1
0
mirror of https://github.com/sqlite/sqlite.git synced 2025-10-31 18:11:01 +03:00

The power-of-two first-fit memory allocator is now working. (CVS 4793)

FossilOrigin-Name: d134d29cea971eb01a0e0fd94341ab79e2d5b57a
This commit is contained in:
drh
2008-02-16 16:21:45 +00:00
parent 66ce4d02fe
commit 2d7636e212
7 changed files with 231 additions and 413 deletions

View File

@@ -20,7 +20,7 @@
** This version of the memory allocation subsystem is used if
** and only if SQLITE_POW2_MEMORY_SIZE is defined.
**
** $Id: mem5.c,v 1.1 2008/02/14 23:26:56 drh Exp $
** $Id: mem5.c,v 1.2 2008/02/16 16:21:46 drh Exp $
*/
#include "sqliteInt.h"
@@ -31,62 +31,60 @@
#ifdef SQLITE_POW2_MEMORY_SIZE
/*
** Maximum size (in Mem3Blocks) of a "small" chunk.
** Log2 of the minimum size of an allocation. For example, if
** 4 then all allocations will be rounded up to at least 16 bytes.
** If 5 then all allocations will be rounded up to at least 32 bytes.
*/
#define MX_SMALL 10
#ifndef SQLITE_POW2_LOGMIN
# define SQLITE_POW2_LOGMIN 6
#endif
#define POW2_MIN (1<<SQLITE_POW2_LOGMIN)
/*
** Number of freelist hash slots
** Log2 of the maximum size of an allocation.
*/
#define N_HASH 61
#ifndef SQLITE_POW2_LOGMAX
# define SQLITE_POW2_LOGMAX 18
#endif
#define POW2_MAX (((unsigned int)1)<<SQLITE_POW2_LOGMAX)
/*
** A memory allocation (also called a "chunk") consists of two or
** more blocks where each block is 8 bytes. The first 8 bytes are
** a header that is not returned to the user.
**
** A chunk is two or more blocks that is either checked out or
** free. The first block has format u.hdr. u.hdr.size4x is 4 times the
** size of the allocation in blocks if the allocation is free.
** The u.hdr.size4x&1 bit is true if the chunk is checked out and
** false if the chunk is on the freelist. The u.hdr.size4x&2 bit
** is true if the previous chunk is checked out and false if the
** previous chunk is free. The u.hdr.prevSize field is the size of
** the previous chunk in blocks if the previous chunk is on the
** freelist. If the previous chunk is checked out, then
** u.hdr.prevSize can be part of the data for that chunk and should
** not be read or written.
**
** We often identify a chunk by its index in mem.aPool[]. When
** this is done, the chunk index refers to the second block of
** the chunk. In this way, the first chunk has an index of 1.
** A chunk index of 0 means "no such chunk" and is the equivalent
** of a NULL pointer.
**
** The second block of free chunks is of the form u.list. The
** two fields form a double-linked list of chunks of related sizes.
** Pointers to the head of the list are stored in mem.aiSmall[]
** for smaller chunks and mem.aiHash[] for larger chunks.
**
** The second block of a chunk is user data if the chunk is checked
** out. If a chunk is checked out, the user data may extend into
** the u.hdr.prevSize value of the following chunk.
** Number of distinct allocation sizes.
*/
typedef struct Mem3Block Mem3Block;
struct Mem3Block {
#define NSIZE (SQLITE_POW2_LOGMAX - SQLITE_POW2_LOGMIN + 1)
/*
** A minimum allocation is an instance of the following structure.
** Larger allocations are an array of these structures where the
** size of the array is a power of 2.
*/
typedef struct Mem5Block Mem5Block;
struct Mem5Block {
union {
char aData[POW2_MIN];
struct {
u32 prevSize; /* Size of previous chunk in Mem3Block elements */
u32 size4x; /* 4x the size of current chunk in Mem3Block elements */
} hdr;
struct {
u32 next; /* Index in mem.aPool[] of next free chunk */
u32 prev; /* Index in mem.aPool[] of previous free chunk */
int next; /* Index in mem.aPool[] of next free chunk */
int prev; /* Index in mem.aPool[] of previous free chunk */
} list;
} u;
};
