1
0
mirror of https://github.com/sqlite/sqlite.git synced 2025-07-27 20:41:58 +03:00

Merge the latest trunk changes into the sessions branch.

FossilOrigin-Name: 6883580e6c8973010a42d1d2c5bde04c6b2f4eb7
This commit is contained in:
drh
2011-05-05 15:46:16 +00:00
33 changed files with 1721 additions and 228 deletions

View File

@ -419,6 +419,34 @@ static void fts3GetDeltaVarint(char **pp, sqlite3_int64 *pVal){
*pVal += iVal;
}
/*
** When this function is called, *pp points to the first byte following a
** varint that is part of a doclist (or position-list, or any other list
** of varints). This function moves *pp to point to the start of that varint,
** and decrements the value stored in *pVal by the varint value.
**
** Argument pStart points to the first byte of the doclist that the
** varint is part of.
*/
static void fts3GetReverseDeltaVarint(
char **pp,
char *pStart,
sqlite3_int64 *pVal
){
sqlite3_int64 iVal;
char *p = *pp;
/* Pointer p now points at the first byte past the varint we are
** interested in. So, unless the doclist is corrupt, the 0x80 bit is
** clear on character p[-1]. */
for(p = (*pp)-2; p>=pStart && *p&0x80; p--);
p++;
*pp = p;
sqlite3Fts3GetVarint(p, &iVal);
*pVal -= iVal;
}
/*
** As long as *pp has not reached its end (pEnd), then do the same
** as fts3GetDeltaVarint(): read a single varint and add it to *pVal.
@ -524,6 +552,8 @@ static void fts3DeclareVtab(int *pRc, Fts3Table *p){
char *zSql; /* SQL statement passed to declare_vtab() */
char *zCols; /* List of user defined columns */
sqlite3_vtab_config(p->db, SQLITE_VTAB_CONSTRAINT_SUPPORT, 1);
/* Create a list of user columns for the virtual table */
zCols = sqlite3_mprintf("%Q, ", p->azColumn[0]);
for(i=1; zCols && i<p->nColumn; i++){
@ -1092,6 +1122,22 @@ static int fts3BestIndexMethod(sqlite3_vtab *pVTab, sqlite3_index_info *pInfo){
pInfo->aConstraintUsage[iCons].argvIndex = 1;
pInfo->aConstraintUsage[iCons].omit = 1;
}
/* Regardless of the strategy selected, FTS can deliver rows in rowid (or
** docid) order. Both ascending and descending are possible.
*/
if( pInfo->nOrderBy==1 ){
struct sqlite3_index_orderby *pOrder = &pInfo->aOrderBy[0];
if( pOrder->iColumn<0 || pOrder->iColumn==p->nColumn+1 ){
if( pOrder->desc ){
pInfo->idxStr = "DESC";
}else{
pInfo->idxStr = "ASC";
}
}
pInfo->orderByConsumed = 1;
}
return SQLITE_OK;
}
@ -2996,12 +3042,20 @@ static int fts3NextMethod(sqlite3_vtab_cursor *pCursor){
}
pCsr->iPrevId = sqlite3_column_int64(pCsr->pStmt, 0);
}else{
if( pCsr->pNextId>=&pCsr->aDoclist[pCsr->nDoclist] ){
pCsr->isEof = 1;
break;
if( pCsr->desc==0 ){
if( pCsr->pNextId>=&pCsr->aDoclist[pCsr->nDoclist] ){
pCsr->isEof = 1;
break;
}
fts3GetDeltaVarint(&pCsr->pNextId, &pCsr->iPrevId);
}else{
fts3GetReverseDeltaVarint(&pCsr->pNextId,pCsr->aDoclist,&pCsr->iPrevId);
if( pCsr->pNextId<=pCsr->aDoclist ){
pCsr->isEof = 1;
break;
}
}
sqlite3_reset(pCsr->pStmt);
fts3GetDeltaVarint(&pCsr->pNextId, &pCsr->iPrevId);
pCsr->isRequireSeek = 1;
pCsr->isMatchinfoNeeded = 1;
}
@ -3034,8 +3088,8 @@ static int fts3FilterMethod(
sqlite3_value **apVal /* Arguments for the indexing scheme */
){
const char *azSql[] = {
"SELECT %s FROM %Q.'%q_content' AS x WHERE docid = ?", /* non-full-scan */
"SELECT %s FROM %Q.'%q_content' AS x ", /* full-scan */
"SELECT %s FROM %Q.'%q_content' AS x WHERE docid = ?", /* non-full-scan */
"SELECT %s FROM %Q.'%q_content' AS x ORDER BY docid %s", /* full-scan */
};
int rc; /* Return code */
char *zSql; /* SQL statement used to access %_content */
@ -3091,7 +3145,9 @@ static int fts3FilterMethod(
** row by docid.
*/
zSql = (char *)azSql[idxNum==FTS3_FULLSCAN_SEARCH];
zSql = sqlite3_mprintf(zSql, p->zReadExprlist, p->zDb, p->zName);
zSql = sqlite3_mprintf(
zSql, p->zReadExprlist, p->zDb, p->zName, (idxStr ? idxStr : "ASC")
);
if( !zSql ){
rc = SQLITE_NOMEM;
