mirror of
https://github.com/postgres/postgres.git
synced 2025-05-17 06:41:24 +03:00
This reverts commit 95c5acb3fc261067ab65ddc0b2dca8e162f09442 (v17) and counterparts in each other non-master branch. If released, that commit would have caused a worst-in-years minor release regression, via undetected LWLock self-deadlock. This commit and its self-deadlock fix warrant more bake time in the master branch. Reported by Alexander Lakhin. Discussion: https://postgr.es/m/10ec0bc3-5933-1189-6bb8-5dec4114558e@gmail.com
2215 lines
58 KiB
C
2215 lines
58 KiB
C
/*-------------------------------------------------------------------------
|
|
*
|
|
* catcache.c
|
|
* System catalog cache for tuples matching a key.
|
|
*
|
|
* Portions Copyright (c) 1996-2020, PostgreSQL Global Development Group
|
|
* Portions Copyright (c) 1994, Regents of the University of California
|
|
*
|
|
*
|
|
* IDENTIFICATION
|
|
* src/backend/utils/cache/catcache.c
|
|
*
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
#include "postgres.h"
|
|
|
|
#include "access/genam.h"
|
|
#include "access/heaptoast.h"
|
|
#include "access/relscan.h"
|
|
#include "access/sysattr.h"
|
|
#include "access/table.h"
|
|
#include "access/valid.h"
|
|
#include "access/xact.h"
|
|
#include "catalog/catalog.h"
|
|
#include "catalog/pg_collation.h"
|
|
#include "catalog/pg_operator.h"
|
|
#include "catalog/pg_type.h"
|
|
#include "common/hashfn.h"
|
|
#include "miscadmin.h"
|
|
#ifdef CATCACHE_STATS
|
|
#include "storage/ipc.h" /* for on_proc_exit */
|
|
#endif
|
|
#include "storage/lmgr.h"
|
|
#include "utils/builtins.h"
|
|
#include "utils/datum.h"
|
|
#include "utils/fmgroids.h"
|
|
#include "utils/inval.h"
|
|
#include "utils/memutils.h"
|
|
#include "utils/rel.h"
|
|
#include "utils/resowner_private.h"
|
|
#include "utils/syscache.h"
|
|
|
|
|
|
/* #define CACHEDEBUG */ /* turns DEBUG elogs on */
|
|
|
|
/*
|
|
* Given a hash value and the size of the hash table, find the bucket
|
|
* in which the hash value belongs. Since the hash table must contain
|
|
* a power-of-2 number of elements, this is a simple bitmask.
|
|
*/
|
|
#define HASH_INDEX(h, sz) ((Index) ((h) & ((sz) - 1)))
|
|
|
|
|
|
/*
|
|
* variables, macros and other stuff
|
|
*/
|
|
|
|
#ifdef CACHEDEBUG
|
|
#define CACHE_elog(...) elog(__VA_ARGS__)
|
|
#else
|
|
#define CACHE_elog(...)
|
|
#endif
|
|
|
|
/* Cache management header --- pointer is NULL until created */
|
|
static CatCacheHeader *CacheHdr = NULL;
|
|
|
|
static inline HeapTuple SearchCatCacheInternal(CatCache *cache,
|
|
int nkeys,
|
|
Datum v1, Datum v2,
|
|
Datum v3, Datum v4);
|
|
|
|
static pg_noinline HeapTuple SearchCatCacheMiss(CatCache *cache,
|
|
int nkeys,
|
|
uint32 hashValue,
|
|
Index hashIndex,
|
|
Datum v1, Datum v2,
|
|
Datum v3, Datum v4);
|
|
|
|
static uint32 CatalogCacheComputeHashValue(CatCache *cache, int nkeys,
|
|
Datum v1, Datum v2, Datum v3, Datum v4);
|
|
static uint32 CatalogCacheComputeTupleHashValue(CatCache *cache, int nkeys,
|
|
HeapTuple tuple);
|
|
static inline bool CatalogCacheCompareTuple(const CatCache *cache, int nkeys,
|
|
const Datum *cachekeys,
|
|
const Datum *searchkeys);
|
|
|
|
#ifdef CATCACHE_STATS
|
|
static void CatCachePrintStats(int code, Datum arg);
|
|
#endif
|
|
static void CatCacheRemoveCTup(CatCache *cache, CatCTup *ct);
|
|
static void CatCacheRemoveCList(CatCache *cache, CatCList *cl);
|
|
static void CatalogCacheInitializeCache(CatCache *cache);
|
|
static CatCTup *CatalogCacheCreateEntry(CatCache *cache,
|
|
HeapTuple ntp, SysScanDesc scandesc,
|
|
Datum *arguments,
|
|
uint32 hashValue, Index hashIndex);
|
|
|
|
static void CatCacheFreeKeys(TupleDesc tupdesc, int nkeys, int *attnos,
|
|
Datum *keys);
|
|
static void CatCacheCopyKeys(TupleDesc tupdesc, int nkeys, int *attnos,
|
|
Datum *srckeys, Datum *dstkeys);
|
|
|
|
|
|
/*
|
|
* internal support functions
|
|
*/
|
|
|
|
/*
|
|
* Hash and equality functions for system types that are used as cache key
|
|
* fields. In some cases, we just call the regular SQL-callable functions for
|
|
* the appropriate data type, but that tends to be a little slow, and the
|
|
* speed of these functions is performance-critical. Therefore, for data
|
|
* types that frequently occur as catcache keys, we hard-code the logic here.
|
|
* Avoiding the overhead of DirectFunctionCallN(...) is a substantial win, and
|
|
* in certain cases (like int4) we can adopt a faster hash algorithm as well.
|
|
*/
|
|
|
|
static bool
|
|
chareqfast(Datum a, Datum b)
|
|
{
|
|
return DatumGetChar(a) == DatumGetChar(b);
|
|
}
|
|
|
|
static uint32
|
|
charhashfast(Datum datum)
|
|
{
|
|
return murmurhash32((int32) DatumGetChar(datum));
|
|
}
|
|
|
|
static bool
|
|
nameeqfast(Datum a, Datum b)
|
|
{
|
|
char *ca = NameStr(*DatumGetName(a));
|
|
char *cb = NameStr(*DatumGetName(b));
|
|
|
|
return strncmp(ca, cb, NAMEDATALEN) == 0;
|
|
}
|
|
|
|
static uint32
|
|
namehashfast(Datum datum)
|
|
{
|
|
char *key = NameStr(*DatumGetName(datum));
|
|
|
|
return hash_any((unsigned char *) key, strlen(key));
|
|
}
|
|
|
|
static bool
|
|
int2eqfast(Datum a, Datum b)
|
|
{
|
|
return DatumGetInt16(a) == DatumGetInt16(b);
|
|
}
|
|
|
|
static uint32
|
|
int2hashfast(Datum datum)
|
|
{
|
|
return murmurhash32((int32) DatumGetInt16(datum));
|
|
}
|
|
|
|
static bool
|
|
int4eqfast(Datum a, Datum b)
|
|
{
|
|
return DatumGetInt32(a) == DatumGetInt32(b);
|
|
}
|
|
|
|
static uint32
|
|
int4hashfast(Datum datum)
|
|
{
|
|
return murmurhash32((int32) DatumGetInt32(datum));
|
|
}
|
|
|
|
static bool
|
|
texteqfast(Datum a, Datum b)
|
|
{
|
|
/*
|
|
* The use of DEFAULT_COLLATION_OID is fairly arbitrary here. We just
|
|
* want to take the fast "deterministic" path in texteq().
