mirror of
https://github.com/postgres/postgres.git
synced 2025-07-23 03:21:12 +03:00
At one time it wasn't terribly important what column names were associated with the fields of a composite Datum, but since the introduction of operations like row_to_json(), it's important that looking up the rowtype ID embedded in the Datum returns the column names that users would expect. That did not work terribly well before this patch: you could get the column names of the underlying table, or column aliases from any level of the query, depending on minor details of the plan tree. You could even get totally empty field names, which is disastrous for cases like row_to_json(). To fix this for whole-row Vars, look to the RTE referenced by the Var, and make sure its column aliases are applied to the rowtype associated with the result Datums. This is a tad scary because we might have to return a transient RECORD type even though the Var is declared as having some named rowtype. In principle it should be all right because the record type will still be physically compatible with the named rowtype; but I had to weaken one Assert in ExecEvalConvertRowtype, and there might be third-party code containing similar assumptions. Similarly, RowExprs have to be willing to override the column names coming from a named composite result type and produce a RECORD when the column aliases visible at the site of the RowExpr differ from the underlying table's column names. In passing, revert the decision made in commit398f70ec07
to add an alias-list argument to ExecTypeFromExprList: better to provide that functionality in a separate function. This also reverts most of the code changes ind685814835
, which we don't need because we're no longer depending on the tupdesc found in the child plan node's result slot to be blessed. Back-patch to 9.4, but not earlier, since this solution changes the results in some cases that users might not have realized were buggy. We'll apply a more restricted form of this patch in older branches.
622 lines
17 KiB
C
622 lines
17 KiB
C
/*-------------------------------------------------------------------------
|
|
*
|
|
* nodeFunctionscan.c
|
|
* Support routines for scanning RangeFunctions (functions in rangetable).
|
|
*
|
|
* Portions Copyright (c) 1996-2014, PostgreSQL Global Development Group
|
|
* Portions Copyright (c) 1994, Regents of the University of California
|
|
*
|
|
*
|
|
* IDENTIFICATION
|
|
* src/backend/executor/nodeFunctionscan.c
|
|
*
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
/*
|
|
* INTERFACE ROUTINES
|
|
* ExecFunctionScan scans a function.
|
|
* ExecFunctionNext retrieve next tuple in sequential order.
|
|
* ExecInitFunctionScan creates and initializes a functionscan node.
|
|
* ExecEndFunctionScan releases any storage allocated.
|
|
* ExecReScanFunctionScan rescans the function
|
|
*/
|
|
#include "postgres.h"
|
|
|
|
#include "catalog/pg_type.h"
|
|
#include "executor/nodeFunctionscan.h"
|
|
#include "funcapi.h"
|
|
#include "nodes/nodeFuncs.h"
|
|
#include "utils/builtins.h"
|
|
#include "utils/memutils.h"
|
|
|
|
|
|
/*
|
|
* Runtime data for each function being scanned.
|
|
*/
|
|
typedef struct FunctionScanPerFuncState
|
|
{
|
|
ExprState *funcexpr; /* state of the expression being evaluated */
|
|
TupleDesc tupdesc; /* desc of the function result type */
|
|
int colcount; /* expected number of result columns */
|
|
Tuplestorestate *tstore; /* holds the function result set */
|
|
int64 rowcount; /* # of rows in result set, -1 if not known */
|
|
TupleTableSlot *func_slot; /* function result slot (or NULL) */
|
|
} FunctionScanPerFuncState;
|
|
|
|
static TupleTableSlot *FunctionNext(FunctionScanState *node);
|
|
|
|
|
|
/* ----------------------------------------------------------------
|
|
* Scan Support
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
/* ----------------------------------------------------------------
|
|
* FunctionNext
|
|
*
|
|
* This is a workhorse for ExecFunctionScan
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
static TupleTableSlot *
|
|
FunctionNext(FunctionScanState *node)
|
|
{
|
|
EState *estate;
|
|
ScanDirection direction;
|
|
TupleTableSlot *scanslot;
|
|
bool alldone;
|
|
int64 oldpos;
|
|
int funcno;
|
|
int att;
|
|
|
|
/*
|
|
* get information from the estate and scan state
|
|
*/
|
|
estate = node->ss.ps.state;
|
|
direction = estate->es_direction;
|
|
scanslot = node->ss.ss_ScanTupleSlot;
|
|
|
|
if (node->simple)
|
|
{
|
|
/*
|
|
* Fast path for the trivial case: the function return type and scan
|
|
* result type are the same, so we fetch the function result straight
|
|
* into the scan result slot. No need to update ordinality or
|
|
* rowcounts either.