}else{
@ -3103,7 +3159,22 @@ static int fts3FilterMethod(
}
pCsr->eSearch = (i16)idxNum;
assert( pCsr->desc==0 );
if( rc!=SQLITE_OK ) return rc;
if( rc==SQLITE_OK && pCsr->nDoclist>0 && idxStr && idxStr[0]=='D' ){
sqlite3_int64 iDocid = 0;
char *csr = pCsr->aDoclist;
while( csr<&pCsr->aDoclist[pCsr->nDoclist] ){
fts3GetDeltaVarint(&csr, &iDocid);
}
pCsr->pNextId = csr;
pCsr->iPrevId = iDocid;
pCsr->desc = 1;
pCsr->isRequireSeek = 1;
pCsr->isMatchinfoNeeded = 1;
pCsr->eEvalmode = FTS3_EVAL_NEXT;
return SQLITE_OK;
}
return fts3NextMethod(pCursor);
}
@ -3256,12 +3327,32 @@ int sqlite3Fts3ExprLoadFtDoclist(
return rc;
}
/*
** When called, *ppPoslist must point to the byte immediately following the
** end of a position-list. i.e. ( (*ppPoslist)[-1]==POS_END ). This function
** moves *ppPoslist so that it instead points to the first byte of the
** same position list.
*/
static void fts3ReversePoslist(char *pStart, char **ppPoslist){
char *p = &(*ppPoslist)[-3];
char c = p[1];
while( p>pStart && (*p & 0x80) | c ){
c = *p--;
}
if( p>pStart ){ p = &p[2]; }
while( *p++&0x80 );
*ppPoslist = p;
}
/*
** After ExprLoadDoclist() (see above) has been called, this function is
** used to iterate/search through the position lists that make up the doclist
** stored in pExpr->aDoclist.
*/
char *sqlite3Fts3FindPositions(
Fts3Cursor *pCursor, /* Associate FTS3 cursor */
Fts3Expr *pExpr, /* Access this expressions doclist */
sqlite3_int64 iDocid, /* Docid associated with requested pos-list */
int iCol /* Column of requested pos-list */
@ -3272,20 +3363,36 @@ char *sqlite3Fts3FindPositions(
char *pCsr;
if( pExpr->pCurrent==0 ){
pExpr->pCurrent = pExpr->aDoclist;
pExpr->iCurrent = 0;
pExpr->pCurrent += sqlite3Fts3GetVarint(pExpr->pCurrent,&pExpr->iCurrent);
if( pCursor->desc==0 ){
pExpr->pCurrent = pExpr->aDoclist;
pExpr->iCurrent = 0;
fts3GetDeltaVarint(&pExpr->pCurrent, &pExpr->iCurrent);
}else{
pCsr = pExpr->aDoclist;
while( pCsr<pEnd ){
fts3GetDeltaVarint(&pCsr, &pExpr->iCurrent);
fts3PoslistCopy(0, &pCsr);
}
fts3ReversePoslist(pExpr->aDoclist, &pCsr);
pExpr->pCurrent = pCsr;
}
}
pCsr = pExpr->pCurrent;
assert( pCsr );
while( pCsr<pEnd ){
if( pExpr->iCurrent<iDocid ){
while( (pCursor->desc==0 && pCsr<pEnd)
|| (pCursor->desc && pCsr>pExpr->aDoclist)
){
if( pCursor->desc==0 && pExpr->iCurrent<iDocid ){
fts3PoslistCopy(0, &pCsr);
if( pCsr<pEnd ){
fts3GetDeltaVarint(&pCsr, &pExpr->iCurrent);
}
pExpr->pCurrent = pCsr;
}else if( pCursor->desc && pExpr->iCurrent>iDocid ){
fts3GetReverseDeltaVarint(&pCsr, pExpr->aDoclist, &pExpr->iCurrent);
fts3ReversePoslist(pExpr->aDoclist, &pCsr);
pExpr->pCurrent = pCsr;
}else{
if( pExpr->iCurrent==iDocid ){
int iThis = 0;
@ -3542,8 +3649,19 @@ static int fts3RenameMethod(
return rc;
}
static int fts3SavepointMethod(sqlite3_vtab *pVtab, int iSavepoint){
return sqlite3Fts3PendingTermsFlush((Fts3Table *)pVtab);
}
static int fts3ReleaseMethod(sqlite3_vtab *pVtab, int iSavepoint){
return SQLITE_OK;
}
static int fts3RollbackToMethod(sqlite3_vtab *pVtab, int iSavepoint){
sqlite3Fts3PendingTermsClear((Fts3Table *)pVtab);
return SQLITE_OK;
}
static const sqlite3_module fts3Module = {
/* iVersion */ 0,
/* iVersion */ 1,
/* xCreate */ fts3CreateMethod,
/* xConnect */ fts3ConnectMethod,
/* xBestIndex */ fts3BestIndexMethod,
@ -3563,6 +3681,9 @@ static const sqlite3_module fts3Module = {
/* xRollback */ fts3RollbackMethod,
/* xFindFunction */ fts3FindFunctionMethod,
/* xRename */ fts3RenameMethod,
/* xSavepoint */ fts3SavepointMethod,
/* xRelease */ fts3ReleaseMethod,
/* xRollbackTo */ fts3RollbackToMethod,
};
/*
@ -3609,6 +3730,11 @@ int sqlite3Fts3Init(sqlite3 *db){
sqlite3Fts3IcuTokenizerModule(&pIcu);
#endif
#ifdef SQLITE_TEST
rc = sqlite3Fts3InitTerm(db);
if( rc!=SQLITE_OK ) return rc;
#endif
rc = sqlite3Fts3InitAux(db);
if( rc!=SQLITE_OK ) return rc;