|
|
*/
|
|
return DatumGetBool(DirectFunctionCall2Coll(texteq, DEFAULT_COLLATION_OID, a, b));
|
|
}
|
|
|
|
static uint32
|
|
texthashfast(Datum datum)
|
|
{
|
|
/* analogously here as in texteqfast() */
|
|
return DatumGetInt32(DirectFunctionCall1Coll(hashtext, DEFAULT_COLLATION_OID, datum));
|
|
}
|
|
|
|
static bool
|
|
oidvectoreqfast(Datum a, Datum b)
|
|
{
|
|
return DatumGetBool(DirectFunctionCall2(oidvectoreq, a, b));
|
|
}
|
|
|
|
static uint32
|
|
oidvectorhashfast(Datum datum)
|
|
{
|
|
return DatumGetInt32(DirectFunctionCall1(hashoidvector, datum));
|
|
}
|
|
|
|
/* Lookup support functions for a type. */
|
|
static void
|
|
GetCCHashEqFuncs(Oid keytype, CCHashFN *hashfunc, RegProcedure *eqfunc, CCFastEqualFN *fasteqfunc)
|
|
{
|
|
switch (keytype)
|
|
{
|
|
case BOOLOID:
|
|
*hashfunc = charhashfast;
|
|
*fasteqfunc = chareqfast;
|
|
*eqfunc = F_BOOLEQ;
|
|
break;
|
|
case CHAROID:
|
|
*hashfunc = charhashfast;
|
|
*fasteqfunc = chareqfast;
|
|
*eqfunc = F_CHAREQ;
|
|
break;
|
|
case NAMEOID:
|
|
*hashfunc = namehashfast;
|
|
*fasteqfunc = nameeqfast;
|
|
*eqfunc = F_NAMEEQ;
|
|
break;
|
|
case INT2OID:
|
|
*hashfunc = int2hashfast;
|
|
*fasteqfunc = int2eqfast;
|
|
*eqfunc = F_INT2EQ;
|
|
break;
|
|
case INT4OID:
|
|
*hashfunc = int4hashfast;
|
|
*fasteqfunc = int4eqfast;
|
|
*eqfunc = F_INT4EQ;
|
|
break;
|
|
case TEXTOID:
|
|
*hashfunc = texthashfast;
|
|
*fasteqfunc = texteqfast;
|
|
*eqfunc = F_TEXTEQ;
|
|
break;
|
|
case OIDOID:
|
|
case REGPROCOID:
|
|
case REGPROCEDUREOID:
|
|
case REGOPEROID:
|
|
case REGOPERATOROID:
|
|
case REGCLASSOID:
|
|
case REGTYPEOID:
|
|
case REGCOLLATIONOID:
|
|
case REGCONFIGOID:
|
|
case REGDICTIONARYOID:
|
|
case REGROLEOID:
|
|
case REGNAMESPACEOID:
|
|
*hashfunc = int4hashfast;
|
|
*fasteqfunc = int4eqfast;
|
|
*eqfunc = F_OIDEQ;
|
|
break;
|
|
case OIDVECTOROID:
|
|
*hashfunc = oidvectorhashfast;
|
|
*fasteqfunc = oidvectoreqfast;
|
|
*eqfunc = F_OIDVECTOREQ;
|
|
break;
|
|
default:
|
|
elog(FATAL, "type %u not supported as catcache key", keytype);
|
|
*hashfunc = NULL; /* keep compiler quiet */
|
|
|
|
*eqfunc = InvalidOid;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* CatalogCacheComputeHashValue
|
|
*
|
|
* Compute the hash value associated with a given set of lookup keys
|
|
*/
|
|
static uint32
|
|
CatalogCacheComputeHashValue(CatCache *cache, int nkeys,
|
|
Datum v1, Datum v2, Datum v3, Datum v4)
|
|
{
|
|
uint32 hashValue = 0;
|
|
uint32 oneHash;
|
|
CCHashFN *cc_hashfunc = cache->cc_hashfunc;
|
|
|
|
CACHE_elog(DEBUG2, "CatalogCacheComputeHashValue %s %d %p",
|
|
cache->cc_relname, nkeys, cache);
|
|
|
|
switch (nkeys)
|
|
{
|
|
case 4:
|
|
oneHash = (cc_hashfunc[3]) (v4);
|
|
|
|
hashValue ^= oneHash << 24;
|
|
hashValue ^= oneHash >> 8;
|
|
/* FALLTHROUGH */
|
|
case 3:
|
|
oneHash = (cc_hashfunc[2]) (v3);
|
|
|
|
hashValue ^= oneHash << 16;
|
|
hashValue ^= oneHash >> 16;
|
|
/* FALLTHROUGH */
|
|
case 2:
|
|
oneHash = (cc_hashfunc[1]) (v2);
|
|
|
|
hashValue ^= oneHash << 8;
|
|
hashValue ^= oneHash >> 24;
|
|
/* FALLTHROUGH */
|
|
case 1:
|
|
oneHash = (cc_hashfunc[0]) (v1);
|
|
|
|
hashValue ^= oneHash;
|
|
break;
|
|
default:
|
|
elog(FATAL, "wrong number of hash keys: %d", nkeys);
|
|
break;
|
|
}
|
|
|
|
return hashValue;
|
|
}
|
|
|
|
/*
|
|
* CatalogCacheComputeTupleHashValue
|
|
*
|
|
* Compute the hash value associated with a given tuple to be cached
|
|
*/
|
|
static uint32
|
|
CatalogCacheComputeTupleHashValue(CatCache *cache, int nkeys, HeapTuple tuple)
|
|
{
|
|
Datum v1 = 0,
|
|
v2 = 0,
|
|
v3 = 0,
|
|
v4 = 0;
|
|
bool isNull = false;
|
|
int *cc_keyno = cache->cc_keyno;
|
|
TupleDesc cc_tupdesc = cache->cc_tupdesc;
|
|
|
|
/* Now extract key fields from tuple, insert into scankey */
|
|
switch (nkeys)
|
|
{
|
|
case 4:
|
|
v4 = fastgetattr(tuple,
|
|
cc_keyno[3],
|
|
cc_tupdesc,
|
|
&isNull);
|
|
Assert(!isNull);
|
|
/* FALLTHROUGH */
|
|
case 3:
|
|
v3 = fastgetattr(tuple,
|
|
cc_keyno[2],
|
|
cc_tupdesc,
|
|
&isNull);
|
|
Assert(!isNull);
|
|
/* FALLTHROUGH */
|
|
case 2:
|
|
v2 = fastgetattr(tuple,
|
|
cc_keyno[1],
|
|
cc_tupdesc,
|
|
&isNull);
|
|
Assert(!isNull);
|
|
/* FALLTHROUGH */
|
|
case 1:
|
|
v1 = fastgetattr(tuple,
|
|
cc_keyno[0],
|
|
cc_tupdesc,
|
|
&isNull);
|
|
Assert(!isNull);
|
|
break;
|
|
default:
|
|
elog(FATAL, "wrong number of hash keys: %d", nkeys);
|
|
break;
|
|
}
|
|
|
|
return CatalogCacheComputeHashValue(cache, nkeys, v1, v2, v3, v4);
|
|
}
|
|
|
|
/*
|
|
* CatalogCacheCompareTuple
|
|
*
|
|
* Compare a tuple to the passed arguments.
