1
0
mirror of https://github.com/sqlite/sqlite.git synced 2025-08-08 14:02:16 +03:00

Merge in performance enhancements from trunk.

FossilOrigin-Name: fc9ae839569eb28eb734c52d95676c59b2e27494
This commit is contained in:
drh
2013-11-26 18:00:29 +00:00
54 changed files with 2328 additions and 1015 deletions

View File

@@ -222,9 +222,8 @@ static VdbeCursor *allocateCursor(
int nByte;
VdbeCursor *pCx = 0;
nByte =
ROUND8(sizeof(VdbeCursor)) +
(isBtreeCursor?sqlite3BtreeCursorSize():0) +
2*nField*sizeof(u32);
ROUND8(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField +
(isBtreeCursor?sqlite3BtreeCursorSize():0);
assert( iCur<p->nCursor );
if( p->apCsr[iCur] ){
@@ -236,12 +235,9 @@ static VdbeCursor *allocateCursor(
memset(pCx, 0, sizeof(VdbeCursor));
pCx->iDb = iDb;
pCx->nField = nField;
if( nField ){
pCx->aType = (u32 *)&pMem->z[ROUND8(sizeof(VdbeCursor))];
}
if( isBtreeCursor ){
pCx->pCursor = (BtCursor*)
&pMem->z[ROUND8(sizeof(VdbeCursor))+2*nField*sizeof(u32)];
&pMem->z[ROUND8(sizeof(VdbeCursor))+2*sizeof(u32)*nField];
sqlite3BtreeCursorZero(pCx->pCursor);
}
}
@@ -1095,15 +1091,15 @@ case OP_Move: {
int p1; /* Register to copy from */
int p2; /* Register to copy to */
n = pOp->p3 + 1;
n = pOp->p3;
p1 = pOp->p1;
p2 = pOp->p2;
assert( n>0 && p1>0 && p2>0 );
assert( n>=0 && p1>0 && p2>0 );
assert( p1+n<=p2 || p2+n<=p1 );
pIn1 = &aMem[p1];
pOut = &aMem[p2];
while( n-- ){
do{
assert( pOut<=&aMem[(p->nMem-p->nCursor)] );
assert( pIn1<=&aMem[(p->nMem-p->nCursor)] );
assert( memIsValid(pIn1) );
@@ -1120,7 +1116,7 @@ case OP_Move: {
REGISTER_TRACE(p2++, pOut);
pIn1++;
pOut++;
}
}while( n-- );
break;
}
@@ -1332,7 +1328,7 @@ case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */
** If either input is NULL, the result is NULL.
*/
/* Opcode: Divide P1 P2 P3 * *
** Synopsis: r[P3]=r[P1]/r[P2]
** Synopsis: r[P3]=r[P2]/r[P1]
**
** Divide the value in register P1 by the value in register P2
** and store the result in register P3 (P3=P2/P1). If the value in
@@ -1340,11 +1336,11 @@ case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */
** NULL, the result is NULL.
*/
/* Opcode: Remainder P1 P2 P3 * *
** Synopsis: r[P3]=r[P1]%r[P2]
** Synopsis: r[P3]=r[P2]%r[P1]
**
** Compute the remainder after integer division of the value in
** register P1 by the value in register P2 and store the result in P3.
** If the value in register P2 is zero the result is NULL.
** Compute the remainder after integer register P2 is divided by
** register P1 and store the result in register P3.
** If the value in register P1 is zero the result is NULL.
** If either operand is NULL, the result is NULL.
*/
case OP_Add: /* same as TK_PLUS, in1, in2, out3 */
@@ -1501,10 +1497,6 @@ case OP_Function: {
assert( pOp->p4type==P4_FUNCDEF );
ctx.pFunc = pOp->p4.pFunc;
ctx.s.flags = MEM_Null;
ctx.s.db = db;
ctx.s.xDel = 0;
ctx.s.zMalloc = 0;
ctx.iOp = pc;
ctx.pVdbe = p;