View File

@ -171,6 +171,7 @@ struct Fts3Cursor {
char *pNextId; /* Pointer into the body of aDoclist */
char *aDoclist; /* List of docids for full-text queries */
int nDoclist; /* Size of buffer at aDoclist */
int desc; /* True to sort in descending order */
int eEvalmode; /* An FTS3_EVAL_XX constant */
int nRowAvg; /* Average size of database rows, in pages */
@ -353,7 +354,7 @@ int sqlite3Fts3GetVarint32(const char *, int *);
int sqlite3Fts3VarintLen(sqlite3_uint64);
void sqlite3Fts3Dequote(char *);
char *sqlite3Fts3FindPositions(Fts3Expr *, sqlite3_int64, int);
char *sqlite3Fts3FindPositions(Fts3Cursor *, Fts3Expr *, sqlite3_int64, int);
int sqlite3Fts3ExprLoadDoclist(Fts3Cursor *, Fts3Expr *);
int sqlite3Fts3ExprLoadFtDoclist(Fts3Cursor *, Fts3Expr *, char **, int *);
int sqlite3Fts3ExprNearTrim(Fts3Expr *, Fts3Expr *, int);

View File

@ -415,7 +415,7 @@ static int fts3SnippetFindPositions(Fts3Expr *pExpr, int iPhrase, void *ctx){
pPhrase->nToken = pExpr->pPhrase->nToken;
pCsr = sqlite3Fts3FindPositions(pExpr, p->pCsr->iPrevId, p->iCol);
pCsr = sqlite3Fts3FindPositions(p->pCsr, pExpr, p->pCsr->iPrevId, p->iCol);
if( pCsr ){
int iFirst = 0;
pPhrase->pList = pCsr;
@ -888,7 +888,7 @@ static int fts3ExprLocalHitsCb(
if( pExpr->aDoclist ){
char *pCsr;
pCsr = sqlite3Fts3FindPositions(pExpr, p->pCursor->iPrevId, -1);
pCsr = sqlite3Fts3FindPositions(p->pCursor, pExpr, p->pCursor->iPrevId, -1);
if( pCsr ){
fts3LoadColumnlistCounts(&pCsr, &p->aMatchinfo[iStart], 0);
}
@ -1055,7 +1055,7 @@ static int fts3MatchinfoLcs(Fts3Cursor *pCsr, MatchInfo *pInfo){
LcsIterator *pIter = &aIter[i];
nToken -= pIter->pExpr->pPhrase->nToken;
pIter->iPosOffset = nToken;
pIter->pRead = sqlite3Fts3FindPositions(pIter->pExpr, pCsr->iPrevId, -1);
pIter->pRead = sqlite3Fts3FindPositions(pCsr,pIter->pExpr,pCsr->iPrevId,-1);
if( pIter->pRead ){
pIter->iPos = pIter->iPosOffset;
fts3LcsIteratorAdvance(&aIter[i]);
@ -1408,6 +1408,7 @@ struct TermOffset {
};
struct TermOffsetCtx {
Fts3Cursor *pCsr;
int iCol; /* Column of table to populate aTerm for */
int iTerm;
sqlite3_int64 iDocid;
@ -1425,7 +1426,7 @@ static int fts3ExprTermOffsetInit(Fts3Expr *pExpr, int iPhrase, void *ctx){
int iPos = 0; /* First position in position-list */
UNUSED_PARAMETER(iPhrase);
pList = sqlite3Fts3FindPositions(pExpr, p->iDocid, p->iCol);
pList = sqlite3Fts3FindPositions(p->pCsr, pExpr, p->iDocid, p->iCol);
nTerm = pExpr->pPhrase->nToken;
if( pList ){
fts3GetDeltaPosition(&pList, &iPos);
@ -1478,6 +1479,7 @@ void sqlite3Fts3Offsets(
goto offsets_out;
}
sCtx.iDocid = pCsr->iPrevId;
sCtx.pCsr = pCsr;
/* Loop through the table columns, appending offset information to
** string-buffer res for each column.