/*
** Number of blocks of memory available for allocation.
*/
#define NBLOCK (SQLITE_POW2_MEMORY_SIZE/POW2_MIN)
/*
** The size in blocks of an POW2_MAX allocation
*/
#define SZ_MAX (1<<(NSIZE-1))
/*
** Masks used for mem.aCtrl[] elements.
*/
#define CTRL_LOGSIZE 0x1f /* Log2 Size of this block relative to POW2_MIN */
#define CTRL_FREE 0x20 /* True if not checked out */
/*
** All of the static variables used by this module are collected
** into a single structure named "mem". This is to keep the
@@ -103,112 +101,77 @@ static struct {
** Mutex to control access to the memory allocation subsystem.
*/
sqlite3_mutex *mutex;
/*
** Performance statistics
*/
u64 nAlloc; /* Total number of calls to malloc */
u64 totalAlloc; /* Total of all malloc calls - includes internal frag */
u64 totalExcess; /* Total internal fragmentation */
u32 currentOut; /* Current checkout, including internal fragmentation */
u32 currentCount; /* Current number of distinct checkouts */
u32 maxOut; /* Maximum instantaneous currentOut */
u32 maxCount; /* Maximum instantaneous currentCount */
u32 maxRequest; /* Largest allocation (exclusive of internal frag) */
/*
** The minimum amount of free space that we have seen.
** Lists of free blocks of various sizes.
*/
u32 mnMaster;
int aiFreelist[NSIZE];
/*
** iMaster is the index of the master chunk. Most new allocations
** occur off of this chunk. szMaster is the size (in Mem3Blocks)
** of the current master. iMaster is 0 if there is not master chunk.
** The master chunk is not in either the aiHash[] or aiSmall[].
** Space for tracking which blocks are checked out and the size
** of each block. One byte per block.
*/
u32 iMaster;
u32 szMaster;
u64 totalAlloc;
u64 totalExcess;
int nAlloc;
/*
** Array of lists of free blocks according to the block size
** for smaller chunks, or a hash on the block size for larger
** chunks.
*/
u32 aiSmall[MX_SMALL-1]; /* For sizes 2 through MX_SMALL, inclusive */
u32 aiHash[N_HASH]; /* For sizes MX_SMALL+1 and larger */
u8 aCtrl[NBLOCK];
/*
** Memory available for allocation
*/
Mem3Block aPool[SQLITE_POW2_MEMORY_SIZE/sizeof(Mem3Block)+2];
Mem5Block aPool[NBLOCK];
} mem;
/*
** Unlink the chunk at mem.aPool[i] from list it is currently
** on. *pRoot is the list that i is a member of.
** on. It should be found on mem.aiFreelist[iLogsize].
*/
static void memsys3UnlinkFromList(u32 i, u32 *pRoot){
u32 next = mem.aPool[i].u.list.next;
u32 prev = mem.aPool[i].u.list.prev;
static void memsys5Unlink(int i, int iLogsize){
int next, prev;
assert( i>=0 && i<NBLOCK );
assert( iLogsize>=0 && iLogsize<NSIZE );
assert( (mem.aCtrl[i] & CTRL_LOGSIZE)==iLogsize );
assert( sqlite3_mutex_held(mem.mutex) );
if( prev==0 ){
*pRoot = next;
next = mem.aPool[i].u.list.next;
prev = mem.aPool[i].u.list.prev;
if( prev<0 ){
mem.aiFreelist[iLogsize] = next;
}else{
mem.aPool[prev].u.list.next = next;
}
if( next ){
if( next>=0 ){
mem.aPool[next].u.list.prev = prev;
}
mem.aPool[i].u.list.next = 0;
mem.aPool[i].u.list.prev = 0;
