1
0
mirror of https://github.com/sqlite/sqlite.git synced 2025-07-30 19:03:16 +03:00

Add some very simple test cases (and resulting bug fixes) for release_memory(). (CVS 2826)

FossilOrigin-Name: 154282fca54bf03d310d6931660f99805bb5477f
This commit is contained in:
danielk1977
2005-12-19 14:18:11 +00:00
parent 13f7299bbe
commit 0190d1da46
9 changed files with 234 additions and 57 deletions

128
test/malloc5.test Normal file
View File

@ -0,0 +1,128 @@
# 2005 November 30
#
# The author disclaims copyright to this source code. In place of
# a legal notice, here is a blessing:
#
# May you do good and not evil.
# May you find forgiveness for yourself and forgive others.
# May you share freely, never taking more than you give.
#
#***********************************************************************
#
# $Id: malloc5.test,v 1.1 2005/12/19 14:18:12 danielk1977 Exp $
#---------------------------------------------------------------------------
# NOTES ON EXPECTED BEHAVIOUR
#
#---------------------------------------------------------------------------
set testdir [file dirname $argv0]
source $testdir/tester.tcl
do_test malloc5-1.1 {
# Simplest possible test. Call [db release_memory] when there is exactly
# one unused page in a single pager cache. This test case set's the
# value of the ::pgalloc variable, which is used in subsequent tests.
#
# Note: Even though executing this statement on an empty database
# modifies 2 pages (the root of sqlite_master and the new root page),
# the sqlite_master root (page 1) is never freed because the btree layer
# retains a reference to it for the entire transaction.
execsql {
BEGIN;
CREATE TABLE abc(a, b, c);
}
set ::pgalloc [db release_memory]
expr $::pgalloc > 0
} {1}
do_test malloc5-1.2 {
# Test that the transaction started in the above test is still active.
# Because the page freed had been written to, freeing it required a
# journal sync and exclusive lock on the database file. Test the file
# appears to be locked.
sqlite3 db2 test.db
catchsql {
SELECT * FROM abc;
} db2
} {1 {database is locked}}
do_test malloc5-1.3 {
# Again call [db release_memory] when there is exactly one unused page
# in the cache. The same amount of memory is required, but no journal-sync
# or exclusive lock should be established.
execsql {
COMMIT;
BEGIN;
SELECT * FROM abc;
}
db release_memory
} $::pgalloc
do_test malloc5-1.4 {
# Database should not be locked this time.
catchsql {
SELECT * FROM abc;
} db2
} {0 {}}
do_test malloc5-1.5 {
# Manipulate the cache so that it contains two unused pages. One requires
# a journal-sync to free, the other does not.
execsql {
SELECT * FROM abc;
CREATE TABLE def(d, e, f);
}
db release_memory 500
} $::pgalloc
do_test malloc5-1.6 {
# Database should not be locked this time. The above test case only
# requested 500 bytes of memory, which can be obtained by freeing the page
# that does not require an fsync().
catchsql {
SELECT * FROM abc;
} db2
} {0 {}}
do_test malloc5-1.7 {
# Release another 500 bytes of memory. This time we require a sync(),
# so the database file will be locked afterwards.
db release_memory 500
} $::pgalloc
do_test malloc5-1.8 {
catchsql {
SELECT * FROM abc;
} db2
} {1 {database is locked}}
do_test malloc5-1.9 {
execsql {
COMMIT;
}
} {}
do_test malloc5-2.1 {
# Put some data in tables abc and def. Both tables are still wholly
# contained within their root pages.
execsql {
INSERT INTO abc VALUES(1, 2, 3);
INSERT INTO abc VALUES(4, 5, 6);
INSERT INTO def VALUES(7, 8, 9);
INSERT INTO def VALUES(10,11,12);
}
} {}
do_test malloc5-2.2 {
# Load the root-page for table def into the cache. Then query table abc.
# Halfway through the query call sqlite3_release_memory(). The goal of this
# test is to make sure we don't free pages that are in use (specifically,
# the root of table abc).
set nRelease 0
execsql {
BEGIN;
SELECT * FROM def;
}
db eval {SELECT * FROM abc} {
incr nRelease [db release_memory]
lappend data $a $b $c
}
list $nRelease $data
} [list $pgalloc [list 1 2 3 4 5 6]]
finish_test