360
ext/fts3/fts3_term.c Normal file
View File

@ -0,0 +1,360 @@
/*
** 2011 Jan 27
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
******************************************************************************
**
** This file is not part of the production FTS code. It is only used for
** testing. It contains a virtual table implementation that provides direct
** access to the full-text index of an FTS table.
*/
#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
#ifdef SQLITE_TEST
#include "fts3Int.h"
#include <string.h>
#include <assert.h>
typedef struct Fts3termTable Fts3termTable;
typedef struct Fts3termCursor Fts3termCursor;
struct Fts3termTable {
sqlite3_vtab base; /* Base class used by SQLite core */
Fts3Table *pFts3Tab;
};
struct Fts3termCursor {
sqlite3_vtab_cursor base; /* Base class used by SQLite core */
Fts3SegReaderCursor csr; /* Must be right after "base" */
Fts3SegFilter filter;
int isEof; /* True if cursor is at EOF */
char *pNext;
sqlite3_int64 iRowid; /* Current 'rowid' value */
sqlite3_int64 iDocid; /* Current 'docid' value */
int iCol; /* Current 'col' value */
int iPos; /* Current 'pos' value */
};
/*
** Schema of the terms table.
*/
#define FTS3_TERMS_SCHEMA "CREATE TABLE x(term, docid, col, pos)"
/*
** This function does all the work for both the xConnect and xCreate methods.
** These tables have no persistent representation of their own, so xConnect
** and xCreate are identical operations.
*/
static int fts3termConnectMethod(
sqlite3 *db, /* Database connection */
void *pUnused, /* Unused */
int argc, /* Number of elements in argv array */
const char * const *argv, /* xCreate/xConnect argument array */
sqlite3_vtab **ppVtab, /* OUT: New sqlite3_vtab object */
char **pzErr /* OUT: sqlite3_malloc'd error message */
){
char const *zDb; /* Name of database (e.g. "main") */
char const *zFts3; /* Name of fts3 table */
int nDb; /* Result of strlen(zDb) */
int nFts3; /* Result of strlen(zFts3) */
int nByte; /* Bytes of space to allocate here */
int rc; /* value returned by declare_vtab() */
Fts3termTable *p; /* Virtual table object to return */
UNUSED_PARAMETER(pUnused);
/* The user should specify a single argument - the name of an fts3 table. */
if( argc!=4 ){
*pzErr = sqlite3_mprintf(
"wrong number of arguments to fts4term constructor"
);
return SQLITE_ERROR;
}
zDb = argv[1];
nDb = strlen(zDb);
zFts3 = argv[3];
nFts3 = strlen(zFts3);
rc = sqlite3_declare_vtab(db, FTS3_TERMS_SCHEMA);
if( rc!=SQLITE_OK ) return rc;
nByte = sizeof(Fts3termTable) + sizeof(Fts3Table) + nDb + nFts3 + 2;
p = (Fts3termTable *)sqlite3_malloc(nByte);
if( !p ) return SQLITE_NOMEM;
memset(p, 0, nByte);
p->pFts3Tab = (Fts3Table *)&p[1];
p->pFts3Tab->zDb = (char *)&p->pFts3Tab[1];
p->pFts3Tab->zName = &p->pFts3Tab->zDb[nDb+1];
p->pFts3Tab->db = db;
memcpy((char *)p->pFts3Tab->zDb, zDb, nDb);
memcpy((char *)p->pFts3Tab->zName, zFts3, nFts3);
sqlite3Fts3Dequote((char *)p->pFts3Tab->zName);
*ppVtab = (sqlite3_vtab *)p;
return SQLITE_OK;
}
/*
** This function does the work for both the xDisconnect and xDestroy methods.
** These tables have no persistent representation of their own, so xDisconnect
** and xDestroy are identical operations.
*/
static int fts3termDisconnectMethod(sqlite3_vtab *pVtab){
Fts3termTable *p = (Fts3termTable *)pVtab;
Fts3Table *pFts3 = p->pFts3Tab;
int i;
/* Free any prepared statements held */
for(i=0; i<SizeofArray(pFts3->aStmt); i++){
sqlite3_finalize(pFts3->aStmt[i]);
}
sqlite3_free(pFts3->zSegmentsTbl);
sqlite3_free(p);
return SQLITE_OK;
}
#define FTS4AUX_EQ_CONSTRAINT 1
#define FTS4AUX_GE_CONSTRAINT 2
#define FTS4AUX_LE_CONSTRAINT 4
/*
** xBestIndex - Analyze a WHERE and ORDER BY clause.
*/
static int fts3termBestIndexMethod(
sqlite3_vtab *pVTab,
sqlite3_index_info *pInfo
){
UNUSED_PARAMETER(pVTab);
/* This vtab naturally does "ORDER BY term, docid, col, pos". */
if( pInfo->nOrderBy ){
int i;
for(i=0; i<pInfo->nOrderBy; i++){
if( pInfo->aOrderBy[i].iColumn!=i || pInfo->aOrderBy[i].desc ) break;
}
if( i==pInfo->nOrderBy ){
pInfo->orderByConsumed = 1;
}
}
return SQLITE_OK;
}
/*
** xOpen - Open a cursor.
*/
static int fts3termOpenMethod(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCsr){
Fts3termCursor *pCsr; /* Pointer to cursor object to return */
UNUSED_PARAMETER(pVTab);
pCsr = (Fts3termCursor *)sqlite3_malloc(sizeof(Fts3termCursor));
if( !pCsr ) return SQLITE_NOMEM;
memset(pCsr, 0, sizeof(Fts3termCursor));
*ppCsr = (sqlite3_vtab_cursor *)pCsr;
return SQLITE_OK;
}
/*
** xClose - Close a cursor.
*/
static int fts3termCloseMethod(sqlite3_vtab_cursor *pCursor){
Fts3Table *pFts3 = ((Fts3termTable *)pCursor->pVtab)->pFts3Tab;
