1
0
mirror of https://github.com/sqlite/sqlite.git synced 2025-11-09 14:21:03 +03:00

Remove unnecessary #includes of "os.h". New mutex implementations. (CVS 4255)

FossilOrigin-Name: fbbd5bda544ffec4e1b43407b12e546235dc7873
This commit is contained in:
drh
2007-08-21 10:44:15 +00:00
parent a2451e2255
commit 29278e3dbb
39 changed files with 259 additions and 196 deletions

View File

@@ -12,21 +12,42 @@
** This file contains the C functions that implement mutexes for
** use by the SQLite core.
**
** $Id: mutex.c,v 1.5 2007/08/20 22:48:43 drh Exp $
** $Id: mutex.c,v 1.6 2007/08/21 10:44:16 drh Exp $
*/
/*
** If SQLITE_MUTEX_APPDEF is defined, then this whole module is
** omitted and equivalent functionality just be provided by the
** omitted and equivalent functionality must be provided by the
** application that links against the SQLite library.
*/
#ifndef SQLITE_MUTEX_APPDEF
/*
** The start of real code
/* This is the beginning of real code
*/
#include "sqliteInt.h"
/*
** Figure out what version of the code to use
*/
#define SQLITE_MUTEX_NOOP 1 /* The default */
#if 0
#if defined(SQLITE_DEBUG) && !SQLITE_THREADSAFE
# undef SQLITE_MUTEX_NOOP
# define SQLITE_MUTEX_NOOP_DEBUG
#endif
#if defined(SQLITE_MUTEX_NOOP) && SQLITE_THREADSAFE && OS_UNIX
# undef SQLITE_MUTEX_NOOP
# define SQLITE_MUTEX_PTHREAD
#endif
#if defined(SQLITE_MUTEX_NOOP) && SQLITE_THREADSAFE && OS_WIN
# undef SQLITE_MUTEX_NOOP
# define SQLITE_MUTEX_WIN
#endif
#endif
#ifdef SQLITE_MUTEX_NOOP
/************************ No-op Mutex Implementation **********************
**
** This first implementation of mutexes is really a no-op. In other words,
@@ -81,8 +102,112 @@ int sqlite3_mutex_held(sqlite3_mutex *pNotUsed){
int sqlite3_mutex_notheld(sqlite3_mutex *pNotUsed){
return 1;
}
#endif /* SQLITE_MUTEX_NOOP */
#if 0
#ifdef SQLITE_MUTEX_NOOP_DEBUG
/*************** Error-checking No-op Mutex Implementation *******************
**
** In this implementation, mutexes do not provide any mutual exclusion.
** But the error checking is provided. This implementation is useful
** for test purposes.
*/
/*
** The mutex object
*/
struct sqlite3_mutex {
int id;
int cnt;
};
/*
** The sqlite3_mutex_alloc() routine allocates a new
** mutex and returns a pointer to it. If it returns NULL
** that means that a mutex could not be allocated.
*/
sqlite3_mutex *sqlite3_mutex_alloc(int id){
static sqlite3_mutex aStatic[3];
sqlite3_mutex *pNew = 0;
switch( id ){
case SQLITE_MUTEX_FAST:
case SQLITE_MUTEX_RECURSIVE: {
pNew = sqlite3_malloc(sizeof(*pNew));
if( pNew ){
pNew->id = id;
pNew->cnt = 0;
}
break;
}
default: {
pNew = &aStatic[id-SQLITE_MUTEX_STATIC_MASTER];
pNew->id = id;
break;
}
}
return pNew;
}
/*
** This routine deallocates a previously allocated mutex.
*/
void sqlite3_mutex_free(sqlite3_mutex *p){
assert( p );
assert( p->cnt==0 );
assert( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE );
sqlite3_free(p);
}
/*
** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
** to enter a mutex. If another thread is already within the mutex,
** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
** SQLITE_BUSY. The sqlite3_mutex_try() interface returns SQLITE_OK
** upon successful entry. Mutexes created using SQLITE_MUTEX_RECURSIVE can
** be entered multiple times by the same thread. In such cases the,
** mutex must be exited an equal number of times before another thread
** can enter. If the same thread tries to enter any other kind of mutex
** more than once, the behavior is undefined.
*/
void sqlite3_mutex_enter(sqlite3_mutex *p){
assert( p );
assert( p->cnt==0 || p->id==SQLITE_MUTEX_RECURSIVE );
p->cnt++;
}
int sqlite3_mutex_try(sqlite3_mutex *p){
assert( p );
if( p->cnt>0 && p->id!=SQLITE_MUTEX_RECURSIVE ){
return SQLITE_BUSY;
}
p->cnt++;
return SQLITE_OK;