}
/*
** Unlink the chunk at index i from
** whatever list is currently a member of.
** Link the chunk at mem.aPool[i] so that is on the iLogsize
** free list.
*/
static void memsys3Unlink(u32 i){
u32 size, hash;
static void memsys5Link(int i, int iLogsize){
int x;
assert( sqlite3_mutex_held(mem.mutex) );
assert( (mem.aPool[i-1].u.hdr.size4x & 1)==0 );
assert( i>=1 );
size = mem.aPool[i-1].u.hdr.size4x/4;
assert( size==mem.aPool[i+size-1].u.hdr.prevSize );
assert( size>=2 );
if( size <= MX_SMALL ){
memsys3UnlinkFromList(i, &mem.aiSmall[size-2]);
}else{
hash = size % N_HASH;
memsys3UnlinkFromList(i, &mem.aiHash[hash]);
}
}
assert( i>=0 && i<NBLOCK );
assert( iLogsize>=0 && iLogsize<NSIZE );
assert( (mem.aCtrl[i] & CTRL_LOGSIZE)==iLogsize );
/*
** Link the chunk at mem.aPool[i] so that is on the list rooted
** at *pRoot.
*/
static void memsys3LinkIntoList(u32 i, u32 *pRoot){
assert( sqlite3_mutex_held(mem.mutex) );
mem.aPool[i].u.list.next = *pRoot;
mem.aPool[i].u.list.prev = 0;
if( *pRoot ){
mem.aPool[*pRoot].u.list.prev = i;
}
*pRoot = i;
}
/*
** Link the chunk at index i into either the appropriate
** small chunk list, or into the large chunk hash table.
*/
static void memsys3Link(u32 i){
u32 size, hash;
assert( sqlite3_mutex_held(mem.mutex) );
assert( i>=1 );
assert( (mem.aPool[i-1].u.hdr.size4x & 1)==0 );
size = mem.aPool[i-1].u.hdr.size4x/4;
assert( size==mem.aPool[i+size-1].u.hdr.prevSize );
assert( size>=2 );
if( size <= MX_SMALL ){
memsys3LinkIntoList(i, &mem.aiSmall[size-2]);
}else{
hash = size % N_HASH;
memsys3LinkIntoList(i, &mem.aiHash[hash]);
mem.aPool[i].u.list.next = x = mem.aiFreelist[iLogsize];
mem.aPool[i].u.list.prev = -1;
if( x>=0 ){
assert( x<NBLOCK );
mem.aPool[x].u.list.prev = i;
}
mem.aiFreelist[iLogsize] = i;
}
/*
@@ -217,28 +180,29 @@ static void memsys3Link(u32 i){
** Also: Initialize the memory allocation subsystem the first time
** this routine is called.
*/
static void memsys3Enter(void){
static void memsys5Enter(void){
if( mem.mutex==0 ){
int i;
assert( sizeof(Mem5Block)==POW2_MIN );
assert( (SQLITE_POW2_MEMORY_SIZE % POW2_MAX)==0 );
assert( SQLITE_POW2_MEMORY_SIZE>=POW2_MAX );
mem.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM);
mem.aPool[0].u.hdr.size4x = SQLITE_POW2_MEMORY_SIZE/2 + 2;
mem.aPool[SQLITE_POW2_MEMORY_SIZE/8].u.hdr.prevSize = SQLITE_POW2_MEMORY_SIZE/8;
mem.aPool[SQLITE_POW2_MEMORY_SIZE/8].u.hdr.size4x = 1;
mem.iMaster = 1;
mem.szMaster = SQLITE_POW2_MEMORY_SIZE/8;
mem.mnMaster = mem.szMaster;
sqlite3_mutex_enter(mem.mutex);
for(i=0; i<NSIZE; i++) mem.aiFreelist[i] = -1;
for(i=0; i<=NBLOCK-SZ_MAX; i += SZ_MAX){
mem.aCtrl[i] = (NSIZE-1) | CTRL_FREE;
memsys5Link(i, NSIZE-1);
}
}else{
sqlite3_mutex_enter(mem.mutex);
}
sqlite3_mutex_enter(mem.mutex);