Fts3termCursor *pCsr = (Fts3termCursor *)pCursor;
sqlite3Fts3SegmentsClose(pFts3);
sqlite3Fts3SegReaderFinish(&pCsr->csr);
sqlite3_free(pCsr);
return SQLITE_OK;
}
/*
** xNext - Advance the cursor to the next row, if any.
*/
static int fts3termNextMethod(sqlite3_vtab_cursor *pCursor){
Fts3termCursor *pCsr = (Fts3termCursor *)pCursor;
Fts3Table *pFts3 = ((Fts3termTable *)pCursor->pVtab)->pFts3Tab;
int rc;
sqlite3_int64 v;
/* Increment our pretend rowid value. */
pCsr->iRowid++;
/* Advance to the next term in the full-text index. */
if( pCsr->csr.aDoclist==0
|| pCsr->pNext>=&pCsr->csr.aDoclist[pCsr->csr.nDoclist-1]
){
rc = sqlite3Fts3SegReaderStep(pFts3, &pCsr->csr);
if( rc!=SQLITE_ROW ){
pCsr->isEof = 1;
return rc;
}
pCsr->iCol = 0;
pCsr->iPos = 0;
pCsr->iDocid = 0;
pCsr->pNext = pCsr->csr.aDoclist;
/* Read docid */
pCsr->pNext += sqlite3Fts3GetVarint(pCsr->pNext, &pCsr->iDocid);
}
pCsr->pNext += sqlite3Fts3GetVarint(pCsr->pNext, &v);
if( v==0 ){
pCsr->pNext += sqlite3Fts3GetVarint(pCsr->pNext, &v);
pCsr->iDocid += v;
pCsr->pNext += sqlite3Fts3GetVarint(pCsr->pNext, &v);
pCsr->iCol = 0;
pCsr->iPos = 0;
}
if( v==1 ){
pCsr->pNext += sqlite3Fts3GetVarint(pCsr->pNext, &v);
pCsr->iCol += v;
pCsr->iPos = 0;
pCsr->pNext += sqlite3Fts3GetVarint(pCsr->pNext, &v);
}
pCsr->iPos += (v - 2);
return SQLITE_OK;
}
/*
** xFilter - Initialize a cursor to point at the start of its data.
*/
static int fts3termFilterMethod(
sqlite3_vtab_cursor *pCursor, /* The cursor used for this query */
int idxNum, /* Strategy index */
const char *idxStr, /* Unused */
int nVal, /* Number of elements in apVal */
sqlite3_value **apVal /* Arguments for the indexing scheme */
){
Fts3termCursor *pCsr = (Fts3termCursor *)pCursor;
Fts3Table *pFts3 = ((Fts3termTable *)pCursor->pVtab)->pFts3Tab;
int rc;
UNUSED_PARAMETER(nVal);
UNUSED_PARAMETER(idxNum);
UNUSED_PARAMETER(idxStr);
UNUSED_PARAMETER(apVal);
assert( idxStr==0 && idxNum==0 );
/* In case this cursor is being reused, close and zero it. */
testcase(pCsr->filter.zTerm);
sqlite3Fts3SegReaderFinish(&pCsr->csr);
memset(&pCsr->csr, 0, ((u8*)&pCsr[1]) - (u8*)&pCsr->csr);
pCsr->filter.flags = FTS3_SEGMENT_REQUIRE_POS|FTS3_SEGMENT_IGNORE_EMPTY;
pCsr->filter.flags |= FTS3_SEGMENT_SCAN;
rc = sqlite3Fts3SegReaderCursor(pFts3, FTS3_SEGCURSOR_ALL,
pCsr->filter.zTerm, pCsr->filter.nTerm, 0, 1, &pCsr->csr
);
if( rc==SQLITE_OK ){
rc = sqlite3Fts3SegReaderStart(pFts3, &pCsr->csr, &pCsr->filter);
}
if( rc==SQLITE_OK ){
rc = fts3termNextMethod(pCursor);
}
return rc;
}
/*
** xEof - Return true if the cursor is at EOF, or false otherwise.
*/
static int fts3termEofMethod(sqlite3_vtab_cursor *pCursor){
Fts3termCursor *pCsr = (Fts3termCursor *)pCursor;
return pCsr->isEof;
}
/*
** xColumn - Return a column value.
*/
static int fts3termColumnMethod(
sqlite3_vtab_cursor *pCursor, /* Cursor to retrieve value from */
sqlite3_context *pCtx, /* Context for sqlite3_result_xxx() calls */
int iCol /* Index of column to read value from */
){
Fts3termCursor *p = (Fts3termCursor *)pCursor;
assert( iCol>=0 && iCol<=3 );
switch( iCol ){
case 0:
sqlite3_result_text(pCtx, p->csr.zTerm, p->csr.nTerm, SQLITE_TRANSIENT);
break;
case 1:
sqlite3_result_int64(pCtx, p->iDocid);
break;
case 2:
sqlite3_result_int64(pCtx, p->iCol);
break;
default:
sqlite3_result_int64(pCtx, p->iPos);
break;
}
return SQLITE_OK;
}
/*
** xRowid - Return the current rowid for the cursor.
*/
static int fts3termRowidMethod(
sqlite3_vtab_cursor *pCursor, /* Cursor to retrieve value from */
sqlite_int64 *pRowid /* OUT: Rowid value */
){
Fts3termCursor *pCsr = (Fts3termCursor *)pCursor;
*pRowid = pCsr->iRowid;
return SQLITE_OK;
}
/*
** Register the fts3term module with database connection db. Return SQLITE_OK
** if successful or an error code if sqlite3_create_module() fails.
*/
int sqlite3Fts3InitTerm(sqlite3 *db){
static const sqlite3_module fts3term_module = {
0, /* iVersion */
fts3termConnectMethod, /* xCreate */
fts3termConnectMethod, /* xConnect */
fts3termBestIndexMethod, /* xBestIndex */
fts3termDisconnectMethod, /* xDisconnect */
fts3termDisconnectMethod, /* xDestroy */
fts3termOpenMethod, /* xOpen */
fts3termCloseMethod, /* xClose */
fts3termFilterMethod, /* xFilter */
fts3termNextMethod, /* xNext */
fts3termEofMethod, /* xEof */
fts3termColumnMethod, /* xColumn */
fts3termRowidMethod, /* xRowid */
0, /* xUpdate */
0, /* xBegin */
0, /* xSync */
0, /* xCommit */
0, /* xRollback */
0, /* xFindFunction */
0 /* xRename */
};
int rc; /* Return code */
rc = sqlite3_create_module(db, "fts4term", &fts3term_module, 0);
return rc;
}
#endif
#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */

View File

@ -542,6 +542,14 @@ static int fts3PendingTermsAdd(
assert( pTokenizer && pModule );
/* If the user has inserted a NULL value, this function may be called with
** zText==0. In this case, add zero token entries to the hash table and
** return early. */
if( zText==0 ){
*pnWord = 0;
return SQLITE_OK;
}
rc = pModule->xOpen(pTokenizer, zText, -1, &pCsr);
if( rc!=SQLITE_OK ){
return rc;
@ -632,11 +640,9 @@ static int fts3InsertTerms(Fts3Table *p, sqlite3_value **apVal, u32 *aSz){
int i; /* Iterator variable */
for(i=2; i<p->nColumn+2; i++){
const char *zText = (const char *)sqlite3_value_text(apVal[i]);
if( zText ){
int rc = fts3PendingTermsAdd(p, zText, i-2, &aSz[i-2]);
if( rc!=SQLITE_OK ){
return rc;
}
int rc = fts3PendingTermsAdd(p, zText, i-2, &aSz[i-2]);
if( rc!=SQLITE_OK ){
return rc;
}
aSz[p->nColumn] += sqlite3_value_bytes(apVal[i]);
}
@ -741,14 +747,14 @@ static int fts3DeleteAll(Fts3Table *p){
static void fts3DeleteTerms(
int *pRC, /* Result code */
Fts3Table *p, /* The FTS table to delete from */
sqlite3_value **apVal, /* apVal[] contains the docid to be deleted */
sqlite3_value *pRowid, /* The docid to be deleted */
u32 *aSz /* Sizes of deleted document written here */
){
int rc;
sqlite3_stmt *pSelect;
if( *pRC ) return;
rc = fts3SqlStmt(p, SQL_SELECT_CONTENT_BY_ROWID, &pSelect, apVal);
rc = fts3SqlStmt(p, SQL_SELECT_CONTENT_BY_ROWID, &pSelect, &pRowid);
if( rc==SQLITE_OK ){
if( SQLITE_ROW==sqlite3_step(pSelect) ){
int i;
@ -1888,16 +1894,16 @@ static void fts3SegWriterFree(SegmentWriter *pWriter){
** The first value in the apVal[] array is assumed to contain an integer.
** This function tests if there exist any documents with docid values that
** are different from that integer. i.e. if deleting the document with docid
** apVal[0] would mean the FTS3 table were empty.
** pRowid would mean the FTS3 table were empty.
**
** If successful, *pisEmpty is set to true if the table is empty except for
** document apVal[0], or false otherwise, and SQLITE_OK is returned. If an
** document pRowid, or false otherwise, and SQLITE_OK is returned. If an
** error occurs, an SQLite error code is returned.
*/
static int fts3IsEmpty(Fts3Table *p, sqlite3_value **apVal, int *pisEmpty){
static int fts3IsEmpty(Fts3Table *p, sqlite3_value *pRowid, int *pisEmpty){
sqlite3_stmt *pStmt;
int rc;
rc = fts3SqlStmt(p, SQL_IS_EMPTY, &pStmt, apVal);
rc = fts3SqlStmt(p, SQL_IS_EMPTY, &pStmt, &pRowid);
if( rc==SQLITE_OK ){
if( SQLITE_ROW==sqlite3_step(pStmt) ){
*pisEmpty = sqlite3_column_int(pStmt, 0);
@ -2621,6 +2627,40 @@ int sqlite3Fts3DeferToken(
return SQLITE_OK;
}
/*
** SQLite value pRowid contains the rowid of a row that may or may not be
** present in the FTS3 table. If it is, delete it and adjust the contents
** of subsiduary data structures accordingly.
*/
static int fts3DeleteByRowid(
Fts3Table *p,
sqlite3_value *pRowid,
int *pnDoc,
u32 *aSzDel
){
int isEmpty = 0;
int rc = fts3IsEmpty(p, pRowid, &isEmpty);
if( rc==SQLITE_OK ){
if( isEmpty ){
/* Deleting this row means the whole table is empty. In this case
** delete the contents of all three tables and throw away any
** data in the pendingTerms hash table. */
rc = fts3DeleteAll(p);
*pnDoc = *pnDoc - 1;
}else{
sqlite3_int64 iRemove = sqlite3_value_int64(pRowid);
rc = fts3PendingTermsDocid(p, iRemove);
fts3DeleteTerms(&rc, p, pRowid, aSzDel);
fts3SqlExec(&rc, p, SQL_DELETE_CONTENT, &pRowid);
if( sqlite3_changes(p->db) ) *pnDoc = *pnDoc - 1;
if( p->bHasDocsize ){
fts3SqlExec(&rc, p, SQL_DELETE_DOCSIZE, &pRowid);
}
}
}
return rc;
}
/*
** This function does the work for the xUpdate method of FTS3 virtual
@ -2639,46 +2679,91 @@ int sqlite3Fts3UpdateMethod(
u32 *aSzIns; /* Sizes of inserted documents */
u32 *aSzDel; /* Sizes of deleted documents */
int nChng = 0; /* Net change in number of documents */
int bInsertDone = 0;
assert( p->pSegments==0 );
/* Check for a "special" INSERT operation. One of the form:
**
** INSERT INTO xyz(xyz) VALUES('command');
*/
if( nArg>1
&& sqlite3_value_type(apVal[0])==SQLITE_NULL
&& sqlite3_value_type(apVal[p->nColumn+2])!=SQLITE_NULL
){
return fts3SpecialInsert(p, apVal[p->nColumn+2]);
}
/* Allocate space to hold the change in document sizes */
aSzIns = sqlite3_malloc( sizeof(aSzIns[0])*(p->nColumn+1)*2 );
if( aSzIns==0 ) return SQLITE_NOMEM;
aSzDel = &aSzIns[p->nColumn+1];
memset(aSzIns, 0, sizeof(aSzIns[0])*(p->nColumn+1)*2);
/* If this is a DELETE or UPDATE operation, remove the old record. */
if( sqlite3_value_type(apVal[0])!=SQLITE_NULL ){
int isEmpty = 0;
rc = fts3IsEmpty(p, apVal, &isEmpty);
if( rc==SQLITE_OK ){
if( isEmpty ){
/* Deleting this row means the whole table is empty. In this case
** delete the contents of all three tables and throw away any
** data in the pendingTerms hash table.
*/
rc = fts3DeleteAll(p);
/* If this is an INSERT operation, or an UPDATE that modifies the rowid
** value, then this operation requires constraint handling.
**
** If the on-conflict mode is REPLACE, this means that the existing row
** should be deleted from the database before inserting the new row. Or,
** if the on-conflict mode is other than REPLACE, then this method must
** detect the conflict and return SQLITE_CONSTRAINT before beginning to
** modify the database file.
*/
if( nArg>1 ){
/* Find the value object that holds the new rowid value. */
sqlite3_value *pNewRowid = apVal[3+p->nColumn];
if( sqlite3_value_type(pNewRowid)==SQLITE_NULL ){
pNewRowid = apVal[1];
}
if( sqlite3_value_type(pNewRowid)!=SQLITE_NULL && (
sqlite3_value_type(apVal[0])==SQLITE_NULL
|| sqlite3_value_int64(apVal[0])!=sqlite3_value_int64(pNewRowid)
)){
/* The new rowid is not NULL (in this case the rowid will be
** automatically assigned and there is no chance of a conflict), and
** the statement is either an INSERT or an UPDATE that modifies the
** rowid column. So if the conflict mode is REPLACE, then delete any
** existing row with rowid=pNewRowid.
**
** Or, if the conflict mode is not REPLACE, insert the new record into
** the %_content table. If we hit the duplicate rowid constraint (or any
** other error) while doing so, return immediately.
**
** This branch may also run if pNewRowid contains a value that cannot
** be losslessly converted to an integer. In this case, the eventual
** call to fts3InsertData() (either just below or further on in this
** function) will return SQLITE_MISMATCH. If fts3DeleteByRowid is
** invoked, it will delete zero rows (since no row will have
** docid=$pNewRowid if $pNewRowid is not an integer value).
*/
if( sqlite3_vtab_on_conflict(p->db)==SQLITE_REPLACE ){
rc = fts3DeleteByRowid(p, pNewRowid, &nChng, aSzDel);
}else{
isRemove = 1;
iRemove = sqlite3_value_int64(apVal[0]);
rc = fts3PendingTermsDocid(p, iRemove);
fts3DeleteTerms(&rc, p, apVal, aSzDel);
fts3SqlExec(&rc, p, SQL_DELETE_CONTENT, apVal);
if( p->bHasDocsize ){
fts3SqlExec(&rc, p, SQL_DELETE_DOCSIZE, apVal);
}
nChng--;
rc = fts3InsertData(p, apVal, pRowid);
bInsertDone = 1;
}
}
}else if( sqlite3_value_type(apVal[p->nColumn+2])!=SQLITE_NULL ){
}
if( rc!=SQLITE_OK ){
sqlite3_free(aSzIns);
return fts3SpecialInsert(p, apVal[p->nColumn+2]);
return rc;
}
/* If this is a DELETE or UPDATE operation, remove the old record. */
if( sqlite3_value_type(apVal[0])!=SQLITE_NULL ){
assert( sqlite3_value_type(apVal[0])==SQLITE_INTEGER );
rc = fts3DeleteByRowid(p, apVal[0], &nChng, aSzDel);
isRemove = 1;
iRemove = sqlite3_value_int64(apVal[0]);
}
/* If this is an INSERT or UPDATE operation, insert the new record. */
if( nArg>1 && rc==SQLITE_OK ){
rc = fts3InsertData(p, apVal, pRowid);
if( bInsertDone==0 ){
rc = fts3InsertData(p, apVal, pRowid);
if( rc==SQLITE_CONSTRAINT ) rc = SQLITE_CORRUPT;
}
if( rc==SQLITE_OK && (!isRemove || *pRowid!=iRemove) ){
rc = fts3PendingTermsDocid(p, *pRowid);
}

