1
0
mirror of https://github.com/sqlite/sqlite.git synced 2025-08-01 06:27:03 +03:00

Limit the total data in a single row to 2^16-1 bytes. (CVS 248)

FossilOrigin-Name: 8fdec4d8b6043471f21235bc8918c9a8d838f508
This commit is contained in:
drh
2001-09-15 13:15:12 +00:00
parent b3e05a662a
commit 092d0350d5
8 changed files with 95 additions and 61 deletions

View File

@ -21,7 +21,7 @@
** http://www.hwaci.com/drh/
**
*************************************************************************
** $Id: btree.c,v 1.27 2001/09/14 18:54:08 drh Exp $
** $Id: btree.c,v 1.28 2001/09/15 13:15:13 drh Exp $
**
** This file implements a external (disk-based) database using BTrees.
** For a detailed discussion of BTrees, refer to
@ -73,9 +73,12 @@
** Change these typedefs when porting to new architectures.
*/
typedef unsigned int uptr;
/* typedef unsigned int u32; -- already defined in sqliteInt.h */
typedef unsigned short int u16;
typedef unsigned char u8;
/* There are already definedin sqliteInt.h...
** typedef unsigned int u32;
** typedef unsigned short int u16;
** typedef unsigned char u8;
*/
/*
** This macro casts a pointer to an integer. Useful for doing

View File

@ -25,7 +25,7 @@
** subsystem. The page cache subsystem reads and writes a file a page
** at a time and provides a journal for rollback.
**
** @(#) $Id: pager.h,v 1.9 2001/09/14 18:54:09 drh Exp $
** @(#) $Id: pager.h,v 1.10 2001/09/15 13:15:13 drh Exp $
*/
/*
@ -33,6 +33,12 @@
*/
#define SQLITE_PAGE_SIZE 1024
/*
** Maximum number of pages in one database. (This is a limitation of
** imposed by 4GB files size limits.)
*/
#define SQLITE_MAX_PAGE 1073741823
/*
** The type used to represent a page number. The first page in a file
** is called page 1. 0 is used to represent "not a page".

View File

@ -24,7 +24,7 @@
** This header file defines the interface that the sqlite library
** presents to client programs.
**
** @(#) $Id: sqlite.h.in,v 1.15 2001/09/15 00:57:29 drh Exp $
** @(#) $Id: sqlite.h.in,v 1.16 2001/09/15 13:15:13 drh Exp $
*/
#ifndef _SQLITE_H_
#define _SQLITE_H_
@ -161,6 +161,7 @@ int sqlite_exec(
#define SQLITE_PROTOCOL 14 /* Database lock protocol error */
#define SQLITE_EMPTY 15 /* Database table is empty */
#define SQLITE_SCHEMA 16 /* The database schema changed */
#define SQLITE_TOOBIG 17 /* Too much data for one row of a table */
/* This function causes any pending database operation to abort and
** return at its earliest opportunity. This routine is typically

View File

@ -23,7 +23,7 @@
*************************************************************************
** Internal interface definitions for SQLite.
**
** @(#) $Id: sqliteInt.h,v 1.48 2001/09/15 00:57:29 drh Exp $
** @(#) $Id: sqliteInt.h,v 1.49 2001/09/15 13:15:13 drh Exp $
*/
#include "sqlite.h"
#include "vdbe.h"
@ -42,9 +42,12 @@
#define TEMP_PAGES 25
/*
** The paging system deals with 32-bit integers.
** Integers of known sizes. These typedefs much change for architectures
** where the sizes very.
*/
typedef unsigned int u32;
typedef unsigned int u32; /* 4-byte unsigned integer */
typedef unsigned short int u16; /* 2-byte unsigned integer */
typedef unsigned char u8; /* 1-byte unsigned integer */
/*
** If memory allocation problems are found, recompile with

View File

@ -26,7 +26,7 @@
** This file contains functions for allocating memory, comparing
** strings, and stuff like that.
**
** $Id: util.c,v 1.23 2001/09/15 00:57:29 drh Exp $
** $Id: util.c,v 1.24 2001/09/15 13:15:13 drh Exp $
*/
#include "sqliteInt.h"
#include <stdarg.h>
@ -997,6 +997,7 @@ const char *sqliteErrStr(int rc){
case SQLITE_PROTOCOL: z = "database locking protocol failure"; break;
case SQLITE_EMPTY: z = "table contains no data"; break;
case SQLITE_SCHEMA: z = "database schema has changed"; break;
case SQLITE_TOOBIG: z = "too much data for one table row"; break;
default: z = "unknown error"; break;
}
return z;