}
/*
** Return the amount of memory currently checked out.
*/
sqlite3_int64 sqlite3_memory_used(void){
sqlite3_int64 n;
memsys3Enter();
n = SQLITE_POW2_MEMORY_SIZE - mem.szMaster*8;
sqlite3_mutex_leave(mem.mutex);
return n;
return mem.currentOut;
}
/*
@@ -248,13 +212,11 @@ sqlite3_int64 sqlite3_memory_used(void){
*/
sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
sqlite3_int64 n;
memsys3Enter();
n = SQLITE_POW2_MEMORY_SIZE - mem.mnMaster*8;
memsys5Enter();
n = mem.maxOut;
if( resetFlag ){
mem.mnMaster = mem.szMaster;
mem.maxOut = mem.currentOut;
}
printf("alloc-cnt=%d avg-size=%lld avg-excess=%lld\n",
mem.nAlloc, mem.totalAlloc/mem.nAlloc, mem.totalExcess/mem.nAlloc);
sqlite3_mutex_leave(mem.mutex);
return n;
}
@@ -278,7 +240,7 @@ int sqlite3_memory_alarm(
/*
** Called when we are unable to satisfy an allocation of nBytes.
*/
static void memsys3OutOfMemory(int nByte){
static void memsys5OutOfMemory(int nByte){
if( !mem.alarmBusy ){
mem.alarmBusy = 1;
assert( sqlite3_mutex_held(mem.mutex) );
@@ -297,232 +259,118 @@ static void memsys3OutOfMemory(int nByte){
int sqlite3MallocSize(void *p){
int iSize = 0;
if( p ){
Mem3Block *pBlock = (Mem3Block*)p;
assert( (pBlock[-1].u.hdr.size4x&1)!=0 );
iSize = (pBlock[-1].u.hdr.size4x&~3)*2 - 4;
int i = ((Mem5Block*)p) - mem.aPool;
assert( i>=0 && i<NBLOCK );
iSize = 1 << ((mem.aCtrl[i]&CTRL_LOGSIZE) + SQLITE_POW2_LOGMIN);
}
return iSize;
}
/*
** Chunk i is a free chunk that has been unlinked. Adjust its
** size parameters for check-out and return a pointer to the
** user portion of the chunk.
** Find the first entry on the freelist iLogsize. Unlink that
** entry and return its index.
*/
static void *memsys3Checkout(u32 i, int nBlock){
u32 x;
assert( sqlite3_mutex_held(mem.mutex) );
assert( i>=1 );
assert( mem.aPool[i-1].u.hdr.size4x/4==nBlock );
assert( mem.aPool[i+nBlock-1].u.hdr.prevSize==nBlock );
x = mem.aPool[i-1].u.hdr.size4x;
mem.aPool[i-1].u.hdr.size4x = nBlock*4 | 1 | (x&2);
mem.aPool[i+nBlock-1].u.hdr.prevSize = nBlock;
mem.aPool[i+nBlock-1].u.hdr.size4x |= 2;
return &mem.aPool[i];
}
static int memsys5UnlinkFirst(int iLogsize){
int i;
int iFirst;