View File

@ -2625,6 +2625,90 @@ static int newRowid(Rtree *pRtree, i64 *piRowid){
return rc;
}
/*
** Remove the entry with rowid=iDelete from the r-tree structure.
*/
static int rtreeDeleteRowid(Rtree *pRtree, sqlite3_int64 iDelete){
int rc; /* Return code */
RtreeNode *pLeaf; /* Leaf node containing record iDelete */
int iCell; /* Index of iDelete cell in pLeaf */
RtreeNode *pRoot; /* Root node of rtree structure */
/* Obtain a reference to the root node to initialise Rtree.iDepth */
rc = nodeAcquire(pRtree, 1, 0, &pRoot);
/* Obtain a reference to the leaf node that contains the entry
** about to be deleted.
*/
if( rc==SQLITE_OK ){
rc = findLeafNode(pRtree, iDelete, &pLeaf);
}
/* Delete the cell in question from the leaf node. */
if( rc==SQLITE_OK ){
int rc2;
rc = nodeRowidIndex(pRtree, pLeaf, iDelete, &iCell);
if( rc==SQLITE_OK ){
rc = deleteCell(pRtree, pLeaf, iCell, 0);
}
rc2 = nodeRelease(pRtree, pLeaf);
if( rc==SQLITE_OK ){
rc = rc2;
}
}
/* Delete the corresponding entry in the <rtree>_rowid table. */
if( rc==SQLITE_OK ){
sqlite3_bind_int64(pRtree->pDeleteRowid, 1, iDelete);
sqlite3_step(pRtree->pDeleteRowid);
rc = sqlite3_reset(pRtree->pDeleteRowid);
}
/* Check if the root node now has exactly one child. If so, remove
** it, schedule the contents of the child for reinsertion and
** reduce the tree height by one.
**
** This is equivalent to copying the contents of the child into
** the root node (the operation that Gutman's paper says to perform
** in this scenario).
*/
if( rc==SQLITE_OK && pRtree->iDepth>0 && NCELL(pRoot)==1 ){
int rc2;
RtreeNode *pChild;
i64 iChild = nodeGetRowid(pRtree, pRoot, 0);
rc = nodeAcquire(pRtree, iChild, pRoot, &pChild);
if( rc==SQLITE_OK ){
rc = removeNode(pRtree, pChild, pRtree->iDepth-1);
}
rc2 = nodeRelease(pRtree, pChild);
if( rc==SQLITE_OK ) rc = rc2;
if( rc==SQLITE_OK ){
pRtree->iDepth--;
writeInt16(pRoot->zData, pRtree->iDepth);
pRoot->isDirty = 1;
}
}
/* Re-insert the contents of any underfull nodes removed from the tree. */
for(pLeaf=pRtree->pDeleted; pLeaf; pLeaf=pRtree->pDeleted){
if( rc==SQLITE_OK ){
rc = reinsertNodeContent(pRtree, pLeaf);
}
pRtree->pDeleted = pLeaf->pNext;
sqlite3_free(pLeaf);
}
/* Release the reference to the root node. */
if( rc==SQLITE_OK ){
rc = nodeRelease(pRtree, pRoot);
}else{
nodeRelease(pRtree, pRoot);
}
return rc;
}
/*
** The xUpdate method for rtree module virtual tables.
*/
@ -2636,103 +2720,25 @@ static int rtreeUpdate(
){
Rtree *pRtree = (Rtree *)pVtab;
int rc = SQLITE_OK;
RtreeCell cell; /* New cell to insert if nData>1 */
int bHaveRowid = 0; /* Set to 1 after new rowid is determined */
rtreeReference(pRtree);
assert(nData>=1);
/* If azData[0] is not an SQL NULL value, it is the rowid of a
** record to delete from the r-tree table. The following block does
** just that.
/* Constraint handling. A write operation on an r-tree table may return
** SQLITE_CONSTRAINT for two reasons:
**
** 1. A duplicate rowid value, or
** 2. The supplied data violates the "x2>=x1" constraint.
**
** In the first case, if the conflict-handling mode is REPLACE, then
** the conflicting row can be removed before proceeding. In the second
** case, SQLITE_CONSTRAINT must be returned regardless of the
** conflict-handling mode specified by the user.
*/
if( sqlite3_value_type(azData[0])!=SQLITE_NULL ){
i64 iDelete; /* The rowid to delete */
RtreeNode *pLeaf; /* Leaf node containing record iDelete */
int iCell; /* Index of iDelete cell in pLeaf */
RtreeNode *pRoot;
/* Obtain a reference to the root node to initialise Rtree.iDepth */
rc = nodeAcquire(pRtree, 1, 0, &pRoot);
/* Obtain a reference to the leaf node that contains the entry
** about to be deleted.
*/
if( rc==SQLITE_OK ){
iDelete = sqlite3_value_int64(azData[0]);
rc = findLeafNode(pRtree, iDelete, &pLeaf);
}
/* Delete the cell in question from the leaf node. */
if( rc==SQLITE_OK ){
int rc2;
rc = nodeRowidIndex(pRtree, pLeaf, iDelete, &iCell);
if( rc==SQLITE_OK ){
rc = deleteCell(pRtree, pLeaf, iCell, 0);
}
rc2 = nodeRelease(pRtree, pLeaf);
if( rc==SQLITE_OK ){
rc = rc2;
}
}
/* Delete the corresponding entry in the <rtree>_rowid table. */
if( rc==SQLITE_OK ){
sqlite3_bind_int64(pRtree->pDeleteRowid, 1, iDelete);
sqlite3_step(pRtree->pDeleteRowid);
rc = sqlite3_reset(pRtree->pDeleteRowid);
}
/* Check if the root node now has exactly one child. If so, remove
** it, schedule the contents of the child for reinsertion and
** reduce the tree height by one.
**
** This is equivalent to copying the contents of the child into
** the root node (the operation that Gutman's paper says to perform
** in this scenario).
*/
if( rc==SQLITE_OK && pRtree->iDepth>0 && NCELL(pRoot)==1 ){
int rc2;
RtreeNode *pChild;
i64 iChild = nodeGetRowid(pRtree, pRoot, 0);
rc = nodeAcquire(pRtree, iChild, pRoot, &pChild);
if( rc==SQLITE_OK ){
rc = removeNode(pRtree, pChild, pRtree->iDepth-1);
}
rc2 = nodeRelease(pRtree, pChild);
if( rc==SQLITE_OK ) rc = rc2;
if( rc==SQLITE_OK ){
pRtree->iDepth--;
writeInt16(pRoot->zData, pRtree->iDepth);
pRoot->isDirty = 1;
}
}
/* Re-insert the contents of any underfull nodes removed from the tree. */
for(pLeaf=pRtree->pDeleted; pLeaf; pLeaf=pRtree->pDeleted){
if( rc==SQLITE_OK ){
rc = reinsertNodeContent(pRtree, pLeaf);
}
pRtree->pDeleted = pLeaf->pNext;
sqlite3_free(pLeaf);
}
/* Release the reference to the root node. */
if( rc==SQLITE_OK ){
rc = nodeRelease(pRtree, pRoot);
}else{
nodeRelease(pRtree, pRoot);
}
}
/* If the azData[] array contains more than one element, elements
** (azData[2]..azData[argc-1]) contain a new record to insert into
** the r-tree structure.
*/
if( rc==SQLITE_OK && nData>1 ){
/* Insert a new record into the r-tree */
RtreeCell cell;
if( nData>1 ){
int ii;
RtreeNode *pLeaf;
/* Populate the cell.aCoord[] array. The first coordinate is azData[3]. */
assert( nData==(pRtree->nDim*2 + 3) );
@ -2756,18 +2762,49 @@ static int rtreeUpdate(
}
}
/* Figure out the rowid of the new row. */
if( sqlite3_value_type(azData[2])==SQLITE_NULL ){
rc = newRowid(pRtree, &cell.iRowid);
}else{
/* If a rowid value was supplied, check if it is already present in
** the table. If so, the constraint has failed. */
if( sqlite3_value_type(azData[2])!=SQLITE_NULL ){
cell.iRowid = sqlite3_value_int64(azData[2]);
sqlite3_bind_int64(pRtree->pReadRowid, 1, cell.iRowid);
if( SQLITE_ROW==sqlite3_step(pRtree->pReadRowid) ){
sqlite3_reset(pRtree->pReadRowid);
rc = SQLITE_CONSTRAINT;
goto constraint;
if( sqlite3_value_type(azData[0])==SQLITE_NULL
|| sqlite3_value_int64(azData[0])!=cell.iRowid
){
int steprc;
sqlite3_bind_int64(pRtree->pReadRowid, 1, cell.iRowid);
steprc = sqlite3_step(pRtree->pReadRowid);
rc = sqlite3_reset(pRtree->pReadRowid);
if( SQLITE_ROW==steprc ){
if( sqlite3_vtab_on_conflict(pRtree->db)==SQLITE_REPLACE ){
rc = rtreeDeleteRowid(pRtree, cell.iRowid);
}else{
rc = SQLITE_CONSTRAINT;
goto constraint;
}
}
}
rc = sqlite3_reset(pRtree->pReadRowid);
bHaveRowid = 1;
}
}
/* If azData[0] is not an SQL NULL value, it is the rowid of a
** record to delete from the r-tree table. The following block does
** just that.
*/
if( sqlite3_value_type(azData[0])!=SQLITE_NULL ){
rc = rtreeDeleteRowid(pRtree, sqlite3_value_int64(azData[0]));
}
/* If the azData[] array contains more than one element, elements
** (azData[2]..azData[argc-1]) contain a new record to insert into
** the r-tree structure.
*/
if( rc==SQLITE_OK && nData>1 ){
/* Insert the new record into the r-tree */
RtreeNode *pLeaf;
/* Figure out the rowid of the new row. */
if( bHaveRowid==0 ){
rc = newRowid(pRtree, &cell.iRowid);
}
*pRowid = cell.iRowid;
@ -3008,6 +3045,8 @@ static int rtreeInit(
return SQLITE_ERROR;
}
sqlite3_vtab_config(db, SQLITE_VTAB_CONSTRAINT_SUPPORT, 1);
/* Allocate the sqlite3_vtab structure */
nDb = strlen(argv[1]);
nName = strlen(argv[2]);