@@ -1512,7 +1504,10 @@ case OP_Function: {
** the pointer to ctx.s so in case the user-function can use
** the already allocated buffer instead of allocating a new one.
*/
sqlite3VdbeMemMove(&ctx.s, pOut);
memcpy(&ctx.s, pOut, sizeof(Mem));
pOut->flags = MEM_Null;
pOut->xDel = 0;
pOut->zMalloc = 0;
MemSetTypeFlag(&ctx.s, MEM_Null);
ctx.fErrorOrAux = 0;
@@ -1547,7 +1542,8 @@ case OP_Function: {
/* Copy the result of the function into register P3 */
sqlite3VdbeChangeEncoding(&ctx.s, encoding);
sqlite3VdbeMemMove(pOut, &ctx.s);
assert( pOut->flags==MEM_Null );
memcpy(pOut, &ctx.s, sizeof(Mem));
if( sqlite3VdbeMemTooBig(pOut) ){
goto too_big;
}
@@ -1672,17 +1668,19 @@ case OP_AddImm: { /* in1 */
*/
case OP_MustBeInt: { /* jump, in1 */
pIn1 = &aMem[pOp->p1];
applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
if( (pIn1->flags & MEM_Int)==0 ){
if( pOp->p2==0 ){
rc = SQLITE_MISMATCH;
goto abort_due_to_error;
}else{
pc = pOp->p2 - 1;
applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
if( (pIn1->flags & MEM_Int)==0 ){
if( pOp->p2==0 ){
rc = SQLITE_MISMATCH;
goto abort_due_to_error;
}else{
pc = pOp->p2 - 1;
break;
}
}
}else{
MemSetTypeFlag(pIn1, MEM_Int);
}
MemSetTypeFlag(pIn1, MEM_Int);
break;
}
@@ -1807,7 +1805,7 @@ case OP_ToReal: { /* same as TK_TO_REAL, in1 */
#endif /* !defined(SQLITE_OMIT_CAST) && !defined(SQLITE_OMIT_FLOATING_POINT) */
/* Opcode: Lt P1 P2 P3 P4 P5
** Synopsis: if r[P1]<r[P3] goto P3
** Synopsis: if r[P1]<r[P3] goto P2
**
** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then
** jump to address P2.
@@ -2261,151 +2259,103 @@ case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */
** skipped for length() and all content loading can be skipped for typeof().
*/
case OP_Column: {
u32 payloadSize; /* Number of bytes in the record */
i64 payloadSize64; /* Number of bytes in the record */
int p1; /* P1 value of the opcode */
int p2; /* column number to retrieve */
VdbeCursor *pC; /* The VDBE cursor */
char *zRec; /* Pointer to complete record-data */
BtCursor *pCrsr; /* The BTree cursor */
u32 *aType; /* aType[i] holds the numeric type of the i-th column */
u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */
int nField; /* number of fields in the record */
int len; /* The length of the serialized data for the column */
int i; /* Loop counter */
char *zData; /* Part of the record being decoded */
Mem *pDest; /* Where to write the extracted value */
Mem sMem; /* For storing the record being decoded */
u8 *zIdx; /* Index into header */
u8 *zEndHdr; /* Pointer to first byte after the header */
const u8 *zData; /* Part of the record being decoded */
const u8 *zHdr; /* Next unparsed byte of the header */
const u8 *zEndHdr; /* Pointer to first byte after the header */
u32 offset; /* Offset into the data */
u32 szField; /* Number of bytes in the content of a field */
int szHdr; /* Size of the header size field at start of record */
int avail; /* Number of bytes of available data */
u32 avail; /* Number of bytes of available data */
u32 t; /* A type code from the record header */
Mem *pReg; /* PseudoTable input register */
p1 = pOp->p1;
p2 = pOp->p2;
pC = 0;
memset(&sMem, 0, sizeof(sMem));
assert( p1<p->nCursor );
assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
pDest = &aMem[pOp->p3];
memAboutToChange(p, pDest);
zRec = 0;