/*
** Carve a piece off of the end of the mem.iMaster free chunk.
** Return a pointer to the new allocation. Or, if the master chunk
** is not large enough, return 0.
*/
static void *memsys3FromMaster(int nBlock){
assert( sqlite3_mutex_held(mem.mutex) );
assert( mem.szMaster>=nBlock );
if( nBlock>=mem.szMaster-1 ){
/* Use the entire master */
void *p = memsys3Checkout(mem.iMaster, mem.szMaster);
mem.iMaster = 0;
mem.szMaster = 0;
mem.mnMaster = 0;
return p;
}else{
/* Split the master block. Return the tail. */
u32 newi, x;
newi = mem.iMaster + mem.szMaster - nBlock;
assert( newi > mem.iMaster+1 );
mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.prevSize = nBlock;
mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.size4x |= 2;
mem.aPool[newi-1].u.hdr.size4x = nBlock*4 + 1;
mem.szMaster -= nBlock;
mem.aPool[newi-1].u.hdr.prevSize = mem.szMaster;
x = mem.aPool[mem.iMaster-1].u.hdr.size4x & 2;
mem.aPool[mem.iMaster-1].u.hdr.size4x = mem.szMaster*4 | x;
if( mem.szMaster < mem.mnMaster ){
mem.mnMaster = mem.szMaster;
}
return (void*)&mem.aPool[newi];
}
}
/*
** *pRoot is the head of a list of free chunks of the same size
** or same size hash. In other words, *pRoot is an entry in either
** mem.aiSmall[] or mem.aiHash[].
**
** This routine examines all entries on the given list and tries
** to coalesce each entries with adjacent free chunks.
**
** If it sees a chunk that is larger than mem.iMaster, it replaces
** the current mem.iMaster with the new larger chunk. In order for
** this mem.iMaster replacement to work, the master chunk must be
** linked into the hash tables. That is not the normal state of
** affairs, of course. The calling routine must link the master
** chunk before invoking this routine, then must unlink the (possibly
** changed) master chunk once this routine has finished.
*/
static void memsys3Merge(u32 *pRoot){
u32 iNext, prev, size, i, x;
assert( sqlite3_mutex_held(mem.mutex) );
for(i=*pRoot; i>0; i=iNext){
iNext = mem.aPool[i].u.list.next;
size = mem.aPool[i-1].u.hdr.size4x;
assert( (size&1)==0 );
if( (size&2)==0 ){
memsys3UnlinkFromList(i, pRoot);
assert( i > mem.aPool[i-1].u.hdr.prevSize );
prev = i - mem.aPool[i-1].u.hdr.prevSize;
if( prev==iNext ){
iNext = mem.aPool[prev].u.list.next;
}
memsys3Unlink(prev);
size = i + size/4 - prev;
x = mem.aPool[prev-1].u.hdr.size4x & 2;
mem.aPool[prev-1].u.hdr.size4x = size*4 | x;
mem.aPool[prev+size-1].u.hdr.prevSize = size;
memsys3Link(prev);
i = prev;
}else{
size /= 4;
}
if( size>mem.szMaster ){
mem.iMaster = i;
mem.szMaster = size;
}
assert( iLogsize>=0 && iLogsize<NSIZE );
i = iFirst = mem.aiFreelist[iLogsize];
assert( iFirst>=0 );
while( i>0 ){
if( i<iFirst ) iFirst = i;
i = mem.aPool[i].u.list.next;
}
memsys5Unlink(iFirst, iLogsize);
return iFirst;
}
/*
** Return a block of memory of at least nBytes in size.
** Return NULL if unable.
*/
static void *memsys3Malloc(int nByte){
u32 i;
int nBlock;
int toFree;
int x;
static void *memsys5Malloc(int nByte){
int i; /* Index of a mem.aPool[] slot */
int iBin; /* Index into mem.aiFreelist[] */
int iFullSz; /* Size of allocation rounded up to power of 2 */
int iLogsize; /* Log2 of iFullSz/POW2_MIN */
assert( sqlite3_mutex_held(mem.mutex) );
assert( sizeof(Mem3Block)==8 );
for(x=256; x<nByte; x *= 2){}
mem.nAlloc++;
mem.totalAlloc += x;
mem.totalExcess += x - nByte;
nByte = x;
nBlock = (nByte + 11)/8;
assert( nBlock >= 2 );
if( nByte>mem.maxRequest ) mem.maxRequest = nByte;
if( nByte>POW2_MAX ) return 0;
for(iFullSz=POW2_MIN, iLogsize=0; iFullSz<nByte; iFullSz *= 2, iLogsize++){}
/* STEP 1:
** Look for an entry of the correct size in either the small
** chunk table or in the large chunk hash table. This is
** successful most of the time (about 9 times out of 10).
*/
if( nBlock <= MX_SMALL ){
i = mem.aiSmall[nBlock-2];
if( i>0 ){
memsys3UnlinkFromList(i, &mem.aiSmall[nBlock-2]);
return memsys3Checkout(i, nBlock);
}
}else{
int hash = nBlock % N_HASH;
for(i=mem.aiHash[hash]; i>0; i=mem.aPool[i].u.list.next){
if( mem.aPool[i-1].u.hdr.size4x/4==nBlock ){
memsys3UnlinkFromList(i, &mem.aiHash[hash]);
return memsys3Checkout(i, nBlock);
}
}
for(iBin=iLogsize; mem.aiFreelist[iBin]<0 && iBin<NSIZE; iBin++){}
if( iBin>=NSIZE ) return 0;
i = memsys5UnlinkFirst(iBin);
while( iBin>iLogsize ){
int newSize;
iBin--;
newSize = 1 << iBin;
mem.aCtrl[i+newSize] = CTRL_FREE | iBin;
memsys5Link(i+newSize, iBin);
}
mem.aCtrl[i] = iLogsize;
/* STEP 2:
** Try to satisfy the allocation by carving a piece off of the end
** of the master chunk. This step usually works if step 1 fails.
*/
if( mem.szMaster>=nBlock ){
return memsys3FromMaster(nBlock);
}
mem.nAlloc++;
mem.totalAlloc += iFullSz;
mem.totalExcess += iFullSz - nByte;
mem.currentCount++;
mem.currentOut += iFullSz;
if( mem.maxCount<mem.currentCount ) mem.maxCount = mem.currentCount;
if( mem.maxOut<mem.currentOut ) mem.maxOut = mem.currentOut;
/* STEP 3:
** Loop through the entire memory pool. Coalesce adjacent free
** chunks. Recompute the master chunk as the largest free chunk.
** Then try again to satisfy the allocation by carving a piece off
** of the end of the master chunk. This step happens very
** rarely (we hope!)
*/
for(toFree=nBlock*16; toFree<SQLITE_POW2_MEMORY_SIZE*2; toFree *= 2){
memsys3OutOfMemory(toFree);
if( mem.iMaster ){
memsys3Link(mem.iMaster);
mem.iMaster = 0;
mem.szMaster = 0;
}
for(i=0; i<N_HASH; i++){
memsys3Merge(&mem.aiHash[i]);
}
for(i=0; i<MX_SMALL-1; i++){
memsys3Merge(&mem.aiSmall[i]);
}
if( mem.szMaster ){
memsys3Unlink(mem.iMaster);
if( mem.szMaster>=nBlock ){
return memsys3FromMaster(nBlock);
}
}
}
/* If none of the above worked, then we fail. */
return 0;
return (void*)&mem.aPool[i];