|
|
*/
|
|
Tuplestorestate *tstore = node->funcstates[0].tstore;
|
|
|
|
/*
|
|
* If first time through, read all tuples from function and put them
|
|
* in a tuplestore. Subsequent calls just fetch tuples from
|
|
* tuplestore.
|
|
*/
|
|
if (tstore == NULL)
|
|
{
|
|
node->funcstates[0].tstore = tstore =
|
|
ExecMakeTableFunctionResult(node->funcstates[0].funcexpr,
|
|
node->ss.ps.ps_ExprContext,
|
|
node->argcontext,
|
|
node->funcstates[0].tupdesc,
|
|
node->eflags & EXEC_FLAG_BACKWARD);
|
|
|
|
/*
|
|
* paranoia - cope if the function, which may have constructed the
|
|
* tuplestore itself, didn't leave it pointing at the start. This
|
|
* call is fast, so the overhead shouldn't be an issue.
|
|
*/
|
|
tuplestore_rescan(tstore);
|
|
}
|
|
|
|
/*
|
|
* Get the next tuple from tuplestore.
|
|
*/
|
|
(void) tuplestore_gettupleslot(tstore,
|
|
ScanDirectionIsForward(direction),
|
|
false,
|
|
scanslot);
|
|
return scanslot;
|
|
}
|
|
|
|
/*
|
|
* Increment or decrement ordinal counter before checking for end-of-data,
|
|
* so that we can move off either end of the result by 1 (and no more than
|
|
* 1) without losing correct count. See PortalRunSelect for why we can
|
|
* assume that we won't be called repeatedly in the end-of-data state.
|
|
*/
|
|
oldpos = node->ordinal;
|
|
if (ScanDirectionIsForward(direction))
|
|
node->ordinal++;
|
|
else
|
|
node->ordinal--;
|
|
|
|
/*
|
|
* Main loop over functions.
|
|
*
|
|
* We fetch the function results into func_slots (which match the function
|
|
* return types), and then copy the values to scanslot (which matches the
|
|
* scan result type), setting the ordinal column (if any) as well.
|
|
*/
|
|
ExecClearTuple(scanslot);
|
|
att = 0;
|
|
alldone = true;
|
|
for (funcno = 0; funcno < node->nfuncs; funcno++)
|
|
{
|
|
FunctionScanPerFuncState *fs = &node->funcstates[funcno];
|
|
int i;
|
|
|
|
/*
|
|
* If first time through, read all tuples from function and put them
|
|
* in a tuplestore. Subsequent calls just fetch tuples from
|
|
* tuplestore.
|
|
*/
|
|
if (fs->tstore == NULL)
|
|
{
|
|
fs->tstore =
|
|
ExecMakeTableFunctionResult(fs->funcexpr,
|
|
node->ss.ps.ps_ExprContext,
|
|
node->argcontext,
|
|
fs->tupdesc,
|
|
node->eflags & EXEC_FLAG_BACKWARD);
|
|
|
|
/*
|
|
* paranoia - cope if the function, which may have constructed the
|
|
* tuplestore itself, didn't leave it pointing at the start. This
|
|
* call is fast, so the overhead shouldn't be an issue.
|
|
*/
|
|
tuplestore_rescan(fs->tstore);
|
|
}
|
|
|
|
/*
|
|
* Get the next tuple from tuplestore.
|
|
*
|
|
* If we have a rowcount for the function, and we know the previous
|
|
* read position was out of bounds, don't try the read. This allows
|
|
* backward scan to work when there are mixed row counts present.