/* This block sets the variable payloadSize to be the total number of
** bytes in the record.
**
** zRec is set to be the complete text of the record if it is available.
** The complete record text is always available for pseudo-tables
** If the record is stored in a cursor, the complete record text
** might be available in the pC->aRow cache. Or it might not be.
** If the data is unavailable, zRec is set to NULL.
**
** We also compute the number of columns in the record. For cursors,
** the number of columns is stored in the VdbeCursor.nField element.
*/
pC = p->apCsr[p1];
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
pC = p->apCsr[pOp->p1];
assert( pC!=0 );
assert( p2<pC->nField );
aType = pC->aType;
aOffset = aType + pC->nField;
#ifndef SQLITE_OMIT_VIRTUALTABLE
assert( pC->pVtabCursor==0 );
assert( pC->pVtabCursor==0 ); /* OP_Column never called on virtual table */
#endif
pCrsr = pC->pCursor;
if( pCrsr!=0 ){
/* The record is stored in a B-Tree */
rc = sqlite3VdbeCursorMoveto(pC);
if( rc ) goto abort_due_to_error;
assert( pCrsr!=0 || pC->pseudoTableReg>0 ); /* pCrsr NULL on PseudoTables */
assert( pCrsr!=0 || pC->nullRow ); /* pC->nullRow on PseudoTables */
/* If the cursor cache is stale, bring it up-to-date */
rc = sqlite3VdbeCursorMoveto(pC);
if( rc ) goto abort_due_to_error;
if( pC->cacheStatus!=p->cacheCtr || (pOp->p5&OPFLAG_CLEARCACHE)!=0 ){
if( pC->nullRow ){
payloadSize = 0;
}else if( pC->cacheStatus==p->cacheCtr ){
payloadSize = pC->payloadSize;
zRec = (char*)pC->aRow;
}else if( pC->isIndex ){
assert( sqlite3BtreeCursorIsValid(pCrsr) );
VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &payloadSize64);
assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */
/* sqlite3BtreeParseCellPtr() uses getVarint32() to extract the
** payload size, so it is impossible for payloadSize64 to be
** larger than 32 bits. */
assert( (payloadSize64 & SQLITE_MAX_U32)==(u64)payloadSize64 );
payloadSize = (u32)payloadSize64;
if( pCrsr==0 ){
assert( pC->pseudoTableReg>0 );
pReg = &aMem[pC->pseudoTableReg];
if( pC->multiPseudo ){
sqlite3VdbeMemShallowCopy(pDest, pReg+p2, MEM_Ephem);
Deephemeralize(pDest);
goto op_column_out;
}
assert( pReg->flags & MEM_Blob );
assert( memIsValid(pReg) );
pC->payloadSize = pC->szRow = avail = pReg->n;
pC->aRow = (u8*)pReg->z;
}else{
MemSetTypeFlag(pDest, MEM_Null);
goto op_column_out;
}
}else{
assert( sqlite3BtreeCursorIsValid(pCrsr) );
VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &payloadSize);
assert( rc==SQLITE_OK ); /* DataSize() cannot fail */
assert( pCrsr );
if( pC->isTable==0 ){
assert( sqlite3BtreeCursorIsValid(pCrsr) );
VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &payloadSize64);
assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */
/* sqlite3BtreeParseCellPtr() uses getVarint32() to extract the
** payload size, so it is impossible for payloadSize64 to be
** larger than 32 bits. */
assert( (payloadSize64 & SQLITE_MAX_U32)==(u64)payloadSize64 );
pC->aRow = sqlite3BtreeKeyFetch(pCrsr, &avail);
pC->payloadSize = (u32)payloadSize64;
}else{
assert( sqlite3BtreeCursorIsValid(pCrsr) );
VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &pC->payloadSize);
assert( rc==SQLITE_OK ); /* DataSize() cannot fail */
pC->aRow = sqlite3BtreeDataFetch(pCrsr, &avail);
}
assert( avail<=65536 ); /* Maximum page size is 64KiB */
if( pC->payloadSize <= (u32)avail ){
pC->szRow = pC->payloadSize;
}else{
pC->szRow = avail;
}
if( pC->payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
goto too_big;
}
}
}else{
assert( pC->pseudoTableReg>0 );
pReg = &aMem[pC->pseudoTableReg];
if( pC->multiPseudo ){
sqlite3VdbeMemShallowCopy(pDest, pReg+p2, MEM_Ephem);
Deephemeralize(pDest);
goto op_column_out;
}
assert( pReg->flags & MEM_Blob );
assert( memIsValid(pReg) );
payloadSize = pReg->n;
zRec = pReg->z;
pC->cacheStatus = (pOp->p5&OPFLAG_CLEARCACHE) ? CACHE_STALE : p->cacheCtr;
assert( payloadSize==0 || zRec!=0 );
}
/* If payloadSize is 0, then just store a NULL. This can happen because of
** nullRow or because of a corrupt database. */
if( payloadSize==0 ){
MemSetTypeFlag(pDest, MEM_Null);
goto op_column_out;
}
assert( db->aLimit[SQLITE_LIMIT_LENGTH]>=0 );
if( payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
goto too_big;
}
nField = pC->nField;
assert( p2<nField );