View File

@ -41,7 +41,7 @@
** But other routines are also provided to help in building up
** a program instruction by instruction.
**
** $Id: vdbe.c,v 1.67 2001/09/15 00:57:29 drh Exp $
** $Id: vdbe.c,v 1.68 2001/09/15 13:15:13 drh Exp $
*/
#include "sqliteInt.h"
#include <ctype.h>
@ -456,7 +456,7 @@ int sqliteVdbeMakeLabel(Vdbe *p){
i = p->nLabel++;
if( i>=p->nLabelAlloc ){
p->nLabelAlloc = p->nLabelAlloc*2 + 10;
p->aLabel = sqliteRealloc( p->aLabel, p->nLabelAlloc*sizeof(int));
p->aLabel = sqliteRealloc( p->aLabel, p->nLabelAlloc*sizeof(p->aLabel[0]));
}
if( p->aLabel==0 ){
p->nLabel = 0;
@ -1774,22 +1774,24 @@ case OP_NotNull: {
** Convert the top P1 entries of the stack into a single entry
** suitable for use as a data record in a database table. To do this
** all entries (except NULLs) are converted to strings and
** concatenated. The null-terminators are preserved by the concatation
** and serve as a boundry marker between columns. The lowest entry
** concatenated. The null-terminators are included on all string
** except for NULL columns which are represented by zero bytes.
** The lowest entry
** on the stack is the first in the concatenation and the top of
** the stack is the last. After all columns are concatenated, an
** index header is added. The index header consists of P1 integers
** index header is added. The index header consists of P1 16-bit integers
** which hold the offset of the beginning of each column data from the
** beginning of the completed record including the header. Header
** entries for NULL fields point to where the first byte of the column
** would have been stored if the column had held any bytes.
** beginning of the completed record including the header.
**
** The OP_Column opcode is used to unpack a record manufactured with
** the opcode.
*/
case OP_MakeRecord: {
char *zNewRecord;
int nByte;
int nField;
int i, j;
int addr;
u16 addr;
nField = pOp->p1;
VERIFY( if( p->tos+1<nField ) goto not_enough_stack; )
@ -1800,14 +1802,18 @@ case OP_MakeRecord: {
nByte += aStack[i].n;
}
}
nByte += sizeof(int)*nField;
nByte += sizeof(addr)*nField;
if( nByte>65535 ){
rc = SQLITE_TOOBIG;
goto abort_due_to_error;
}
zNewRecord = sqliteMalloc( nByte );
if( zNewRecord==0 ) goto no_mem;
j = 0;
addr = sizeof(int)*nField;
addr = sizeof(addr)*nField;
for(i=p->tos-nField+1; i<=p->tos; i++){
memcpy(&zNewRecord[j], (char*)&addr, sizeof(int));
j += sizeof(int);
memcpy(&zNewRecord[j], (char*)&addr, sizeof(addr));
j += sizeof(addr);
if( (aStack[i].flags & STK_Null)==0 ){
addr += aStack[i].n;
}
@ -1906,7 +1912,7 @@ case OP_MakeIdxKey: {
nField = pOp->p1;
VERIFY( if( p->tos+1<nField ) goto not_enough_stack; )
nByte = sizeof(int);
nByte = sizeof(u32);
for(i=p->tos-nField+1; i<=p->tos; i++){
if( aStack[i].flags & STK_Null ){
nByte++;
@ -1927,7 +1933,7 @@ case OP_MakeIdxKey: {
}
zNewKey[j++] = 0;
Integerify(p, p->tos-nField);
memcpy(&zNewKey[j], &aStack[p->tos-nField].i, sizeof(int));
memcpy(&zNewKey[j], &aStack[p->tos-nField].i, sizeof(u32));
PopStack(p, nField+1);
VERIFY( NeedStack(p, p->tos+1); )
p->tos++;
@ -2369,15 +2375,12 @@ case OP_KeyAsData: {
/* Opcode: Column P1 P2 *
**
** Interpret the data in the most recent fetch from cursor P1
** is a structure built using the MakeRecord instruction.
** Push onto the stack the value of the P2-th field of that
** structure.
**
** The value pushed is a pointer to the data stored in the cursor.
** The value will go away the next time the cursor is modified in
** any way. Make a copy of the string (using
** "Concat 1 0 0") if it needs to persist longer than that.
** Interpret the data that cursor P1 points to as
** a structure built using the MakeRecord instruction.
** (See the MakeRecord opcode for additional information about
** the format of the data.)
** Push onto the stack the value of the P2-th column contained
** in the data.
**
** If the KeyAsData opcode has previously executed on this cursor,
** then the field might be extracted from the key rather than the
@ -2385,7 +2388,7 @@ case OP_KeyAsData: {