|
|
*/
|
|
static inline bool
|
|
CatalogCacheCompareTuple(const CatCache *cache, int nkeys,
|
|
const Datum *cachekeys,
|
|
const Datum *searchkeys)
|
|
{
|
|
const CCFastEqualFN *cc_fastequal = cache->cc_fastequal;
|
|
int i;
|
|
|
|
for (i = 0; i < nkeys; i++)
|
|
{
|
|
if (!(cc_fastequal[i]) (cachekeys[i], searchkeys[i]))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
#ifdef CATCACHE_STATS
|
|
|
|
static void
|
|
CatCachePrintStats(int code, Datum arg)
|
|
{
|
|
slist_iter iter;
|
|
long cc_searches = 0;
|
|
long cc_hits = 0;
|
|
long cc_neg_hits = 0;
|
|
long cc_newloads = 0;
|
|
long cc_invals = 0;
|
|
long cc_lsearches = 0;
|
|
long cc_lhits = 0;
|
|
|
|
slist_foreach(iter, &CacheHdr->ch_caches)
|
|
{
|
|
CatCache *cache = slist_container(CatCache, cc_next, iter.cur);
|
|
|
|
if (cache->cc_ntup == 0 && cache->cc_searches == 0)
|
|
continue; /* don't print unused caches */
|
|
elog(DEBUG2, "catcache %s/%u: %d tup, %ld srch, %ld+%ld=%ld hits, %ld+%ld=%ld loads, %ld invals, %ld lsrch, %ld lhits",
|
|
cache->cc_relname,
|
|
cache->cc_indexoid,
|
|
cache->cc_ntup,
|
|
cache->cc_searches,
|
|
cache->cc_hits,
|
|
cache->cc_neg_hits,
|
|
cache->cc_hits + cache->cc_neg_hits,
|
|
cache->cc_newloads,
|
|
cache->cc_searches - cache->cc_hits - cache->cc_neg_hits - cache->cc_newloads,
|
|
cache->cc_searches - cache->cc_hits - cache->cc_neg_hits,
|
|
cache->cc_invals,
|
|
cache->cc_lsearches,
|
|
cache->cc_lhits);
|
|
cc_searches += cache->cc_searches;
|
|
cc_hits += cache->cc_hits;
|
|
cc_neg_hits += cache->cc_neg_hits;
|
|
cc_newloads += cache->cc_newloads;
|
|
cc_invals += cache->cc_invals;
|
|
cc_lsearches += cache->cc_lsearches;
|
|
cc_lhits += cache->cc_lhits;
|
|
}
|
|
elog(DEBUG2, "catcache totals: %d tup, %ld srch, %ld+%ld=%ld hits, %ld+%ld=%ld loads, %ld invals, %ld lsrch, %ld lhits",
|
|
CacheHdr->ch_ntup,
|
|
cc_searches,
|
|
cc_hits,
|
|
cc_neg_hits,
|
|
cc_hits + cc_neg_hits,
|
|
cc_newloads,
|
|
cc_searches - cc_hits - cc_neg_hits - cc_newloads,
|
|
cc_searches - cc_hits - cc_neg_hits,
|
|
cc_invals,
|
|
cc_lsearches,
|
|
cc_lhits);
|
|
}
|
|
#endif /* CATCACHE_STATS */
|
|
|
|
|
|
/*
|
|
* CatCacheRemoveCTup
|
|
*
|
|
* Unlink and delete the given cache entry
|
|
*
|
|
* NB: if it is a member of a CatCList, the CatCList is deleted too.
|
|
* Both the cache entry and the list had better have zero refcount.
|
|
*/
|
|
static void
|
|
CatCacheRemoveCTup(CatCache *cache, CatCTup *ct)
|
|
{
|
|
Assert(ct->refcount == 0);
|
|
Assert(ct->my_cache == cache);
|
|
|
|
if (ct->c_list)
|
|
{
|
|
/*
|
|
* The cleanest way to handle this is to call CatCacheRemoveCList,
|
|
* which will recurse back to me, and the recursive call will do the
|
|
* work. Set the "dead" flag to make sure it does recurse.
|
|
*/
|
|
ct->dead = true;
|
|
CatCacheRemoveCList(cache, ct->c_list);
|
|
return; /* nothing left to do */
|
|
}
|
|
|
|
/* delink from linked list */
|
|
dlist_delete(&ct->cache_elem);
|
|
|
|
/*
|
|
* Free keys when we're dealing with a negative entry, normal entries just
|
|
* point into tuple, allocated together with the CatCTup.
|
|
*/
|
|
if (ct->negative)
|
|
CatCacheFreeKeys(cache->cc_tupdesc, cache->cc_nkeys,
|
|
cache->cc_keyno, ct->keys);
|
|
|
|
pfree(ct);
|
|
|
|
--cache->cc_ntup;
|
|
--CacheHdr->ch_ntup;
|
|
}
|
|
|
|
/*
|
|
* CatCacheRemoveCList
|
|
*
|
|
* Unlink and delete the given cache list entry
|
|
*
|
|
* NB: any dead member entries that become unreferenced are deleted too.
|
|
*/
|
|
static void
|
|
CatCacheRemoveCList(CatCache *cache, CatCList *cl)
|
|
{
|
|
int i;
|
|
|
|
Assert(cl->refcount == 0);
|
|
Assert(cl->my_cache == cache);
|
|
|
|
/* delink from member tuples */
|
|
for (i = cl->n_members; --i >= 0;)
|
|
{
|
|
CatCTup *ct = cl->members[i];
|
|
|
|
Assert(ct->c_list == cl);
|
|
ct->c_list = NULL;
|
|
/* if the member is dead and now has no references, remove it */
|
|
if (
|
|
#ifndef CATCACHE_FORCE_RELEASE
|
|
ct->dead &&
|
|
#endif
|
|
ct->refcount == 0)
|
|
CatCacheRemoveCTup(cache, ct);
|
|
}
|
|
|
|
/* delink from linked list */
|
|
dlist_delete(&cl->cache_elem);
|
|
|
|
/* free associated column data */
|
|
CatCacheFreeKeys(cache->cc_tupdesc, cl->nkeys,
|
|
cache->cc_keyno, cl->keys);
|
|
|
|
pfree(cl);
|
|
}
|
|
|
|
|
|
/*
|
|
* CatCacheInvalidate
|
|
*
|
|
* Invalidate entries in the specified cache, given a hash value.
|
|
*
|
|
* We delete cache entries that match the hash value, whether positive
|
|
* or negative. We don't care whether the invalidation is the result
|
|
* of a tuple insertion or a deletion.
|
|
*
|
|
* We used to try to match positive cache entries by TID, but that is
|
|
* unsafe after a VACUUM FULL on a system catalog: an inval event could
|
|
* be queued before VACUUM FULL, and then processed afterwards, when the
|
|
* target tuple that has to be invalidated has a different TID than it
|
|
* did when the event was created. So now we just compare hash values and
|
|
* accept the small risk of unnecessary invalidations due to false matches.
|
|
*
|
|
* This routine is only quasi-public: it should only be used by inval.c.
|
|
*/
|
|
void
|
|
CatCacheInvalidate(CatCache *cache, uint32 hashValue)
|
|
{
|
|
Index hashIndex;
|
|
dlist_mutable_iter iter;
|
|
|
|
CACHE_elog(DEBUG2, "CatCacheInvalidate: called");
|
|
|
|
/*
|
|
* We don't bother to check whether the cache has finished initialization
|
|
* yet; if not, there will be no entries in it so no problem.
|
|
*/
|
|
|
|
/*
|
|
* Invalidate *all* CatCLists in this cache; it's too hard to tell which
|
|
* searches might still be correct, so just zap 'em all.
|
|
*/
|
|
dlist_foreach_modify(iter, &cache->cc_lists)
|
|
{
|
|
CatCList *cl = dlist_container(CatCList, cache_elem, iter.cur);
|
|
|
|
if (cl->refcount > 0)
|
|
cl->dead = true;
|
|
else
|
|
CatCacheRemoveCList(cache, cl);
|
|
}
|
|
|
|
/*
|
|
* inspect the proper hash bucket for tuple matches
|
|
*/
|
|
hashIndex = HASH_INDEX(hashValue, cache->cc_nbuckets);
|
|
dlist_foreach_modify(iter, &cache->cc_bucket[hashIndex])
|
|
{
|
|
CatCTup *ct = dlist_container(CatCTup, cache_elem, iter.cur);
|
|
|
|
if (hashValue == ct->hash_value)
|
|
{
|
|
if (ct->refcount > 0 ||
|
|
(ct->c_list && ct->c_list->refcount > 0))
|
|
{
|
|
ct->dead = true;
|
|
/* list, if any, was marked dead above */
|
|
Assert(ct->c_list == NULL || ct->c_list->dead);
|
|
}
|
|
else
|
|
CatCacheRemoveCTup(cache, ct);
|
|
CACHE_elog(DEBUG2, "CatCacheInvalidate: invalidated");
|
|
#ifdef CATCACHE_STATS
|
|
cache->cc_invals++;
|
|
#endif
|
|
/* could be multiple matches, so keep looking! */
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* public functions
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
|
|
|
|
/*
|
|
* Standard routine for creating cache context if it doesn't exist yet
|
|
*
|
|
* There are a lot of places (probably far more than necessary) that check
|
|
* whether CacheMemoryContext exists yet and want to create it if not.
|
|
* We centralize knowledge of exactly how to create it here.