/* Read and parse the table header. Store the results of the parse
** into the record header cache fields of the cursor.
*/
aType = pC->aType;
if( pC->cacheStatus==p->cacheCtr ){
aOffset = pC->aOffset;
}else{
assert(aType);
avail = 0;
pC->aOffset = aOffset = &aType[nField];
pC->payloadSize = payloadSize;
pC->cacheStatus = p->cacheCtr;
/* Figure out how many bytes are in the header */
if( zRec ){
zData = zRec;
}else{
if( pC->isIndex ){
zData = (char*)sqlite3BtreeKeyFetch(pCrsr, &avail);
}else{
zData = (char*)sqlite3BtreeDataFetch(pCrsr, &avail);
}
/* If KeyFetch()/DataFetch() managed to get the entire payload,
** save the payload in the pC->aRow cache. That will save us from
** having to make additional calls to fetch the content portion of
** the record.
*/
assert( avail>=0 );
if( payloadSize <= (u32)avail ){
zRec = zData;
pC->aRow = (u8*)zData;
}else{
pC->aRow = 0;
}
pC->iHdrOffset = getVarint32(pC->aRow, offset);
pC->nHdrParsed = 0;
aOffset[0] = offset;
if( avail<offset ){
/* pC->aRow does not have to hold the entire row, but it does at least
** need to cover the header of the record. If pC->aRow does not contain
** the complete header, then set it to zero, forcing the header to be
** dynamically allocated. */
pC->aRow = 0;
pC->szRow = 0;
}
/* The following assert is true in all cases except when
** the database file has been corrupted externally.
** assert( zRec!=0 || avail>=payloadSize || avail>=9 ); */
szHdr = getVarint32((u8*)zData, offset);
/* Make sure a corrupt database has not given us an oversize header.
** Do this now to avoid an oversize memory allocation.
@@ -2416,155 +2366,148 @@ case OP_Column: {
** 3-byte type for each of the maximum of 32768 columns plus three
** extra bytes for the header length itself. 32768*3 + 3 = 98307.
*/
if( offset > 98307 ){
if( offset > 98307 || offset > pC->payloadSize ){
rc = SQLITE_CORRUPT_BKPT;
goto op_column_out;
goto op_column_error;
}
}
/* Compute in len the number of bytes of data we need to read in order
** to get nField type values. offset is an upper bound on this. But
** nField might be significantly less than the true number of columns
** in the table, and in that case, 5*nField+3 might be smaller than offset.
** We want to minimize len in order to limit the size of the memory
** allocation, especially if a corrupt database file has caused offset
** to be oversized. Offset is limited to 98307 above. But 98307 might
** still exceed Robson memory allocation limits on some configurations.
** On systems that cannot tolerate large memory allocations, nField*5+3
** will likely be much smaller since nField will likely be less than
** 20 or so. This insures that Robson memory allocation limits are
** not exceeded even for corrupt database files.
/* Make sure at least the first p2+1 entries of the header have been
** parsed and valid information is in aOffset[] and aType[].
*/
if( pC->nHdrParsed<=p2 ){
/* If there is more header available for parsing in the record, try
** to extract additional fields up through the p2+1-th field
*/
len = nField*5 + 3;
if( len > (int)offset ) len = (int)offset;
/* The KeyFetch() or DataFetch() above are fast and will get the entire
** record header in most cases. But they will fail to get the complete
** record header if the record header does not fit on a single page
** in the B-Tree. When that happens, use sqlite3VdbeMemFromBtree() to
** acquire the complete header text.
*/
if( !zRec && avail<len ){
sMem.flags = 0;
sMem.db = 0;
rc = sqlite3VdbeMemFromBtree(pCrsr, 0, len, pC->isIndex, &sMem);
if( rc!=SQLITE_OK ){
goto op_column_out;
if( pC->iHdrOffset<aOffset[0] ){
/* Make sure zData points to enough of the record to cover the header. */
if( pC->aRow==0 ){
memset(&sMem, 0, sizeof(sMem));
rc = sqlite3VdbeMemFromBtree(pCrsr, 0, aOffset[0],
!pC->isTable, &sMem);
if( rc!=SQLITE_OK ){
goto op_column_error;
}
zData = (u8*)sMem.z;
}else{
zData = pC->aRow;
}
zData = sMem.z;
}
zEndHdr = (u8 *)&zData[len];
zIdx = (u8 *)&zData[szHdr];
/* Scan the header and use it to fill in the aType[] and aOffset[]
** arrays. aType[i] will contain the type integer for the i-th
** column and aOffset[i] will contain the offset from the beginning
** of the record to the start of the data for the i-th column
*/
for(i=0; i<nField; i++){
if( zIdx<zEndHdr ){
aOffset[i] = offset;
if( zIdx[0]<0x80 ){
t = zIdx[0];
zIdx++;
/* Fill in aType[i] and aOffset[i] values through the p2-th field. */
i = pC->nHdrParsed;
offset = aOffset[i];
zHdr = zData + pC->iHdrOffset;
zEndHdr = zData + aOffset[0];
assert( i<=p2 && zHdr<zEndHdr );
do{
if( zHdr[0]<0x80 ){
t = zHdr[0];
zHdr++;
}else{
zIdx += sqlite3GetVarint32(zIdx, &t);
zHdr += sqlite3GetVarint32(zHdr, &t);
}
aType[i] = t;
szField = sqlite3VdbeSerialTypeLen(t);
offset += szField;
if( offset<szField ){ /* True if offset overflows */
zIdx = &zEndHdr[1]; /* Forces SQLITE_CORRUPT return below */
zHdr = &zEndHdr[1]; /* Forces SQLITE_CORRUPT return below */
break;