|
|
*/
|
|
if (fs->rowcount != -1 && fs->rowcount < oldpos)
|
|
ExecClearTuple(fs->func_slot);
|
|
else
|
|
(void) tuplestore_gettupleslot(fs->tstore,
|
|
ScanDirectionIsForward(direction),
|
|
false,
|
|
fs->func_slot);
|
|
|
|
if (TupIsNull(fs->func_slot))
|
|
{
|
|
/*
|
|
* If we ran out of data for this function in the forward
|
|
* direction then we now know how many rows it returned. We need
|
|
* to know this in order to handle backwards scans. The row count
|
|
* we store is actually 1+ the actual number, because we have to
|
|
* position the tuplestore 1 off its end sometimes.
|
|
*/
|
|
if (ScanDirectionIsForward(direction) && fs->rowcount == -1)
|
|
fs->rowcount = node->ordinal;
|
|
|
|
/*
|
|
* populate the result cols with nulls
|
|
*/
|
|
for (i = 0; i < fs->colcount; i++)
|
|
{
|
|
scanslot->tts_values[att] = (Datum) 0;
|
|
scanslot->tts_isnull[att] = true;
|
|
att++;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* we have a result, so just copy it to the result cols.
|
|
*/
|
|
slot_getallattrs(fs->func_slot);
|
|
|
|
for (i = 0; i < fs->colcount; i++)
|
|
{
|
|
scanslot->tts_values[att] = fs->func_slot->tts_values[i];
|
|
scanslot->tts_isnull[att] = fs->func_slot->tts_isnull[i];
|
|
att++;
|
|
}
|
|
|
|
/*
|
|
* We're not done until every function result is exhausted; we pad
|
|
* the shorter results with nulls until then.
|
|
*/
|
|
alldone = false;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* ordinal col is always last, per spec.
|
|
*/
|
|
if (node->ordinality)
|
|
{
|
|
scanslot->tts_values[att] = Int64GetDatumFast(node->ordinal);
|
|
scanslot->tts_isnull[att] = false;
|
|
}
|
|
|
|
/*
|
|
* If alldone, we just return the previously-cleared scanslot. Otherwise,
|
|
* finish creating the virtual tuple.
|
|
*/
|
|
if (!alldone)
|
|
ExecStoreVirtualTuple(scanslot);
|
|
|
|
return scanslot;
|
|
}
|
|
|
|
/*
|
|
* FunctionRecheck -- access method routine to recheck a tuple in EvalPlanQual
|
|
*/
|
|
static bool
|
|
FunctionRecheck(FunctionScanState *node, TupleTableSlot *slot)
|
|
{
|
|
/* nothing to check */
|
|
return true;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecFunctionScan(node)
|
|
*
|
|
* Scans the function sequentially and returns the next qualifying
|
|
* tuple.
|
|
* We call the ExecScan() routine and pass it the appropriate
|
|
* access method functions.
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
TupleTableSlot *
|
|
ExecFunctionScan(FunctionScanState *node)
|
|
{
|
|
return ExecScan(&node->ss,
|
|
(ExecScanAccessMtd) FunctionNext,
|
|
(ExecScanRecheckMtd) FunctionRecheck);
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecInitFunctionScan
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
FunctionScanState *
|
|
ExecInitFunctionScan(FunctionScan *node, EState *estate, int eflags)
|
|
{
|
|
FunctionScanState *scanstate;
|
|
int nfuncs = list_length(node->functions);
|
|
TupleDesc scan_tupdesc;
|
|
int i,
|
|
natts;
|
|
ListCell *lc;
|
|
|
|
/* check for unsupported flags */
|
|
Assert(!(eflags & EXEC_FLAG_MARK));
|
|
|
|
/*
|
|
* FunctionScan should not have any children.