|
|
*/
|
|
void
|
|
CreateCacheMemoryContext(void)
|
|
{
|
|
/*
|
|
* Purely for paranoia, check that context doesn't exist; caller probably
|
|
* did so already.
|
|
*/
|
|
if (!CacheMemoryContext)
|
|
CacheMemoryContext = AllocSetContextCreate(TopMemoryContext,
|
|
"CacheMemoryContext",
|
|
ALLOCSET_DEFAULT_SIZES);
|
|
}
|
|
|
|
|
|
/*
|
|
* ResetCatalogCache
|
|
*
|
|
* Reset one catalog cache to empty.
|
|
*
|
|
* This is not very efficient if the target cache is nearly empty.
|
|
* However, it shouldn't need to be efficient; we don't invoke it often.
|
|
*/
|
|
static void
|
|
ResetCatalogCache(CatCache *cache)
|
|
{
|
|
dlist_mutable_iter iter;
|
|
int i;
|
|
|
|
/* Remove each list in this cache, or at least mark it dead */
|
|
dlist_foreach_modify(iter, &cache->cc_lists)
|
|
{
|
|
CatCList *cl = dlist_container(CatCList, cache_elem, iter.cur);
|
|
|
|
if (cl->refcount > 0)
|
|
cl->dead = true;
|
|
else
|
|
CatCacheRemoveCList(cache, cl);
|
|
}
|
|
|
|
/* Remove each tuple in this cache, or at least mark it dead */
|
|
for (i = 0; i < cache->cc_nbuckets; i++)
|
|
{
|
|
dlist_head *bucket = &cache->cc_bucket[i];
|
|
|
|
dlist_foreach_modify(iter, bucket)
|
|
{
|
|
CatCTup *ct = dlist_container(CatCTup, cache_elem, iter.cur);
|
|
|
|
if (ct->refcount > 0 ||
|
|
(ct->c_list && ct->c_list->refcount > 0))
|
|
{
|
|
ct->dead = true;
|
|
/* list, if any, was marked dead above */
|
|
Assert(ct->c_list == NULL || ct->c_list->dead);
|
|
}
|
|
else
|
|
CatCacheRemoveCTup(cache, ct);
|
|
#ifdef CATCACHE_STATS
|
|
cache->cc_invals++;
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* ResetCatalogCaches
|
|
*
|
|
* Reset all caches when a shared cache inval event forces it
|
|
*/
|
|
void
|
|
ResetCatalogCaches(void)
|
|
{
|
|
slist_iter iter;
|
|
|
|
CACHE_elog(DEBUG2, "ResetCatalogCaches called");
|
|
|
|
slist_foreach(iter, &CacheHdr->ch_caches)
|
|
{
|
|
CatCache *cache = slist_container(CatCache, cc_next, iter.cur);
|
|
|
|
ResetCatalogCache(cache);
|
|
}
|
|
|
|
CACHE_elog(DEBUG2, "end of ResetCatalogCaches call");
|
|
}
|
|
|
|
/*
|
|
* CatalogCacheFlushCatalog
|
|
*
|
|
* Flush all catcache entries that came from the specified system catalog.
|
|
* This is needed after VACUUM FULL/CLUSTER on the catalog, since the
|
|
* tuples very likely now have different TIDs than before. (At one point
|
|
* we also tried to force re-execution of CatalogCacheInitializeCache for
|
|
* the cache(s) on that catalog. This is a bad idea since it leads to all
|
|
* kinds of trouble if a cache flush occurs while loading cache entries.
|
|
* We now avoid the need to do it by copying cc_tupdesc out of the relcache,
|
|
* rather than relying on the relcache to keep a tupdesc for us. Of course
|
|
* this assumes the tupdesc of a cachable system table will not change...)
|
|
*/
|
|
void
|
|
CatalogCacheFlushCatalog(Oid catId)
|
|
{
|
|
slist_iter iter;
|
|
|
|
CACHE_elog(DEBUG2, "CatalogCacheFlushCatalog called for %u", catId);
|
|
|
|
slist_foreach(iter, &CacheHdr->ch_caches)
|
|
{
|
|
CatCache *cache = slist_container(CatCache, cc_next, iter.cur);
|
|
|
|
/* Does this cache store tuples of the target catalog? */
|
|
if (cache->cc_reloid == catId)
|
|
{
|
|
/* Yes, so flush all its contents */
|
|
ResetCatalogCache(cache);
|
|
|
|
/* Tell inval.c to call syscache callbacks for this cache */
|
|
CallSyscacheCallbacks(cache->id, 0);
|
|
}
|
|
}
|
|
|
|
CACHE_elog(DEBUG2, "end of CatalogCacheFlushCatalog call");
|
|
}
|
|
|
|
/*
|
|
* InitCatCache
|
|
*
|
|
* This allocates and initializes a cache for a system catalog relation.
|
|
* Actually, the cache is only partially initialized to avoid opening the
|
|
* relation. The relation will be opened and the rest of the cache
|
|
* structure initialized on the first access.
|
|
*/
|
|
#ifdef CACHEDEBUG
|
|
#define InitCatCache_DEBUG2 \
|
|
do { \
|
|
elog(DEBUG2, "InitCatCache: rel=%u ind=%u id=%d nkeys=%d size=%d", \
|
|
cp->cc_reloid, cp->cc_indexoid, cp->id, \
|
|
cp->cc_nkeys, cp->cc_nbuckets); \
|
|
} while(0)
|
|
#else
|
|
#define InitCatCache_DEBUG2
|
|
#endif
|
|
|
|
CatCache *
|
|
InitCatCache(int id,
|
|
Oid reloid,
|
|
Oid indexoid,
|
|
int nkeys,
|
|
const int *key,
|
|
int nbuckets)
|
|
{
|
|
CatCache *cp;
|
|
MemoryContext oldcxt;
|
|
size_t sz;
|
|
int i;
|
|
|
|
/*
|
|
* nbuckets is the initial number of hash buckets to use in this catcache.
|
|
* It will be enlarged later if it becomes too full.
|
|
*
|
|
* nbuckets must be a power of two. We check this via Assert rather than
|
|
* a full runtime check because the values will be coming from constant
|
|
* tables.
|
|
*
|
|
* If you're confused by the power-of-two check, see comments in
|
|
* bitmapset.c for an explanation.
|
|
*/
|
|
Assert(nbuckets > 0 && (nbuckets & -nbuckets) == nbuckets);
|
|
|
|
/*
|
|
* first switch to the cache context so our allocations do not vanish at
|
|
* the end of a transaction
|
|
*/
|
|
if (!CacheMemoryContext)
|
|
CreateCacheMemoryContext();
|
|
|
|
oldcxt = MemoryContextSwitchTo(CacheMemoryContext);
|
|
|
|
/*
|
|
* if first time through, initialize the cache group header
|
|
*/
|
|
if (CacheHdr == NULL)
|
|
{
|
|
CacheHdr = (CatCacheHeader *) palloc(sizeof(CatCacheHeader));
|
|
slist_init(&CacheHdr->ch_caches);
|
|
CacheHdr->ch_ntup = 0;
|
|
#ifdef CATCACHE_STATS
|
|
/* set up to dump stats at backend exit */
|
|
on_proc_exit(CatCachePrintStats, 0);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Allocate a new cache structure, aligning to a cacheline boundary
|
|
*
|
|
* Note: we rely on zeroing to initialize all the dlist headers correctly
|
|
*/
|
|
sz = sizeof(CatCache) + PG_CACHE_LINE_SIZE;
|
|
cp = (CatCache *) CACHELINEALIGN(palloc0(sz));
|
|
cp->cc_bucket = palloc0(nbuckets * sizeof(dlist_head));
|
|
|
|
/*
|
|
* initialize the cache's relation information for the relation
|
|
* corresponding to this cache, and initialize some of the new cache's
|
|
* other internal fields. But don't open the relation yet.