}
/*
** Free an outstanding memory allocation.
*/
void memsys3Free(void *pOld){
Mem3Block *p = (Mem3Block*)pOld;
void memsys5Free(void *pOld){
u32 size, iLogsize;
int i;
u32 size, x;
assert( sqlite3_mutex_held(mem.mutex) );
assert( p>mem.aPool && p<&mem.aPool[SQLITE_POW2_MEMORY_SIZE/8] );
i = p - mem.aPool;
assert( (mem.aPool[i-1].u.hdr.size4x&1)==1 );
size = mem.aPool[i-1].u.hdr.size4x/4;
assert( i+size<=SQLITE_POW2_MEMORY_SIZE/8+1 );
mem.aPool[i-1].u.hdr.size4x &= ~1;
mem.aPool[i+size-1].u.hdr.prevSize = size;
mem.aPool[i+size-1].u.hdr.size4x &= ~2;
memsys3Link(i);
/* Try to expand the master using the newly freed chunk */
if( mem.iMaster ){
while( (mem.aPool[mem.iMaster-1].u.hdr.size4x&2)==0 ){
size = mem.aPool[mem.iMaster-1].u.hdr.prevSize;
mem.iMaster -= size;
mem.szMaster += size;
memsys3Unlink(mem.iMaster);
x = mem.aPool[mem.iMaster-1].u.hdr.size4x & 2;
mem.aPool[mem.iMaster-1].u.hdr.size4x = mem.szMaster*4 | x;
mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.prevSize = mem.szMaster;
i = ((Mem5Block*)pOld) - mem.aPool;
assert( sqlite3_mutex_held(mem.mutex) );
assert( i>=0 && i<NBLOCK );
assert( (mem.aCtrl[i] & CTRL_FREE)==0 );
iLogsize = mem.aCtrl[i] & CTRL_LOGSIZE;
size = 1<<iLogsize;
assert( i+size-1<NBLOCK );
mem.aCtrl[i] |= CTRL_FREE;
mem.aCtrl[i+size-1] |= CTRL_FREE;
assert( mem.currentCount>0 );
assert( mem.currentOut>=0 );
mem.currentCount--;
mem.currentOut -= size*POW2_MIN;
assert( mem.currentOut>0 || mem.currentCount==0 );
assert( mem.currentCount>0 || mem.currentOut==0 );
mem.aCtrl[i] = CTRL_FREE | iLogsize;
while( iLogsize<NSIZE-1 ){
int iBuddy;
if( (i>>iLogsize) & 1 ){
iBuddy = i - size;
}else{
iBuddy = i + size;
}
x = mem.aPool[mem.iMaster-1].u.hdr.size4x & 2;
while( (mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.size4x&1)==0 ){
memsys3Unlink(mem.iMaster+mem.szMaster);
mem.szMaster += mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.size4x/4;
mem.aPool[mem.iMaster-1].u.hdr.size4x = mem.szMaster*4 | x;
mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.prevSize = mem.szMaster;
assert( iBuddy>=0 && iBuddy<NBLOCK );
if( mem.aCtrl[iBuddy]!=(CTRL_FREE | iLogsize) ) break;
memsys5Unlink(iBuddy, iLogsize);
iLogsize++;
if( iBuddy<i ){
mem.aCtrl[iBuddy] = CTRL_FREE | iLogsize;
mem.aCtrl[i] = 0;
i = iBuddy;
}else{
mem.aCtrl[i] = CTRL_FREE | iLogsize;
mem.aCtrl[iBuddy] = 0;
}
size *= 2;
}
memsys5Link(i, iLogsize);
}
/*
@@ -531,8 +379,8 @@ void memsys3Free(void *pOld){
void *sqlite3_malloc(int nBytes){
sqlite3_int64 *p = 0;
if( nBytes>0 ){
memsys3Enter();
p = memsys3Malloc(nBytes);
memsys5Enter();
p = memsys5Malloc(nBytes);
sqlite3_mutex_leave(mem.mutex);
}
return (void*)p;
@@ -547,7 +395,7 @@ void sqlite3_free(void *pPrior){
}
assert( mem.mutex!=0 );
sqlite3_mutex_enter(mem.mutex);
memsys3Free(pPrior);
memsys5Free(pPrior);
sqlite3_mutex_leave(mem.mutex);
}