|
|
*/
|
|
Assert(outerPlan(node) == NULL);
|
|
Assert(innerPlan(node) == NULL);
|
|
|
|
/*
|
|
* create new ScanState for node
|
|
*/
|
|
scanstate = makeNode(FunctionScanState);
|
|
scanstate->ss.ps.plan = (Plan *) node;
|
|
scanstate->ss.ps.state = estate;
|
|
scanstate->eflags = eflags;
|
|
|
|
/*
|
|
* are we adding an ordinality column?
|
|
*/
|
|
scanstate->ordinality = node->funcordinality;
|
|
|
|
scanstate->nfuncs = nfuncs;
|
|
if (nfuncs == 1 && !node->funcordinality)
|
|
scanstate->simple = true;
|
|
else
|
|
scanstate->simple = false;
|
|
|
|
/*
|
|
* Ordinal 0 represents the "before the first row" position.
|
|
*
|
|
* We need to track ordinal position even when not adding an ordinality
|
|
* column to the result, in order to handle backwards scanning properly
|
|
* with multiple functions with different result sizes. (We can't position
|
|
* any individual function's tuplestore any more than 1 place beyond its
|
|
* end, so when scanning backwards, we need to know when to start
|
|
* including the function in the scan again.)
|
|
*/
|
|
scanstate->ordinal = 0;
|
|
|
|
/*
|
|
* Miscellaneous initialization
|
|
*
|
|
* create expression context for node
|
|
*/
|
|
ExecAssignExprContext(estate, &scanstate->ss.ps);
|
|
|
|
scanstate->ss.ps.ps_TupFromTlist = false;
|
|
|
|
/*
|
|
* tuple table initialization
|
|
*/
|
|
ExecInitResultTupleSlot(estate, &scanstate->ss.ps);
|
|
ExecInitScanTupleSlot(estate, &scanstate->ss);
|
|
|
|
/*
|
|
* initialize child expressions
|
|
*/
|
|
scanstate->ss.ps.targetlist = (List *)
|
|
ExecInitExpr((Expr *) node->scan.plan.targetlist,
|
|
(PlanState *) scanstate);
|
|
scanstate->ss.ps.qual = (List *)
|
|
ExecInitExpr((Expr *) node->scan.plan.qual,
|
|
(PlanState *) scanstate);
|
|
|
|
scanstate->funcstates = palloc(nfuncs * sizeof(FunctionScanPerFuncState));
|
|
|
|
natts = 0;
|
|
i = 0;
|
|
foreach(lc, node->functions)
|
|
{
|
|
RangeTblFunction *rtfunc = (RangeTblFunction *) lfirst(lc);
|
|
Node *funcexpr = rtfunc->funcexpr;
|
|
int colcount = rtfunc->funccolcount;
|
|
FunctionScanPerFuncState *fs = &scanstate->funcstates[i];
|
|
TypeFuncClass functypclass;
|
|
Oid funcrettype;
|
|
TupleDesc tupdesc;
|
|
|
|
fs->funcexpr = ExecInitExpr((Expr *) funcexpr, (PlanState *) scanstate);
|
|
|
|
/*
|
|
* Don't allocate the tuplestores; the actual calls to the functions
|
|
* do that. NULL means that we have not called the function yet (or
|
|
* need to call it again after a rescan).
|
|
*/
|
|
fs->tstore = NULL;
|
|
fs->rowcount = -1;
|
|
|
|
/*
|
|
* Now determine if the function returns a simple or composite type,
|
|
* and build an appropriate tupdesc. Note that in the composite case,
|
|
* the function may now return more columns than it did when the plan
|
|
* was made; we have to ignore any columns beyond "colcount".