}
}else{
/* If i is less that nField, then there are fewer fields in this
** record than SetNumColumns indicated there are columns in the
** table. Set the offset for any extra columns not present in
** the record to 0. This tells code below to store the default value
** for the column instead of deserializing a value from the record.
*/
aOffset[i] = 0;
i++;
aOffset[i] = offset;
}while( i<=p2 && zHdr<zEndHdr );
pC->nHdrParsed = i;
pC->iHdrOffset = (u32)(zHdr - zData);
if( pC->aRow==0 ){
sqlite3VdbeMemRelease(&sMem);
sMem.flags = MEM_Null;
}
/* If we have read more header data than was contained in the header,
** or if the end of the last field appears to be past the end of the
** record, or if the end of the last field appears to be before the end
** of the record (when all fields present), then we must be dealing
** with a corrupt database.
*/
if( (zHdr > zEndHdr)
|| (offset > pC->payloadSize)
|| (zHdr==zEndHdr && offset!=pC->payloadSize)
){
rc = SQLITE_CORRUPT_BKPT;
goto op_column_error;
}
}
sqlite3VdbeMemRelease(&sMem);
sMem.flags = MEM_Null;
/* If we have read more header data than was contained in the header,
** or if the end of the last field appears to be past the end of the
** record, or if the end of the last field appears to be before the end
** of the record (when all fields present), then we must be dealing
** with a corrupt database.
/* If after trying to extra new entries from the header, nHdrParsed is
** still not up to p2, that means that the record has fewer than p2
** columns. So the result will be either the default value or a NULL.
*/
if( (zIdx > zEndHdr) || (offset > payloadSize)
|| (zIdx==zEndHdr && offset!=payloadSize) ){
rc = SQLITE_CORRUPT_BKPT;
if( pC->nHdrParsed<=p2 ){
if( pOp->p4type==P4_MEM ){
sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
}else{
MemSetTypeFlag(pDest, MEM_Null);
}
goto op_column_out;
}
}
/* Get the column information. If aOffset[p2] is non-zero, then
** deserialize the value from the record. If aOffset[p2] is zero,
** then there are not enough fields in the record to satisfy the
** request. In this case, set the value NULL or to P4 if P4 is
** a pointer to a Mem object.
/* Extract the content for the p2+1-th column. Control can only
** reach this point if aOffset[p2], aOffset[p2+1], and aType[p2] are
** all valid.
*/
if( aOffset[p2] ){
assert( rc==SQLITE_OK );
if( zRec ){
/* This is the common case where the whole row fits on a single page */
VdbeMemRelease(pDest);
sqlite3VdbeSerialGet((u8 *)&zRec[aOffset[p2]], aType[p2], pDest);
}else{
/* This branch happens only when the row overflows onto multiple pages */
t = aType[p2];
if( (pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0
&& ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0)
){
/* Content is irrelevant for the typeof() function and for
** the length(X) function if X is a blob. So we might as well use
** bogus content rather than reading content from disk. NULL works
** for text and blob and whatever is in the payloadSize64 variable
** will work for everything else. */
zData = t<12 ? (char*)&payloadSize64 : 0;
}else{
len = sqlite3VdbeSerialTypeLen(t);
sqlite3VdbeMemMove(&sMem, pDest);
rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, pC->isIndex,
&sMem);
if( rc!=SQLITE_OK ){
goto op_column_out;
}
zData = sMem.z;
}
sqlite3VdbeSerialGet((u8*)zData, t, pDest);
}
pDest->enc = encoding;
assert( p2<pC->nHdrParsed );
assert( rc==SQLITE_OK );
if( pC->szRow>=aOffset[p2+1] ){
/* This is the common case where the desired content fits on the original
** page - where the content is not on an overflow page */
VdbeMemRelease(pDest);
sqlite3VdbeSerialGet(pC->aRow+aOffset[p2], aType[p2], pDest);
}else{
if( pOp->p4type==P4_MEM ){
sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
/* This branch happens only when content is on overflow pages */
t = aType[p2];
if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0
&& ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0))
|| (len = sqlite3VdbeSerialTypeLen(t))==0
){
/* Content is irrelevant for the typeof() function and for
** the length(X) function if X is a blob. So we might as well use
** bogus content rather than reading content from disk. NULL works
** for text and blob and whatever is in the payloadSize64 variable
** will work for everything else. Content is also irrelevant if
** the content length is 0. */
zData = t<=13 ? (u8*)&payloadSize64 : 0;
sMem.zMalloc = 0;
}else{
MemSetTypeFlag(pDest, MEM_Null);
memset(&sMem, 0, sizeof(sMem));
sqlite3VdbeMemMove(&sMem, pDest);
rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, !pC->isTable,
&sMem);
if( rc!=SQLITE_OK ){
goto op_column_error;
}
zData = (u8*)sMem.z;
}
sqlite3VdbeSerialGet(zData, t, pDest);
