnceFlag = allocSpace(&x, p->aOnceFlag, nOnce);
#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
p->anExec = allocSpace(p->anExec, p->nOp*sizeof(i64), zCsr, &nFree, &nByte);
p->anExec = allocSpace(&x, p->anExec, p->nOp*sizeof(i64));
#endif
if( nByte ){
p->pFree = sqlite3DbMallocZero(db, nByte);
}
zCsr = p->pFree;
nFree = nByte;
}while( nByte && !db->mallocFailed );
if( x.nNeeded==0 ) break;
x.pSpace = p->pFree = sqlite3DbMallocZero(db, x.nNeeded);
x.nFree = x.nNeeded;
}while( !db->mallocFailed );
p->nCursor = nCursor;
p->nOnceFlag = nOnce;
@@ -3015,9 +3000,16 @@ int sqlite3VdbeCursorRestore(VdbeCursor *p){
** If the cursor is already pointing to the correct row and that row has
** not been deleted out from under the cursor, then this routine is a no-op.
*/
int sqlite3VdbeCursorMoveto(VdbeCursor *p){
int sqlite3VdbeCursorMoveto(VdbeCursor **pp, int *piCol){
VdbeCursor *p = *pp;
if( p->eCurType==CURTYPE_BTREE ){
if( p->deferredMoveto ){
int iMap;
if( p->aAltMap && (iMap = p->aAltMap[1+*piCol])>0 ){
*pp = p->pAltCursor;
*piCol = iMap - 1;
return SQLITE_OK;
}
return handleDeferredMoveto(p);
}
if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){