|
|
*/
|
|
functypclass = get_expr_result_type(funcexpr,
|
|
&funcrettype,
|
|
&tupdesc);
|
|
|
|
if (functypclass == TYPEFUNC_COMPOSITE)
|
|
{
|
|
/* Composite data type, e.g. a table's row type */
|
|
Assert(tupdesc);
|
|
Assert(tupdesc->natts >= colcount);
|
|
/* Must copy it out of typcache for safety */
|
|
tupdesc = CreateTupleDescCopy(tupdesc);
|
|
}
|
|
else if (functypclass == TYPEFUNC_SCALAR)
|
|
{
|
|
/* Base data type, i.e. scalar */
|
|
tupdesc = CreateTemplateTupleDesc(1, false);
|
|
TupleDescInitEntry(tupdesc,
|
|
(AttrNumber) 1,
|
|
NULL, /* don't care about the name here */
|
|
funcrettype,
|
|
-1,
|
|
0);
|
|
TupleDescInitEntryCollation(tupdesc,
|
|
(AttrNumber) 1,
|
|
exprCollation(funcexpr));
|
|
}
|
|
else if (functypclass == TYPEFUNC_RECORD)
|
|
{
|
|
tupdesc = BuildDescFromLists(rtfunc->funccolnames,
|
|
rtfunc->funccoltypes,
|
|
rtfunc->funccoltypmods,
|
|
rtfunc->funccolcollations);
|
|
|
|
/*
|
|
* For RECORD results, make sure a typmod has been assigned. (The
|
|
* function should do this for itself, but let's cover things in
|
|
* case it doesn't.)
|
|
*/
|
|
BlessTupleDesc(tupdesc);
|
|
}
|
|
else
|
|
{
|
|
/* crummy error message, but parser should have caught this */
|
|
elog(ERROR, "function in FROM has unsupported return type");
|
|
}
|
|
|
|
fs->tupdesc = tupdesc;
|
|
fs->colcount = colcount;
|
|
|
|
/*
|
|
* We only need separate slots for the function results if we are
|
|
* doing ordinality or multiple functions; otherwise, we'll fetch
|
|
* function results directly into the scan slot.
|
|
*/
|
|
if (!scanstate->simple)
|
|
{
|
|
fs->func_slot = ExecInitExtraTupleSlot(estate);
|
|
ExecSetSlotDescriptor(fs->func_slot, fs->tupdesc);
|
|
}
|
|
else
|
|
fs->func_slot = NULL;
|
|
|
|
natts += colcount;
|
|
i++;
|
|
}
|
|
|
|
/*
|
|
* Create the combined TupleDesc
|
|
*
|
|
* If there is just one function without ordinality, the scan result
|
|
* tupdesc is the same as the function result tupdesc --- except that we
|
|
* may stuff new names into it below, so drop any rowtype label.
|
|
*/
|
|
if (scanstate->simple)
|
|
{
|
|
scan_tupdesc = CreateTupleDescCopy(scanstate->funcstates[0].tupdesc);
|
|
scan_tupdesc->tdtypeid = RECORDOID;
|
|
scan_tupdesc->tdtypmod = -1;
|
|
}
|
|
else
|
|
{
|
|
AttrNumber attno = 0;
|
|
|
|
if (node->funcordinality)
|
|
natts++;
|
|
|
|
scan_tupdesc = CreateTemplateTupleDesc(natts, false);
|
|
|
|
for (i = 0; i < nfuncs; i++)
|
|
{
|
|
TupleDesc tupdesc = scanstate->funcstates[i].tupdesc;
|
|
int colcount = scanstate->funcstates[i].colcount;
|
|
int j;
|
|
|
|
for (j = 1; j <= colcount; j++)
|
|
TupleDescCopyEntry(scan_tupdesc, ++attno, tupdesc, j);
|
|
}
|
|
|
|
/* If doing ordinality, add a column of type "bigint" at the end */
|
|
if (node->funcordinality)
|
|
{
|
|
TupleDescInitEntry(scan_tupdesc,
|
|
++attno,
|
|
NULL, /* don't care about the name here */
|
|
INT8OID,
|
|
-1,
|
|
0);
|
|
}
|
|
|
|
Assert(attno == natts);
|
|
}
|
|
|
|
ExecAssignScanType(&scanstate->ss, scan_tupdesc);
|
|
|
|
/*
|
|
* Initialize result tuple type and projection info.
|
|
*/
|
|
ExecAssignResultTypeFromTL(&scanstate->ss.ps);
|
|
ExecAssignScanProjectionInfo(&scanstate->ss);
|
|
|
|
/*
|
|
* Create a memory context that ExecMakeTableFunctionResult can use to
|
|
* evaluate function arguments in. We can't use the per-tuple context for
|
|
* this because it gets reset too often; but we don't want to leak
|
|
* evaluation results into the query-lifespan context either. We just
|
|
* need one context, because we evaluate each function separately.