/* If we dynamically allocated space to hold the data (in the
** sqlite3VdbeMemFromBtree() call above) then transfer control of that
** dynamically allocated space over to the pDest structure.
** This prevents a memory copy. */
if( sMem.zMalloc ){
assert( sMem.z==sMem.zMalloc );
assert( !(pDest->flags & MEM_Dyn) );
assert( !(pDest->flags & (MEM_Blob|MEM_Str)) || pDest->z==sMem.z );
pDest->flags &= ~(MEM_Ephem|MEM_Static);
pDest->flags |= MEM_Term;
pDest->z = sMem.z;
pDest->zMalloc = sMem.zMalloc;
}
}
/* If we dynamically allocated space to hold the data (in the
** sqlite3VdbeMemFromBtree() call above) then transfer control of that
** dynamically allocated space over to the pDest structure.
** This prevents a memory copy.
*/
if( sMem.zMalloc ){
assert( sMem.z==sMem.zMalloc );
assert( !(pDest->flags & MEM_Dyn) );
assert( !(pDest->flags & (MEM_Blob|MEM_Str)) || pDest->z==sMem.z );
pDest->flags &= ~(MEM_Ephem|MEM_Static);
pDest->flags |= MEM_Term;
pDest->z = sMem.z;
pDest->zMalloc = sMem.zMalloc;
}
rc = sqlite3VdbeMemMakeWriteable(pDest);
pDest->enc = encoding;
op_column_out:
rc = sqlite3VdbeMemMakeWriteable(pDest);
op_column_error:
UPDATE_MAX_BLOBSIZE(pDest);
REGISTER_TRACE(pOp->p3, pDest);
break;
@@ -3320,6 +3263,8 @@ case OP_OpenWrite: {
nField = pOp->p4.i;
}
assert( pOp->p1>=0 );
assert( nField>=0 );
testcase( nField==0 ); /* Table with INTEGER PRIMARY KEY and nothing else */
pCur = allocateCursor(p, pOp->p1, nField, iDb, 1);
if( pCur==0 ) goto no_mem;
pCur->nullRow = 1;
@@ -3333,12 +3278,11 @@ case OP_OpenWrite: {
** sqlite3BtreeCursor() may return is SQLITE_OK. */
assert( rc==SQLITE_OK );
/* Set the VdbeCursor.isTable and isIndex variables. Previous versions of
/* Set the VdbeCursor.isTable variable. Previous versions of
** SQLite used to check if the root-page flags were sane at this point
** and report database corruption if they were not, but this check has
** since moved into the btree layer. */
pCur->isTable = pOp->p4type!=P4_KEYINFO;
pCur->isIndex = !pCur->isTable;
break;
}
@@ -3380,6 +3324,7 @@ case OP_OpenEphemeral: {
SQLITE_OPEN_DELETEONCLOSE |
SQLITE_OPEN_TRANSIENT_DB;
assert( pOp->p1>=0 );
assert( pOp->p2>=0 );
pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1);
if( pCx==0 ) goto no_mem;
pCx->nullRow = 1;
@@ -3412,7 +3357,6 @@ case OP_OpenEphemeral: {
}
}
pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
pCx->isIndex = !pCx->isTable;
break;
}
@@ -3425,12 +3369,13 @@ case OP_OpenEphemeral: {
case OP_SorterOpen: {
VdbeCursor *pCx;
assert( pOp->p1>=0 );
assert( pOp->p2>=0 );
pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1);
if( pCx==0 ) goto no_mem;
pCx->pKeyInfo = pOp->p4.pKeyInfo;
assert( pCx->pKeyInfo->db==db );
assert( pCx->pKeyInfo->enc==ENC(db) );
pCx->isSorter = 1;
rc = sqlite3VdbeSorterInit(db, pCx);
break;
}
@@ -3456,12 +3401,12 @@ case OP_OpenPseudo: {
VdbeCursor *pCx;
assert( pOp->p1>=0 );