*/
case OP_Column: {
int amt, offset, nCol, payloadSize;
int aHdr[10];
u16 aHdr[10];
static const int mxHdr = sizeof(aHdr)/sizeof(aHdr[0]);
int i = pOp->p1;
int p2 = pOp->p2;
@ -2417,14 +2420,14 @@ case OP_Column: {
** three times.
*/
(*xSize)(pCrsr, &payloadSize);
if( payloadSize < sizeof(int)*(p2+1) ){
if( payloadSize < sizeof(aHdr[0])*(p2+1) ){
rc = SQLITE_CORRUPT;
goto abort_due_to_error;
}
if( p2+1<mxHdr ){
(*xRead)(pCrsr, 0, sizeof(aHdr[0])*(p2+2), (char*)aHdr);
nCol = aHdr[0];
nCol /= sizeof(int);
nCol /= sizeof(aHdr[0]);
offset = aHdr[p2];
if( p2 == nCol-1 ){
amt = payloadSize - offset;
@ -2432,13 +2435,14 @@ case OP_Column: {
amt = aHdr[p2+1] - offset;
}
}else{
sqliteBtreeData(pCrsr, 0, sizeof(int), (char*)&nCol);
nCol /= sizeof(int);
sqliteBtreeData(pCrsr, 0, sizeof(aHdr[0]), (char*)aHdr);
nCol = aHdr[0]/sizeof(aHdr[0]);
if( p2 == nCol-1 ){
(*xRead)(pCrsr, sizeof(int)*p2, sizeof(int), (char*)&offset);
(*xRead)(pCrsr, sizeof(aHdr[0])*p2, sizeof(aHdr[0]), (char*)aHdr);
offset = aHdr[0];
amt = payloadSize - offset;
}else{
(*xRead)(pCrsr, sizeof(int)*p2, sizeof(int)*2, (char*)aHdr);
(*xRead)(pCrsr, sizeof(aHdr[0])*p2, sizeof(aHdr[0])*2, (char*)aHdr);
offset = aHdr[0];
amt = aHdr[1] - offset;
}
@ -2447,6 +2451,10 @@ case OP_Column: {
rc = SQLITE_CORRUPT;
goto abort_due_to_error;
}
/* amt and offset now hold the offset to the start of data and the
** amount of data. Go get the data and put it on the stack.
*/
if( amt==0 ){
aStack[tos].flags = STK_Null;
}else{
@ -2480,7 +2488,7 @@ case OP_Recno: {
if( p->aCsr[i].recnoIsValid ){
v = p->aCsr[i].lastRecno;
}else{
sqliteBtreeKey(pCrsr, 0, sizeof(int), (char*)&v);
sqliteBtreeKey(pCrsr, 0, sizeof(u32), (char*)&v);
}
aStack[tos].i = v;
aStack[tos].flags = STK_Int;
@ -2626,7 +2634,7 @@ case OP_NextIdx: {
if( rx!=SQLITE_OK ) goto abort_due_to_error;
}
sqliteBtreeKeySize(pCur, &size);
if( res>0 || size!=pCrsr->nKey+sizeof(int) ||
if( res>0 || size!=pCrsr->nKey+sizeof(u32) ||
sqliteBtreeKey(pCur, 0, pCrsr->nKey, pCrsr->zBuf)!=pCrsr->nKey ||
strncmp(pCrsr->zKey, pCrsr->zBuf, pCrsr->nKey)!=0
){
@ -2634,7 +2642,7 @@ case OP_NextIdx: {
POPSTACK;
}else{
int recno;
sqliteBtreeKey(pCur, pCrsr->nKey, sizeof(int), (char*)&recno);
sqliteBtreeKey(pCur, pCrsr->nKey, sizeof(u32), (char*)&recno);
p->aCsr[i].lastRecno = aStack[tos].i = recno;
p->aCsr[i].recnoIsValid = 1;
aStack[tos].flags = STK_Int;
@ -2812,7 +2820,7 @@ case OP_ListWrite: {
VERIFY( if( p->tos<0 ) goto not_enough_stack; )
pKeylist = p->apList[i];
if( pKeylist==0 || pKeylist->nUsed>=pKeylist->nKey ){
pKeylist = sqliteMalloc( sizeof(Keylist)+999*sizeof(int) );
pKeylist = sqliteMalloc( sizeof(Keylist)+999*sizeof(pKeylist->aKey[0]) );
if( pKeylist==0 ) goto no_mem;
pKeylist->nKey = 1000;
pKeylist->nRead = 0;
@ -3774,11 +3782,23 @@ default: {
}else if( aStack[i].flags & STK_Real ){
fprintf(p->trace, " r:%g", aStack[i].r);
}else if( aStack[i].flags & STK_Str ){
if( aStack[i].flags & STK_Dyn ){
fprintf(p->trace, " z:[%.11s]", zStack[i]);
}else{
fprintf(p->trace, " s:[%.11s]", zStack[i]);
int j, k;
char zBuf[100];
zBuf[0] = ' ';
zBuf[1] = (aStack[i].flags & STK_Dyn)!=0 ? 'z' : 's';
zBuf[2] = ':';
k = 3;
for(j=0; j<15 && j<aStack[i].n; j++){
int c = zStack[i][j];
if( c==0 && j==aStack[i].n-1 ) break;
if( isprint(c) && !isspace(c) ){
zBuf[k++] = c;
}else{
zBuf[k++] = '.';
}
}
zBuf[k++] = 0;
fprintf(p->trace, "%s", zBuf);
}else{
fprintf(p->trace, " ???");
}