@@ -566,18 +414,14 @@ void *sqlite3_realloc(void *pPrior, int nBytes){
}
assert( mem.mutex!=0 );
nOld = sqlite3MallocSize(pPrior);
if( nBytes<=nOld && nBytes>=nOld-128 ){
if( nBytes<=nOld ){
return pPrior;
}
sqlite3_mutex_enter(mem.mutex);
p = memsys3Malloc(nBytes);
p = memsys5Malloc(nBytes);
if( p ){
if( nOld<nBytes ){
memcpy(p, pPrior, nOld);
}else{
memcpy(p, pPrior, nBytes);
}
memsys3Free(pPrior);
memcpy(p, pPrior, nOld);
memsys5Free(pPrior);
}
sqlite3_mutex_leave(mem.mutex);
return p;
@@ -590,8 +434,8 @@ void *sqlite3_realloc(void *pPrior, int nBytes){
void sqlite3_memdebug_dump(const char *zFilename){
#ifdef SQLITE_DEBUG
FILE *out;
int i, j;
u32 size;
int i, j, n;
if( zFilename==0 || zFilename[0]==0 ){
out = stdout;
}else{
@@ -602,53 +446,19 @@ void sqlite3_memdebug_dump(const char *zFilename){
return;
}
}
memsys3Enter();
fprintf(out, "CHUNKS:\n");
for(i=1; i<=SQLITE_POW2_MEMORY_SIZE/8; i+=size/4){
size = mem.aPool[i-1].u.hdr.size4x;
if( size/4<=1 ){
fprintf(out, "%p size error\n", &mem.aPool[i]);
assert( 0 );
break;
}
if( (size&1)==0 && mem.aPool[i+size/4-1].u.hdr.prevSize!=size/4 ){
fprintf(out, "%p tail size does not match\n", &mem.aPool[i]);
assert( 0 );
break;
}
if( ((mem.aPool[i+size/4-1].u.hdr.size4x&2)>>1)!=(size&1) ){
fprintf(out, "%p tail checkout bit is incorrect\n", &mem.aPool[i]);
assert( 0 );
break;
}
if( size&1 ){
fprintf(out, "%p %6d bytes checked out\n", &mem.aPool[i], (size/4)*8-8);
}else{
fprintf(out, "%p %6d bytes free%s\n", &mem.aPool[i], (size/4)*8-8,
i==mem.iMaster ? " **master**" : "");
}
memsys5Enter();
for(i=0; i<NSIZE; i++){
for(n=0, j=mem.aiFreelist[i]; j>=0; j = mem.aPool[j].u.list.next, n++){}
fprintf(out, "freelist items of size %d: %d\n", POW2_MIN << i, n);
}
for(i=0; i<MX_SMALL-1; i++){
if( mem.aiSmall[i]==0 ) continue;
fprintf(out, "small(%2d):", i);
for(j = mem.aiSmall[i]; j>0; j=mem.aPool[j].u.list.next){
fprintf(out, " %p(%d)", &mem.aPool[j],
(mem.aPool[j-1].u.hdr.size4x/4)*8-8);
}
fprintf(out, "\n");
}
for(i=0; i<N_HASH; i++){
if( mem.aiHash[i]==0 ) continue;
fprintf(out, "hash(%2d):", i);
for(j = mem.aiHash[i]; j>0; j=mem.aPool[j].u.list.next){
fprintf(out, " %p(%d)", &mem.aPool[j],
(mem.aPool[j-1].u.hdr.size4x/4)*8-8);
}
fprintf(out, "\n");
}
fprintf(out, "master=%d\n", mem.iMaster);
fprintf(out, "nowUsed=%d\n", SQLITE_POW2_MEMORY_SIZE - mem.szMaster*8);
fprintf(out, "mxUsed=%d\n", SQLITE_POW2_MEMORY_SIZE - mem.mnMaster*8);
fprintf(out, "mem.nAlloc = %llu\n", mem.nAlloc);
fprintf(out, "mem.totalAlloc = %llu\n", mem.totalAlloc);
fprintf(out, "mem.totalExcess = %llu\n", mem.totalExcess);
fprintf(out, "mem.currentOut = %u\n", mem.currentOut);
fprintf(out, "mem.currentCount = %u\n", mem.currentCount);
fprintf(out, "mem.maxOut = %u\n", mem.maxOut);
fprintf(out, "mem.maxCount = %u\n", mem.maxCount);
fprintf(out, "mem.maxRequest = %u\n", mem.maxRequest);
sqlite3_mutex_leave(mem.mutex);
if( out==stdout ){
fflush(stdout);