|
|
*/
|
|
cp->id = id;
|
|
cp->cc_relname = "(not known yet)";
|
|
cp->cc_reloid = reloid;
|
|
cp->cc_indexoid = indexoid;
|
|
cp->cc_relisshared = false; /* temporary */
|
|
cp->cc_tupdesc = (TupleDesc) NULL;
|
|
cp->cc_ntup = 0;
|
|
cp->cc_nbuckets = nbuckets;
|
|
cp->cc_nkeys = nkeys;
|
|
for (i = 0; i < nkeys; ++i)
|
|
cp->cc_keyno[i] = key[i];
|
|
|
|
/*
|
|
* new cache is initialized as far as we can go for now. print some
|
|
* debugging information, if appropriate.
|
|
*/
|
|
InitCatCache_DEBUG2;
|
|
|
|
/*
|
|
* add completed cache to top of group header's list
|
|
*/
|
|
slist_push_head(&CacheHdr->ch_caches, &cp->cc_next);
|
|
|
|
/*
|
|
* back to the old context before we return...
|
|
*/
|
|
MemoryContextSwitchTo(oldcxt);
|
|
|
|
return cp;
|
|
}
|
|
|
|
/*
|
|
* Enlarge a catcache, doubling the number of buckets.
|
|
*/
|
|
static void
|
|
RehashCatCache(CatCache *cp)
|
|
{
|
|
dlist_head *newbucket;
|
|
int newnbuckets;
|
|
int i;
|
|
|
|
elog(DEBUG1, "rehashing catalog cache id %d for %s; %d tups, %d buckets",
|
|
cp->id, cp->cc_relname, cp->cc_ntup, cp->cc_nbuckets);
|
|
|
|
/* Allocate a new, larger, hash table. */
|
|
newnbuckets = cp->cc_nbuckets * 2;
|
|
newbucket = (dlist_head *) MemoryContextAllocZero(CacheMemoryContext, newnbuckets * sizeof(dlist_head));
|
|
|
|
/* Move all entries from old hash table to new. */
|
|
for (i = 0; i < cp->cc_nbuckets; i++)
|
|
{
|
|
dlist_mutable_iter iter;
|
|
|
|
dlist_foreach_modify(iter, &cp->cc_bucket[i])
|
|
{
|
|
CatCTup *ct = dlist_container(CatCTup, cache_elem, iter.cur);
|
|
int hashIndex = HASH_INDEX(ct->hash_value, newnbuckets);
|
|
|
|
dlist_delete(iter.cur);
|
|
dlist_push_head(&newbucket[hashIndex], &ct->cache_elem);
|
|
}
|
|
}
|
|
|
|
/* Switch to the new array. */
|
|
pfree(cp->cc_bucket);
|
|
cp->cc_nbuckets = newnbuckets;
|
|
cp->cc_bucket = newbucket;
|
|
}
|
|
|
|
/*
|
|
* CatalogCacheInitializeCache
|
|
*
|
|
* This function does final initialization of a catcache: obtain the tuple
|
|
* descriptor and set up the hash and equality function links. We assume
|
|
* that the relcache entry can be opened at this point!
|
|
*/
|
|
#ifdef CACHEDEBUG
|
|
#define CatalogCacheInitializeCache_DEBUG1 \
|
|
elog(DEBUG2, "CatalogCacheInitializeCache: cache @%p rel=%u", cache, \
|
|
cache->cc_reloid)
|
|
|
|
#define CatalogCacheInitializeCache_DEBUG2 \
|
|
do { \
|
|
if (cache->cc_keyno[i] > 0) { \
|
|
elog(DEBUG2, "CatalogCacheInitializeCache: load %d/%d w/%d, %u", \
|
|
i+1, cache->cc_nkeys, cache->cc_keyno[i], \
|
|
TupleDescAttr(tupdesc, cache->cc_keyno[i] - 1)->atttypid); \
|
|
} else { \
|
|
elog(DEBUG2, "CatalogCacheInitializeCache: load %d/%d w/%d", \
|
|
i+1, cache->cc_nkeys, cache->cc_keyno[i]); \
|
|
} \
|
|
} while(0)
|
|
#else
|
|
#define CatalogCacheInitializeCache_DEBUG1
|
|
#define CatalogCacheInitializeCache_DEBUG2
|
|
#endif
|
|
|
|
static void
|
|
CatalogCacheInitializeCache(CatCache *cache)
|
|
{
|
|
Relation relation;
|
|
MemoryContext oldcxt;
|
|
TupleDesc tupdesc;
|
|
int i;
|
|
|
|
CatalogCacheInitializeCache_DEBUG1;
|
|
|
|
relation = table_open(cache->cc_reloid, AccessShareLock);
|
|
|
|
/*
|
|
* switch to the cache context so our allocations do not vanish at the end
|
|
* of a transaction
|
|
*/
|
|
Assert(CacheMemoryContext != NULL);
|
|
|
|
oldcxt = MemoryContextSwitchTo(CacheMemoryContext);
|
|
|
|
/*
|
|
* copy the relcache's tuple descriptor to permanent cache storage
|
|
*/
|
|
tupdesc = CreateTupleDescCopyConstr(RelationGetDescr(relation));
|
|
|
|
/*
|
|
* save the relation's name and relisshared flag, too (cc_relname is used
|
|
* only for debugging purposes)
|
|
*/
|
|
cache->cc_relname = pstrdup(RelationGetRelationName(relation));
|
|
cache->cc_relisshared = RelationGetForm(relation)->relisshared;
|
|
|
|
/*
|
|
* return to the caller's memory context and close the rel
|
|
*/
|
|
MemoryContextSwitchTo(oldcxt);
|
|
|
|
table_close(relation, AccessShareLock);
|
|
|
|
CACHE_elog(DEBUG2, "CatalogCacheInitializeCache: %s, %d keys",
|
|
cache->cc_relname, cache->cc_nkeys);
|
|
|
|
/*
|
|
* initialize cache's key information
|
|
*/
|
|
for (i = 0; i < cache->cc_nkeys; ++i)
|
|
{
|
|
Oid keytype;
|
|
RegProcedure eqfunc;
|
|
|
|
CatalogCacheInitializeCache_DEBUG2;
|
|
|
|
if (cache->cc_keyno[i] > 0)
|
|
{
|
|
Form_pg_attribute attr = TupleDescAttr(tupdesc,
|
|
cache->cc_keyno[i] - 1);
|
|
|
|
keytype = attr->atttypid;
|
|
/* cache key columns should always be NOT NULL */
|
|
Assert(attr->attnotnull);
|
|
}
|
|
else
|
|
{
|
|
if (cache->cc_keyno[i] < 0)
|
|
elog(FATAL, "sys attributes are not supported in caches");
|
|
keytype = OIDOID;
|
|
}
|
|
|
|
GetCCHashEqFuncs(keytype,
|
|
&cache->cc_hashfunc[i],
|
|
&eqfunc,
|
|
&cache->cc_fastequal[i]);
|
|
|
|
/*
|
|
* Do equality-function lookup (we assume this won't need a catalog
|
|
* lookup for any supported type)
|
|
*/
|
|
fmgr_info_cxt(eqfunc,
|
|
&cache->cc_skey[i].sk_func,
|
|
CacheMemoryContext);
|
|
|
|
/* Initialize sk_attno suitably for HeapKeyTest() and heap scans */
|
|
cache->cc_skey[i].sk_attno = cache->cc_keyno[i];
|
|
|
|
/* Fill in sk_strategy as well --- always standard equality */
|
|
cache->cc_skey[i].sk_strategy = BTEqualStrategyNumber;
|
|
cache->cc_skey[i].sk_subtype = InvalidOid;
|
|
/* If a catcache key requires a collation, it must be C collation */
|
|
cache->cc_skey[i].sk_collation = C_COLLATION_OID;
|
|
|
|
CACHE_elog(DEBUG2, "CatalogCacheInitializeCache %s %d %p",
|
|
cache->cc_relname, i, cache);
|
|
}
|
|
|
|
/*
|
|
* mark this cache fully initialized
|
|
*/
|
|
cache->cc_tupdesc = tupdesc;
|
|
}
|
|
|
|
/*
|
|
* InitCatCachePhase2 -- external interface for CatalogCacheInitializeCache
|
|
*
|
|
* One reason to call this routine is to ensure that the relcache has
|
|
* created entries for all the catalogs and indexes referenced by catcaches.