assert( pOp->p3>=0 );
pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, 0);
if( pCx==0 ) goto no_mem;
pCx->nullRow = 1;
pCx->pseudoTableReg = pOp->p2;
pCx->isTable = 1;
pCx->isIndex = 0;
pCx->multiPseudo = pOp->p5;
break;
}
@@ -3579,7 +3524,9 @@ case OP_SeekGt: { /* jump, in3 */
** point number. */
assert( (pIn3->flags & MEM_Real)!=0 );
if( iKey==SMALLEST_INT64 && (pIn3->r<(double)iKey || pIn3->r>0) ){
if( (iKey==SMALLEST_INT64 && pIn3->r<(double)iKey)
|| (iKey==LARGEST_INT64 && pIn3->r>(double)iKey)
){
/* The P3 value is too large in magnitude to be expressed as an
** integer. */
res = 1;
@@ -4159,7 +4106,7 @@ case OP_InsertInt: {
sqlite3BtreeSetCachedRowid(pC->pCursor, 0);
rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey,
pData->z, pData->n, nZero,
pOp->p5 & OPFLAG_APPEND, seekResult
(pOp->p5 & OPFLAG_APPEND)!=0, seekResult
);
pC->rowidIsValid = 0;
pC->deferredMoveto = 0;
@@ -4319,7 +4266,7 @@ case OP_SorterData: {
pOut = &aMem[pOp->p2];
pC = p->apCsr[pOp->p1];
assert( pC->isSorter );
assert( isSorter(pC) );
rc = sqlite3VdbeSorterRowkey(pC, pOut);
break;
}
@@ -4359,9 +4306,9 @@ case OP_RowData: {
/* Note that RowKey and RowData are really exactly the same instruction */
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
pC = p->apCsr[pOp->p1];
assert( pC->isSorter==0 );
assert( isSorter(pC)==0 );
assert( pC->isTable || pOp->opcode!=OP_RowData );
assert( pC->isIndex || pOp->opcode==OP_RowData );
assert( pC->isTable==0 || pOp->opcode==OP_RowData );
assert( pC!=0 );
assert( pC->nullRow==0 );
assert( pC->pseudoTableReg==0 );
@@ -4378,7 +4325,7 @@ case OP_RowData: {
rc = sqlite3VdbeCursorMoveto(pC);
if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
if( pC->isIndex ){
if( pC->isTable==0 ){
assert( !pC->isTable );
VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &n64);
assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */
@@ -4398,7 +4345,7 @@ case OP_RowData: {
}
pOut->n = n;
MemSetTypeFlag(pOut, MEM_Blob);
if( pC->isIndex ){
if( pC->isTable==0 ){
rc = sqlite3BtreeKey(pCrsr, 0, n, pOut->z);
}else{
rc = sqlite3BtreeData(pCrsr, 0, n, pOut->z);
@@ -4471,6 +4418,7 @@ case OP_NullRow: {
assert( pC!=0 );
pC->nullRow = 1;
pC->rowidIsValid = 0;
pC->cacheStatus = CACHE_STALE;
assert( pC->pCursor || pC->pVtabCursor );
if( pC->pCursor ){
sqlite3BtreeClearCursor(pC->pCursor);
@@ -4546,7 +4494,7 @@ case OP_Rewind: { /* jump */
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
pC = p->apCsr[pOp->p1];
assert( pC!=0 );
assert( pC->isSorter==(pOp->opcode==OP_SorterSort) );
assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) );
res = 1;
if( isSorter(pC) ){
rc = sqlite3VdbeSorterRewind(db, pC, &res);
@@ -4554,7 +4502,6 @@ case OP_Rewind: { /* jump */
pCrsr = pC->pCursor;
assert( pCrsr );
rc = sqlite3BtreeFirst(pCrsr, &res);
pC->atFirst = res==0 ?1:0;
pC->deferredMoveto = 0;
pC->cacheStatus = CACHE_STALE;
pC->rowidIsValid = 0;