}
/*
** The sqlite3_mutex_leave() routine exits a mutex that was
** previously entered by the same thread. The behavior
** is undefined if the mutex is not currently entered or
** is not currently allocated. SQLite will never do either.
*/
void sqlite3_mutex_leave(sqlite3_mutex *p){
assert( p->cnt>0 );
p->cnt--;
}
/*
** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
** intended for use inside assert() statements.
*/
int sqlite3_mutex_held(sqlite3_mutex *p){
return p==0 || p->cnt>0;
}
int sqlite3_mutex_notheld(sqlite3_mutex *p){
return p==0 || p->cnt==0;
}
#endif /* SQLITE_MUTEX_NOOP_DEBUG */
#ifdef SQLITE_MUTEX_PTHREAD
/**************** Non-recursive Pthread Mutex Implementation *****************
**
** This implementation of mutexes is built using a version of pthreads that
@@ -92,41 +217,14 @@ int sqlite3_mutex_notheld(sqlite3_mutex *pNotUsed){
/*
** Each recursive mutex is an instance of the following structure.
*/
struct RMutex {
int recursiveMagic; /* Magic number identifying this as recursive */
int nRef; /* Number of entrances */
pthread_mutex_t auxMutex; /* Mutex controlling access to nRef and owner */
struct sqlite3_mutex {
pthread_mutex_t mainMutex; /* Mutex controlling the lock */
pthread_mutex_t auxMutex; /* Mutex controlling access to nRef and owner */
int id; /* Mutex type */
int nRef; /* Number of entrances */
pthread_t owner; /* Thread that is within this mutex */
};
/*
** Each fast mutex is an instance of the following structure
*/
struct FMutex {
int fastMagic; /* Identifies this as a fast mutex */
pthread_mutex_t mutex; /* The actual underlying mutex */
};
/*
** Either of the above
*/
union AnyMutex {
struct RMutex r;
struct FMutex f;
};
/*
** Magic numbers
*/
#define SQLITE_MTX_RECURSIVE 0x4ED886ED
#define SQLITE_MTX_STATIC 0x56FCE1B4
#define SQLITE_MTX_FAST 0x245BFD4F
/*
** Static mutexes
*/
/*
** The sqlite3_mutex_alloc() routine allocates a new
** mutex and returns a pointer to it. If it returns NULL
@@ -167,35 +265,34 @@ union AnyMutex {
** the same type number.
*/
sqlite3_mutex *sqlite3_mutex_alloc(int iType){
static struct FMutex staticMutexes[] = {
{ SQLITE_MTX_STATIC, PTHREAD_MUTEX_INITIALIZER },
{ SQLITE_MTX_STATIC, PTHREAD_MUTEX_INITIALIZER },
{ SQLITE_MTX_STATIC, PTHREAD_MUTEX_INITIALIZER },
static sqlite3_mutex staticMutexes[] = {
{ PTHREAD_MUTEX_INITIALIZER, },
{ PTHREAD_MUTEX_INITIALIZER, },
{ PTHREAD_MUTEX_INITIALIZER, },
};
sqlite3_mutex *p;
switch( iType ){
case SQLITE_MUTEX_FAST: {
struct FMutex *px = sqlite3_malloc( sizeof(*px) );
if( px ){
px->fastMagic = SQLITE_MTX_FAST;
pthread_mutex_init(&px->mutex, 0);
p = sqlite3MallocZero( sizeof(*p) );
if( p ){
p->id = iType;
pthread_mutex_init(&px->mainMutex, 0);
}
p = (sqlite3_mutex*)px;
break;
}
case SQLITE_MUTEX_RECURSIVE: {
struct RMutex *px = sqlite3_malloc( sizeof(*px) );
if( px ){
px->recursiveMagic = SQLITE_MTX_RECURSIVE;
p = sqlite3_malloc( sizeof(*p) );
if( p ){
px->id = iType;
pthread_mutex_init(&px->auxMutex, 0);
pthread_mutex_init(&px->mainMutex, 0);
px->nRef = 0;
}
p = (sqlite3_mutex*)px;
break;
}
default: {
p = &staticMutexes[iType-2];
p->id = iType;
break;