|
|
* Therefore, provide an option to open the index as well as fixing the
|
|
* cache itself. An exception is the indexes on pg_am, which we don't use
|
|
* (cf. IndexScanOK).
|
|
*/
|
|
void
|
|
InitCatCachePhase2(CatCache *cache, bool touch_index)
|
|
{
|
|
if (cache->cc_tupdesc == NULL)
|
|
CatalogCacheInitializeCache(cache);
|
|
|
|
if (touch_index &&
|
|
cache->id != AMOID &&
|
|
cache->id != AMNAME)
|
|
{
|
|
Relation idesc;
|
|
|
|
/*
|
|
* We must lock the underlying catalog before opening the index to
|
|
* avoid deadlock, since index_open could possibly result in reading
|
|
* this same catalog, and if anyone else is exclusive-locking this
|
|
* catalog and index they'll be doing it in that order.
|
|
*/
|
|
LockRelationOid(cache->cc_reloid, AccessShareLock);
|
|
idesc = index_open(cache->cc_indexoid, AccessShareLock);
|
|
|
|
/*
|
|
* While we've got the index open, let's check that it's unique (and
|
|
* not just deferrable-unique, thank you very much). This is just to
|
|
* catch thinkos in definitions of new catcaches, so we don't worry
|
|
* about the pg_am indexes not getting tested.
|
|
*/
|
|
Assert(idesc->rd_index->indisunique &&
|
|
idesc->rd_index->indimmediate);
|
|
|
|
index_close(idesc, AccessShareLock);
|
|
UnlockRelationOid(cache->cc_reloid, AccessShareLock);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* IndexScanOK
|
|
*
|
|
* This function checks for tuples that will be fetched by
|
|
* IndexSupportInitialize() during relcache initialization for
|
|
* certain system indexes that support critical syscaches.
|
|
* We can't use an indexscan to fetch these, else we'll get into
|
|
* infinite recursion. A plain heap scan will work, however.
|
|
* Once we have completed relcache initialization (signaled by
|
|
* criticalRelcachesBuilt), we don't have to worry anymore.
|
|
*
|
|
* Similarly, during backend startup we have to be able to use the
|
|
* pg_authid and pg_auth_members syscaches for authentication even if
|
|
* we don't yet have relcache entries for those catalogs' indexes.
|
|
*/
|
|
static bool
|
|
IndexScanOK(CatCache *cache, ScanKey cur_skey)
|
|
{
|
|
switch (cache->id)
|
|
{
|
|
case INDEXRELID:
|
|
|
|
/*
|
|
* Rather than tracking exactly which indexes have to be loaded
|
|
* before we can use indexscans (which changes from time to time),
|
|
* just force all pg_index searches to be heap scans until we've
|
|
* built the critical relcaches.
|
|
*/
|
|
if (!criticalRelcachesBuilt)
|
|
return false;
|
|
break;
|
|
|
|
case AMOID:
|
|
case AMNAME:
|
|
|
|
/*
|
|
* Always do heap scans in pg_am, because it's so small there's
|
|
* not much point in an indexscan anyway. We *must* do this when
|
|
* initially building critical relcache entries, but we might as
|
|
* well just always do it.
|
|
*/
|
|
return false;
|
|
|
|
case AUTHNAME:
|
|
case AUTHOID:
|
|
case AUTHMEMMEMROLE:
|
|
|
|
/*
|
|
* Protect authentication lookups occurring before relcache has
|
|
* collected entries for shared indexes.
|
|
*/
|
|
if (!criticalSharedRelcachesBuilt)
|
|
return false;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* Normal case, allow index scan */
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* SearchCatCacheInternal
|
|
*
|
|
* This call searches a system cache for a tuple, opening the relation
|
|
* if necessary (on the first access to a particular cache).
|
|
*
|
|
* The result is NULL if not found, or a pointer to a HeapTuple in
|
|
* the cache. The caller must not modify the tuple, and must call
|
|
* ReleaseCatCache() when done with it.
|
|
*
|
|
* The search key values should be expressed as Datums of the key columns'
|
|
* datatype(s). (Pass zeroes for any unused parameters.) As a special
|
|
* exception, the passed-in key for a NAME column can be just a C string;
|
|
* the caller need not go to the trouble of converting it to a fully
|
|
* null-padded NAME.
|
|
*/
|
|
HeapTuple
|
|
SearchCatCache(CatCache *cache,
|
|
Datum v1,
|
|
Datum v2,
|
|
Datum v3,
|
|
Datum v4)
|
|
{
|
|
return SearchCatCacheInternal(cache, cache->cc_nkeys, v1, v2, v3, v4);
|
|
}
|
|
|
|
|
|
/*
|
|
* SearchCatCacheN() are SearchCatCache() versions for a specific number of
|
|
* arguments. The compiler can inline the body and unroll loops, making them a
|
|
* bit faster than SearchCatCache().
|
|
*/
|
|
|
|
HeapTuple
|
|
SearchCatCache1(CatCache *cache,
|
|
Datum v1)
|
|
{
|
|
return SearchCatCacheInternal(cache, 1, v1, 0, 0, 0);
|
|
}
|
|
|
|
|
|
HeapTuple
|
|
SearchCatCache2(CatCache *cache,
|
|
Datum v1, Datum v2)
|
|
{
|
|
return SearchCatCacheInternal(cache, 2, v1, v2, 0, 0);
|
|
}
|
|
|
|
|
|
HeapTuple
|
|
SearchCatCache3(CatCache *cache,
|
|
Datum v1, Datum v2, Datum v3)
|
|
{
|
|
return SearchCatCacheInternal(cache, 3, v1, v2, v3, 0);
|
|
}
|
|
|
|
|
|
HeapTuple
|
|
SearchCatCache4(CatCache *cache,
|
|
Datum v1, Datum v2, Datum v3, Datum v4)
|
|
{
|
|
return SearchCatCacheInternal(cache, 4, v1, v2, v3, v4);
|
|
}
|
|
|
|
/*
|
|
* Work-horse for SearchCatCache/SearchCatCacheN.
|
|
*/
|
|
static inline HeapTuple
|
|
SearchCatCacheInternal(CatCache *cache,
|
|
int nkeys,
|
|
Datum v1,
|
|
Datum v2,
|
|
Datum v3,
|
|
Datum v4)
|
|
{
|
|
Datum arguments[CATCACHE_MAXKEYS];
|
|
uint32 hashValue;
|
|
Index hashIndex;
|
|
dlist_iter iter;
|
|
dlist_head *bucket;
|
|
CatCTup *ct;
|
|
|
|
/* Make sure we're in an xact, even if this ends up being a cache hit */
|
|
Assert(IsTransactionState());
|
|
|
|
Assert(cache->cc_nkeys == nkeys);
|
|
|
|
/*
|
|
* one-time startup overhead for each cache
|
|
*/
|
|
if (unlikely(cache->cc_tupdesc == NULL))
|
|
CatalogCacheInitializeCache(cache);
|
|
|
|
#ifdef CATCACHE_STATS
|
|
cache->cc_searches++;
|
|
#endif
|
|
|
|
/* Initialize local parameter array */
|
|
arguments[0] = v1;
|
|
arguments[1] = v2;
|
|
arguments[2] = v3;
|
|
arguments[3] = v4;
|
|
|
|
/*
|
|
* find the hash bucket in which to look for the tuple
|
|
*/
|
|
hashValue = CatalogCacheComputeHashValue(cache, nkeys, v1, v2, v3, v4);
|
|
hashIndex = HASH_INDEX(hashValue, cache->cc_nbuckets);
|
|
|
|
/*
|
|
* scan the hash bucket until we find a match or exhaust our tuples
|
|
*
|
|
* Note: it's okay to use dlist_foreach here, even though we modify the
|
|
* dlist within the loop, because we don't continue the loop afterwards.