@@ -4574,7 +4521,8 @@ case OP_Rewind: { /* jump */
** to the following instruction. But if the cursor advance was successful,
** jump immediately to P2.
**
** The P1 cursor must be for a real table, not a pseudo-table.
** The P1 cursor must be for a real table, not a pseudo-table. P1 must have
** been opened prior to this opcode or the program will segfault.
**
** P4 is always of type P4_ADVANCE. The function pointer points to
** sqlite3BtreeNext().
@@ -4582,7 +4530,12 @@ case OP_Rewind: { /* jump */
** If P5 is positive and the jump is taken, then event counter
** number P5-1 in the prepared statement is incremented.
**
** See also: Prev
** See also: Prev, NextIfOpen
*/
/* Opcode: NextIfOpen P1 P2 * * P5
**
** This opcode works just like OP_Next except that if cursor P1 is not
** open it behaves a no-op.
*/
/* Opcode: Prev P1 P2 * * P5
**
@@ -4591,7 +4544,8 @@ case OP_Rewind: { /* jump */
** to the following instruction. But if the cursor backup was successful,
** jump immediately to P2.
**
** The P1 cursor must be for a real table, not a pseudo-table.
** The P1 cursor must be for a real table, not a pseudo-table. If P1 is
** not open then the behavior is undefined.
**
** P4 is always of type P4_ADVANCE. The function pointer points to
** sqlite3BtreePrevious().
@@ -4599,38 +4553,47 @@ case OP_Rewind: { /* jump */
** If P5 is positive and the jump is taken, then event counter
** number P5-1 in the prepared statement is incremented.
*/
case OP_SorterNext: /* jump */
case OP_Prev: /* jump */
case OP_Next: { /* jump */
/* Opcode: PrevIfOpen P1 P2 * * P5
**
** This opcode works just like OP_Prev except that if cursor P1 is not
** open it behaves a no-op.
*/
case OP_SorterNext: { /* jump */
VdbeCursor *pC;
int res;
pC = p->apCsr[pOp->p1];
assert( isSorter(pC) );
rc = sqlite3VdbeSorterNext(db, pC, &res);
goto next_tail;
case OP_PrevIfOpen: /* jump */
case OP_NextIfOpen: /* jump */
if( p->apCsr[pOp->p1]==0 ) break;
/* Fall through */
case OP_Prev: /* jump */
case OP_Next: /* jump */
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
assert( pOp->p5<ArraySize(p->aCounter) );
pC = p->apCsr[pOp->p1];
if( pC==0 ){
break; /* See ticket #2273 */
}
assert( pC->isSorter==(pOp->opcode==OP_SorterNext) );
if( isSorter(pC) ){
assert( pOp->opcode==OP_SorterNext );
rc = sqlite3VdbeSorterNext(db, pC, &res);
}else{
/* res = 1; // Always initialized by the xAdvance() call */
assert( pC->deferredMoveto==0 );
assert( pC->pCursor );
assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext );
assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious );
rc = pOp->p4.xAdvance(pC->pCursor, &res);
}
pC->nullRow = (u8)res;
assert( pC!=0 );
assert( pC->deferredMoveto==0 );
assert( pC->pCursor );
assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext );
assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious );
assert( pOp->opcode!=OP_NextIfOpen || pOp->p4.xAdvance==sqlite3BtreeNext );
assert( pOp->opcode!=OP_PrevIfOpen || pOp->p4.xAdvance==sqlite3BtreePrevious);
rc = pOp->p4.xAdvance(pC->pCursor, &res);
next_tail:
pC->cacheStatus = CACHE_STALE;
if( res==0 ){
pC->nullRow = 0;
pc = pOp->p2 - 1;
p->aCounter[pOp->p5]++;
#ifdef SQLITE_TEST
sqlite3_search_count++;
#endif
}else{
pC->nullRow = 1;
}
pC->rowidIsValid = 0;
goto check_for_interrupt;
@@ -4659,7 +4622,7 @@ case OP_IdxInsert: { /* in2 */
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
pC = p->apCsr[pOp->p1];
assert( pC!=0 );
assert( pC->isSorter==(pOp->opcode==OP_SorterInsert) );
assert( isSorter(pC)==(pOp->opcode==OP_SorterInsert) );
pIn2 = &aMem[pOp->p2];
assert( pIn2->flags & MEM_Blob );
pCrsr = pC->pCursor;
@@ -5910,7 +5873,6 @@ case OP_VOpen: {
pCur = allocateCursor(p, pOp->p1, 0, -1, 0);
if( pCur ){
pCur->pVtabCursor = pVtabCursor;
pCur->pModule = pVtabCursor->pVtab->pModule;
}else{
db->mallocFailed = 1;
pModule->xClose(pVtabCursor);