}
}
@@ -208,18 +305,17 @@ sqlite3_mutex *sqlite3_mutex_alloc(int iType){
** allocated mutex. SQLite is careful to deallocate every
** mutex that it allocates.
*/
void sqlite3_mutex_free(sqlite3_mutex *pMutex){
int iType = *(int*)pMutex;
if( iType==SQLITE_MTX_FAST ){
struct FMutex *p = (struct FMutex*)pMutex;
pthread_mutex_destroy(&p->mutex);
sqlite3_free(p);
}else if( iType==SQLITE_MTX_RECURSIVE ){
struct RMutex *p = (struct RMutex*)pMutex;
void sqlite3_mutex_free(sqlite3_mutex *p){
assert( p );
assert( p->nRef==0 );
if( p->id==SQLITE_MUTEX_FAST ){
pthread_mutex_destroy(&p->mainMutex);
}else{
assert( p->id==SQLITE_MUTEX_RECURSIVE );
pthread_mutex_destroy(&p->auxMutex);
pthread_mutex_destroy(&p->mainMutex);
sqlite3_free(p);
}
sqlite3_free(p);
}
/*
@@ -233,12 +329,8 @@ void sqlite3_mutex_free(sqlite3_mutex *pMutex){
** can enter. If the same thread tries to enter any other kind of mutex
** more than once, the behavior is undefined.
*/
void sqlite3_mutex_enter(sqlite3_mutex *pMutex){
if( SQLITE_MTX_FAST == *(int*)pMutex ){
struct FMutex *p = (struct FMutex*)pMutex;
pthread_mutex_lock(&p->mutex);
}else{
struct RMutex *p = (struct RMutex*)pMutex;
void sqlite3_mutex_enter(sqlite3_mutex *p){
if( p->id==SQLITE_MUTEX_RECURSIVE ){
while(1){
pthread_mutex_lock(&p->auxMutex);
if( p->nRef==0 ){
@@ -257,16 +349,15 @@ void sqlite3_mutex_enter(sqlite3_mutex *pMutex){
pthread_mutex_unlock(&p->mainMutex);
}
}
}else{
assert( p->nRef==0 || pthread_equal(p->owner, pthread_self())==0 );
pthread_mutex_lock(&p->mutex);
assert( (p->nRef = 1)!=0 );
assert( (p->owner = pthread_self())==pthread_self() );
}
}
int sqlite3_mutex_try(sqlite3_mutex *pMutex){
if( SQLITE_MTX_FAST == *(int*)pMutex ){
struct FMutex *p = (struct FMutex*)pMutex;
if( pthread_mutex_trylock(&p->mutex) ){
return SQLITE_BUSY;
}
}else{
struct RMutex *p = (struct RMutex*)pMutex;
int sqlite3_mutex_try(sqlite3_mutex *p){
if( p->id==SQLITE_MUTEX_RECURSIVE ){
pthread_mutex_lock(&p->auxMutex);
if( p->nRef==0 ){
p->nRef++;
@@ -280,28 +371,36 @@ int sqlite3_mutex_try(sqlite3_mutex *pMutex){
pthread_mutex_unlock(&p->auxMutex);
return SQLITE_BUSY;
}
}else{
assert( p->nRef==0 || pthread_equal(p->owner, pthread_self())==0 );
if( pthread_mutex_trylock(&p->mutex) ){
return SQLITE_BUSY;
}
}
return SQLITE_OK;
}
/*
** The sqlite3_mutex_exit() routine exits a mutex that was
** The sqlite3_mutex_leave() routine exits a mutex that was
** previously entered by the same thread. The behavior
** is undefined if the mutex is not currently entered or
** is not currently allocated. SQLite will never do either.
*/
void sqlite3_mutex_leave(sqlite3_mutex *pMutex){
if( SQLITE_MTX_FAST == *(int*)pMutex ){
struct FMutex *p = (struct FMutex*)pMutex;
pthread_mutex_unlock(&p->mutex);
}else{
struct RMutex *p = (struct RMutex*)pMutex;
if( p->id==SQLITE_MUTEX_RECURSIVE ){
pthread_mutex_lock(&p->auxMutex);
assert( p->nRef>0 );
assert( pthread_equal(p->owner, pthread_self()) );
p->nRef--;
if( p->nRef<=0 ){
pthread_mutex_unlock(&p->mainMutex);
}
pthread_mutex_unlock(&p->auxMutex);
}else{
assert( p->nRef==1 );
assert( pthread_equal(p->owner, pthread_self()) );
p->nRef = 0;
pthread_mutex_unlock(&p->mutex);
}
}
@@ -309,12 +408,14 @@ void sqlite3_mutex_leave(sqlite3_mutex *pMutex){
** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
** intended for use inside assert() statements.
*/
int sqlite3_mutex_held(sqlite3_mutex *pNotUsed){
return 1;
int sqlite3_mutex_held(sqlite3_mutex *p){
assert( p );
return p==0 || (p->nRef!=0 && pthread_equal(p->owner, pthread_self()));
}
int sqlite3_mutex_notheld(sqlite3_mutex *pNotUsed){
return 1;
assert( p );
return p==0 || p->nRef==0 || pthread_equal(p->owner, pthread_self())==0;
}
#endif /* non-recursive pthreads */
#endif /* SQLITE_MUTEX_PTHREAD */
#endif /* !defined(SQLITE_MUTEX_APPDEF) */