|
|
*/
|
|
bucket = &cache->cc_bucket[hashIndex];
|
|
dlist_foreach(iter, bucket)
|
|
{
|
|
ct = dlist_container(CatCTup, cache_elem, iter.cur);
|
|
|
|
if (ct->dead)
|
|
continue; /* ignore dead entries */
|
|
|
|
if (ct->hash_value != hashValue)
|
|
continue; /* quickly skip entry if wrong hash val */
|
|
|
|
if (!CatalogCacheCompareTuple(cache, nkeys, ct->keys, arguments))
|
|
continue;
|
|
|
|
/*
|
|
* We found a match in the cache. Move it to the front of the list
|
|
* for its hashbucket, in order to speed subsequent searches. (The
|
|
* most frequently accessed elements in any hashbucket will tend to be
|
|
* near the front of the hashbucket's list.)
|
|
*/
|
|
dlist_move_head(bucket, &ct->cache_elem);
|
|
|
|
/*
|
|
* If it's a positive entry, bump its refcount and return it. If it's
|
|
* negative, we can report failure to the caller.
|
|
*/
|
|
if (!ct->negative)
|
|
{
|
|
ResourceOwnerEnlargeCatCacheRefs(CurrentResourceOwner);
|
|
ct->refcount++;
|
|
ResourceOwnerRememberCatCacheRef(CurrentResourceOwner, &ct->tuple);
|
|
|
|
CACHE_elog(DEBUG2, "SearchCatCache(%s): found in bucket %d",
|
|
cache->cc_relname, hashIndex);
|
|
|
|
#ifdef CATCACHE_STATS
|
|
cache->cc_hits++;
|
|
#endif
|
|
|
|
return &ct->tuple;
|
|
}
|
|
else
|
|
{
|
|
CACHE_elog(DEBUG2, "SearchCatCache(%s): found neg entry in bucket %d",
|
|
cache->cc_relname, hashIndex);
|
|
|
|
#ifdef CATCACHE_STATS
|
|
cache->cc_neg_hits++;
|
|
#endif
|
|
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
return SearchCatCacheMiss(cache, nkeys, hashValue, hashIndex, v1, v2, v3, v4);
|
|
}
|
|
|
|
/*
|
|
* Search the actual catalogs, rather than the cache.
|
|
*
|
|
* This is kept separate from SearchCatCacheInternal() to keep the fast-path
|
|
* as small as possible. To avoid that effort being undone by a helpful
|
|
* compiler, try to explicitly forbid inlining.
|
|
*/
|
|
static pg_noinline HeapTuple
|
|
SearchCatCacheMiss(CatCache *cache,
|
|
int nkeys,
|
|
uint32 hashValue,
|
|
Index hashIndex,
|
|
Datum v1,
|
|
Datum v2,
|
|
Datum v3,
|
|
Datum v4)
|
|
{
|
|
ScanKeyData cur_skey[CATCACHE_MAXKEYS];
|
|
Relation relation;
|
|
SysScanDesc scandesc;
|
|
HeapTuple ntp;
|
|
CatCTup *ct;
|
|
bool stale;
|
|
Datum arguments[CATCACHE_MAXKEYS];
|
|
|
|
/* Initialize local parameter array */
|
|
arguments[0] = v1;
|
|
arguments[1] = v2;
|
|
arguments[2] = v3;
|
|
arguments[3] = v4;
|
|
|
|
/*
|
|
* Tuple was not found in cache, so we have to try to retrieve it directly
|
|
* from the relation. If found, we will add it to the cache; if not
|
|
* found, we will add a negative cache entry instead.
|
|
*
|
|
* NOTE: it is possible for recursive cache lookups to occur while reading
|
|
* the relation --- for example, due to shared-cache-inval messages being
|
|
* processed during table_open(). This is OK. It's even possible for one
|
|
* of those lookups to find and enter the very same tuple we are trying to
|
|
* fetch here. If that happens, we will enter a second copy of the tuple
|
|
* into the cache. The first copy will never be referenced again, and
|
|
* will eventually age out of the cache, so there's no functional problem.
|
|
* This case is rare enough that it's not worth expending extra cycles to
|
|
* detect.
|
|
*
|
|
* Another case, which we *must* handle, is that the tuple could become
|
|
* outdated during CatalogCacheCreateEntry's attempt to detoast it (since
|
|
* AcceptInvalidationMessages can run during TOAST table access). We do
|
|
* not want to return already-stale catcache entries, so we loop around
|
|
* and do the table scan again if that happens.
|
|
*/
|
|
relation = table_open(cache->cc_reloid, AccessShareLock);
|
|
|
|
do
|
|
{
|
|
/*
|
|
* Ok, need to make a lookup in the relation, copy the scankey and
|
|
* fill out any per-call fields. (We must re-do this when retrying,
|
|
* because systable_beginscan scribbles on the scankey.)
|
|
*/
|
|
memcpy(cur_skey, cache->cc_skey, sizeof(ScanKeyData) * nkeys);
|
|
cur_skey[0].sk_argument = v1;
|
|
cur_skey[1].sk_argument = v2;
|
|
cur_skey[2].sk_argument = v3;
|
|
cur_skey[3].sk_argument = v4;
|
|
|
|
scandesc = systable_beginscan(relation,
|
|
cache->cc_indexoid,
|
|
IndexScanOK(cache, cur_skey),
|
|
NULL,
|
|
nkeys,
|
|
cur_skey);
|
|
|
|
ct = NULL;
|
|
stale = false;
|
|
|
|
while (HeapTupleIsValid(ntp = systable_getnext(scandesc)))
|
|
{
|
|
ct = CatalogCacheCreateEntry(cache, ntp, scandesc, NULL,
|
|
hashValue, hashIndex);
|
|
/* upon failure, we must start the scan over */
|
|
if (ct == NULL)
|
|
{
|
|
stale = true;
|
|
break;
|
|
}
|
|
/* immediately set the refcount to 1 */
|
|
ResourceOwnerEnlargeCatCacheRefs(CurrentResourceOwner);
|
|
ct->refcount++;
|
|
ResourceOwnerRememberCatCacheRef(CurrentResourceOwner, &ct->tuple);
|
|
break; /* assume only one match */
|
|
}
|
|
|
|
systable_endscan(scandesc);
|
|
} while (stale);
|
|
|
|
table_close(relation, AccessShareLock);
|
|
|
|
/*
|
|
* If tuple was not found, we need to build a negative cache entry
|
|
* containing a fake tuple. The fake tuple has the correct key columns,
|
|
* but nulls everywhere else.
|
|
*
|
|
* In bootstrap mode, we don't build negative entries, because the cache
|
|
* invalidation mechanism isn't alive and can't clear them if the tuple
|
|
* gets created later. (Bootstrap doesn't do UPDATEs, so it doesn't need
|
|
* cache inval for that.)
|
|
*/
|
|
if (ct == NULL)
|
|
{
|
|
if (IsBootstrapProcessingMode())
|
|
return NULL;
|
|
|
|
ct = CatalogCacheCreateEntry(cache, NULL, NULL, arguments,
|
|
hashValue, hashIndex);
|
|
|
|
/* Creating a negative cache entry shouldn't fail */
|
|
Assert(ct != NULL);
|
|
|
|
CACHE_elog(DEBUG2, "SearchCatCache(%s): Contains %d/%d tuples",
|
|
cache->cc_relname, cache->cc_ntup, CacheHdr->ch_ntup);
|
|
CACHE_elog(DEBUG2, "SearchCatCache(%s): put neg entry in bucket %d",
|
|
cache->cc_relname, hashIndex);
|
|
|
|
/*
|
|
* We are not returning the negative entry to the caller, so leave its
|
|
* refcount zero.
|
|
*/
|
|
|
|
return NULL;
|
|
}
|
|
|
|
CACHE_elog(DEBUG2, "SearchCatCache(%s): Contains %d/%d tuples",
|
|
cache->cc_relname, cache->cc_ntup, CacheHdr->ch_ntup);
|
|
CACHE_elog(DEBUG2, "SearchCatCache(%s): put in bucket %d",
|
|
cache->cc_relname, hashIndex);
|
|
|
|
#ifdef CATCACHE_STATS
|
|
cache->cc_newloads++;
|
|
#endif
|
|
|
|
return &ct->tuple;
|
|
}
|
|
|
|
/*
|
|
* ReleaseCatCache
|
|
*
|
|
* Decrement the reference count of a catcache entry (releasing the
|
|
* hold grabbed by a successful SearchCatCache).