View File

@ -31,6 +31,8 @@ source $testdir/tester.tcl
# rtree-7.*: Test renaming an r-tree table.
# rtree-8.*: Test constrained scans of r-tree data.
#
# rtree-12.*: Test that on-conflict clauses are supported.
#
ifcapable !rtree {
finish_test
@ -416,4 +418,83 @@ do_test rtree-11.2 {
}
} {2}
#-------------------------------------------------------------------------
# Test on-conflict clause handling.
#
db_delete_and_reopen
do_execsql_test 12.0 {
CREATE VIRTUAL TABLE t1 USING rtree_i32(idx, x1, x2, y1, y2);
INSERT INTO t1 VALUES(1, 1, 2, 3, 4);
INSERT INTO t1 VALUES(2, 2, 3, 4, 5);
INSERT INTO t1 VALUES(3, 3, 4, 5, 6);
CREATE TABLE source(idx, x1, x2, y1, y2);
INSERT INTO source VALUES(5, 8, 8, 8, 8);
INSERT INTO source VALUES(2, 7, 7, 7, 7);
}
db_save_and_close
foreach {tn sql_template testdata} {
1 "INSERT %CONF% INTO t1 VALUES(2, 7, 7, 7, 7)" {
ROLLBACK 0 1 {1 1 2 3 4 2 2 3 4 5 3 3 4 5 6}
ABORT 0 1 {1 1 2 3 4 2 2 3 4 5 3 3 4 5 6 4 4 5 6 7}
IGNORE 0 0 {1 1 2 3 4 2 2 3 4 5 3 3 4 5 6 4 4 5 6 7}
FAIL 0 1 {1 1 2 3 4 2 2 3 4 5 3 3 4 5 6 4 4 5 6 7}
REPLACE 0 0 {1 1 2 3 4 2 7 7 7 7 3 3 4 5 6 4 4 5 6 7}
}
2 "INSERT %CONF% INTO t1 SELECT * FROM source" {
ROLLBACK 1 1 {1 1 2 3 4 2 2 3 4 5 3 3 4 5 6}
ABORT 1 1 {1 1 2 3 4 2 2 3 4 5 3 3 4 5 6 4 4 5 6 7}
IGNORE 1 0 {1 1 2 3 4 2 2 3 4 5 3 3 4 5 6 4 4 5 6 7 5 8 8 8 8}
FAIL 1 1 {1 1 2 3 4 2 2 3 4 5 3 3 4 5 6 4 4 5 6 7 5 8 8 8 8}
REPLACE 1 0 {1 1 2 3 4 2 7 7 7 7 3 3 4 5 6 4 4 5 6 7 5 8 8 8 8}
}
3 "UPDATE %CONF% t1 SET idx = 2 WHERE idx = 4" {
ROLLBACK 1 1 {1 1 2 3 4 2 2 3 4 5 3 3 4 5 6}
ABORT 1 1 {1 1 2 3 4 2 2 3 4 5 3 3 4 5 6 4 4 5 6 7}
IGNORE 1 0 {1 1 2 3 4 2 2 3 4 5 3 3 4 5 6 4 4 5 6 7}
FAIL 1 1 {1 1 2 3 4 2 2 3 4 5 3 3 4 5 6 4 4 5 6 7}
REPLACE 1 0 {1 1 2 3 4 2 4 5 6 7 3 3 4 5 6}
}
3 "UPDATE %CONF% t1 SET idx = ((idx+1)%5)+1 WHERE idx > 2" {
ROLLBACK 1 1 {1 1 2 3 4 2 2 3 4 5 3 3 4 5 6}
ABORT 1 1 {1 1 2 3 4 2 2 3 4 5 3 3 4 5 6 4 4 5 6 7}
IGNORE 1 0 {1 1 2 3 4 2 2 3 4 5 4 4 5 6 7 5 3 4 5 6}
FAIL 1 1 {1 1 2 3 4 2 2 3 4 5 4 4 5 6 7 5 3 4 5 6}
REPLACE 1 0 {1 4 5 6 7 2 2 3 4 5 5 3 4 5 6}
}
4 "INSERT %CONF% INTO t1 VALUES(2, 7, 6, 7, 7)" {
ROLLBACK 0 1 {1 1 2 3 4 2 2 3 4 5 3 3 4 5 6}
ABORT 0 1 {1 1 2 3 4 2 2 3 4 5 3 3 4 5 6 4 4 5 6 7}
IGNORE 0 0 {1 1 2 3 4 2 2 3 4 5 3 3 4 5 6 4 4 5 6 7}
FAIL 0 1 {1 1 2 3 4 2 2 3 4 5 3 3 4 5 6 4 4 5 6 7}
REPLACE 0 1 {1 1 2 3 4 2 2 3 4 5 3 3 4 5 6 4 4 5 6 7}
}
} {
foreach {mode uses error data} $testdata {
db_restore_and_reopen
set sql [string map [list %CONF% "OR $mode"] $sql_template]
set testname "12.$tn.[string tolower $mode]"
execsql {
BEGIN;
INSERT INTO t1 VALUES(4, 4, 5, 6, 7);
}
set res(0) {0 {}}
set res(1) {1 {constraint failed}}
do_catchsql_test $testname.1 $sql $res($error)
do_test $testname.2 [list sql_uses_stmt db $sql] $uses
do_execsql_test $testname.3 { SELECT * FROM t1 ORDER BY idx } $data
do_test $testname.4 { rtree_check db t1 } 0
db close
}
}
finish_test