|
|
*/
|
|
scanstate->argcontext = AllocSetContextCreate(CurrentMemoryContext,
|
|
"Table function arguments",
|
|
ALLOCSET_DEFAULT_MINSIZE,
|
|
ALLOCSET_DEFAULT_INITSIZE,
|
|
ALLOCSET_DEFAULT_MAXSIZE);
|
|
|
|
return scanstate;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecEndFunctionScan
|
|
*
|
|
* frees any storage allocated through C routines.
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
void
|
|
ExecEndFunctionScan(FunctionScanState *node)
|
|
{
|
|
int i;
|
|
|
|
/*
|
|
* Free the exprcontext
|
|
*/
|
|
ExecFreeExprContext(&node->ss.ps);
|
|
|
|
/*
|
|
* clean out the tuple table
|
|
*/
|
|
ExecClearTuple(node->ss.ps.ps_ResultTupleSlot);
|
|
ExecClearTuple(node->ss.ss_ScanTupleSlot);
|
|
|
|
/*
|
|
* Release slots and tuplestore resources
|
|
*/
|
|
for (i = 0; i < node->nfuncs; i++)
|
|
{
|
|
FunctionScanPerFuncState *fs = &node->funcstates[i];
|
|
|
|
if (fs->func_slot)
|
|
ExecClearTuple(fs->func_slot);
|
|
|
|
if (fs->tstore != NULL)
|
|
{
|
|
tuplestore_end(node->funcstates[i].tstore);
|
|
fs->tstore = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecReScanFunctionScan
|
|
*
|
|
* Rescans the relation.
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
void
|
|
ExecReScanFunctionScan(FunctionScanState *node)
|
|
{
|
|
FunctionScan *scan = (FunctionScan *) node->ss.ps.plan;
|
|
int i;
|
|
Bitmapset *chgparam = node->ss.ps.chgParam;
|
|
|
|
ExecClearTuple(node->ss.ps.ps_ResultTupleSlot);
|
|
for (i = 0; i < node->nfuncs; i++)
|
|
{
|
|
FunctionScanPerFuncState *fs = &node->funcstates[i];
|
|
|
|
if (fs->func_slot)
|
|
ExecClearTuple(fs->func_slot);
|
|
}
|
|
|
|
ExecScanReScan(&node->ss);
|
|
|
|
/*
|
|
* Here we have a choice whether to drop the tuplestores (and recompute
|
|
* the function outputs) or just rescan them. We must recompute if an
|
|
* expression contains changed parameters, else we rescan.
|
|
*
|
|
* XXX maybe we should recompute if the function is volatile? But in
|
|
* general the executor doesn't conditionalize its actions on that.
|
|
*/
|
|
if (chgparam)
|
|
{
|
|
ListCell *lc;
|
|
|
|
i = 0;
|
|
foreach(lc, scan->functions)
|
|
{
|
|
RangeTblFunction *rtfunc = (RangeTblFunction *) lfirst(lc);
|
|
|
|
if (bms_overlap(chgparam, rtfunc->funcparams))
|
|
{
|
|
if (node->funcstates[i].tstore != NULL)
|
|
{
|
|
tuplestore_end(node->funcstates[i].tstore);
|
|
node->funcstates[i].tstore = NULL;
|
|
}
|
|
node->funcstates[i].rowcount = -1;
|
|
}
|
|
i++;
|
|
}
|
|
}
|
|
|
|
/* Reset ordinality counter */
|
|
node->ordinal = 0;
|
|
|
|
/* Make sure we rewind any remaining tuplestores */
|
|
for (i = 0; i < node->nfuncs; i++)
|
|
{
|
|
if (node->funcstates[i].tstore != NULL)
|
|
tuplestore_rescan(node->funcstates[i].tstore);
|
|
}
|
|
}
|