|
|
*
|
|
* NOTE: if compiled with -DCATCACHE_FORCE_RELEASE then catcache entries
|
|
* will be freed as soon as their refcount goes to zero. In combination
|
|
* with aset.c's CLOBBER_FREED_MEMORY option, this provides a good test
|
|
* to catch references to already-released catcache entries.
|
|
*/
|
|
void
|
|
ReleaseCatCache(HeapTuple tuple)
|
|
{
|
|
CatCTup *ct = (CatCTup *) (((char *) tuple) -
|
|
offsetof(CatCTup, tuple));
|
|
|
|
/* Safety checks to ensure we were handed a cache entry */
|
|
Assert(ct->ct_magic == CT_MAGIC);
|
|
Assert(ct->refcount > 0);
|
|
|
|
ct->refcount--;
|
|
ResourceOwnerForgetCatCacheRef(CurrentResourceOwner, &ct->tuple);
|
|
|
|
if (
|
|
#ifndef CATCACHE_FORCE_RELEASE
|
|
ct->dead &&
|
|
#endif
|
|
ct->refcount == 0 &&
|
|
(ct->c_list == NULL || ct->c_list->refcount == 0))
|
|
CatCacheRemoveCTup(ct->my_cache, ct);
|
|
}
|
|
|
|
|
|
/*
|
|
* GetCatCacheHashValue
|
|
*
|
|
* Compute the hash value for a given set of search keys.
|
|
*
|
|
* The reason for exposing this as part of the API is that the hash value is
|
|
* exposed in cache invalidation operations, so there are places outside the
|
|
* catcache code that need to be able to compute the hash values.
|
|
*/
|
|
uint32
|
|
GetCatCacheHashValue(CatCache *cache,
|
|
Datum v1,
|
|
Datum v2,
|
|
Datum v3,
|
|
Datum v4)
|
|
{
|
|
/*
|
|
* one-time startup overhead for each cache
|
|
*/
|
|
if (cache->cc_tupdesc == NULL)
|
|
CatalogCacheInitializeCache(cache);
|
|
|
|
/*
|
|
* calculate the hash value
|
|
*/
|
|
return CatalogCacheComputeHashValue(cache, cache->cc_nkeys, v1, v2, v3, v4);
|
|
}
|
|
|
|
|
|
/*
|
|
* SearchCatCacheList
|
|
*
|
|
* Generate a list of all tuples matching a partial key (that is,
|
|
* a key specifying just the first K of the cache's N key columns).
|
|
*
|
|
* It doesn't make any sense to specify all of the cache's key columns
|
|
* here: since the key is unique, there could be at most one match, so
|
|
* you ought to use SearchCatCache() instead. Hence this function takes
|
|
* one less Datum argument than SearchCatCache() does.
|
|
*
|
|
* The caller must not modify the list object or the pointed-to tuples,
|
|
* and must call ReleaseCatCacheList() when done with the list.
|
|
*/
|
|
CatCList *
|
|
SearchCatCacheList(CatCache *cache,
|
|
int nkeys,
|
|
Datum v1,
|
|
Datum v2,
|
|
Datum v3)
|
|
{
|
|
Datum v4 = 0; /* dummy last-column value */
|
|
Datum arguments[CATCACHE_MAXKEYS];
|
|
uint32 lHashValue;
|
|
dlist_iter iter;
|
|
CatCList *cl;
|
|
CatCTup *ct;
|
|
List *volatile ctlist;
|
|
ListCell *ctlist_item;
|
|
int nmembers;
|
|
bool ordered;
|
|
HeapTuple ntp;
|
|
MemoryContext oldcxt;
|
|
int i;
|
|
|
|
/*
|
|
* one-time startup overhead for each cache
|
|
*/
|
|
if (cache->cc_tupdesc == NULL)
|
|
CatalogCacheInitializeCache(cache);
|
|
|
|
Assert(nkeys > 0 && nkeys < cache->cc_nkeys);
|
|
|
|
#ifdef CATCACHE_STATS
|
|
cache->cc_lsearches++;
|
|
#endif
|
|
|
|
/* Initialize local parameter array */
|
|
arguments[0] = v1;
|
|
arguments[1] = v2;
|
|
arguments[2] = v3;
|
|
arguments[3] = v4;
|
|
|
|
/*
|
|
* compute a hash value of the given keys for faster search. We don't
|
|
* presently divide the CatCList items into buckets, but this still lets
|
|
* us skip non-matching items quickly most of the time.
|
|
*/
|
|
lHashValue = CatalogCacheComputeHashValue(cache, nkeys, v1, v2, v3, v4);
|
|
|
|
/*
|
|
* scan the items until we find a match or exhaust our list
|
|
*
|
|
* Note: it's okay to use dlist_foreach here, even though we modify the
|
|
* dlist within the loop, because we don't continue the loop afterwards.
|
|
*/
|
|
dlist_foreach(iter, &cache->cc_lists)
|
|
{
|
|
cl = dlist_container(CatCList, cache_elem, iter.cur);
|
|
|
|
if (cl->dead)
|
|
continue; /* ignore dead entries */
|
|
|
|
if (cl->hash_value != lHashValue)
|
|
continue; /* quickly skip entry if wrong hash val */
|
|
|
|
/*
|
|
* see if the cached list matches our key.
|
|
*/
|
|
if (cl->nkeys != nkeys)
|
|
continue;
|
|
|
|
if (!CatalogCacheCompareTuple(cache, nkeys, cl->keys, arguments))
|
|
continue;
|
|
|
|
/*
|
|
* We found a matching list. Move the list to the front of the
|
|
* cache's list-of-lists, to speed subsequent searches. (We do not
|
|
* move the members to the fronts of their hashbucket lists, however,
|
|
* since there's no point in that unless they are searched for
|
|
* individually.)
|
|
*/
|
|
dlist_move_head(&cache->cc_lists, &cl->cache_elem);
|
|
|
|
/* Bump the list's refcount and return it */
|
|
ResourceOwnerEnlargeCatCacheListRefs(CurrentResourceOwner);
|
|
cl->refcount++;
|
|
ResourceOwnerRememberCatCacheListRef(CurrentResourceOwner, cl);
|
|
|
|
CACHE_elog(DEBUG2, "SearchCatCacheList(%s): found list",
|
|
cache->cc_relname);
|
|
|
|
#ifdef CATCACHE_STATS
|
|
cache->cc_lhits++;
|
|
#endif
|
|
|
|
return cl;
|
|
}
|
|
|
|
/*
|
|
* List was not found in cache, so we have to build it by reading the
|
|
* relation. For each matching tuple found in the relation, use an
|
|
* existing cache entry if possible, else build a new one.
|
|
*
|
|
* We have to bump the member refcounts temporarily to ensure they won't
|
|
* get dropped from the cache while loading other members. We use a PG_TRY
|
|
* block to ensure we can undo those refcounts if we get an error before
|
|
* we finish constructing the CatCList. ctlist must be valid throughout
|
|
* the PG_TRY block.
|
|
*/
|
|
ResourceOwnerEnlargeCatCacheListRefs(CurrentResourceOwner);
|
|
|
|
ctlist = NIL;
|
|
|
|
PG_TRY();
|
|
{
|
|
ScanKeyData cur_skey[CATCACHE_MAXKEYS];
|
|
Relation relation;
|
|
SysScanDesc scandesc;
|
|
bool stale;
|
|
|
|
relation = table_open(cache->cc_reloid, AccessShareLock);
|
|
|
|
do
|
|
{
|
|
/*
|
|
* Ok, need to make a lookup in the relation, copy the scankey and
|
|
* fill out any per-call fields. (We must re-do this when
|
|
* retrying, because systable_beginscan scribbles on the scankey.)
|
|
*/
|
|
memcpy(cur_skey, cache->cc_skey, sizeof(ScanKeyData) * cache->cc_nkeys);
|
|
cur_skey[0].sk_argument = v1;
|
|
cur_skey[1].sk_argument = v2;
|
|
cur_skey[2].sk_argument = v3;
|
|
cur_skey[3].sk_argument = v4;
|
|
|
|
scandesc = systable_beginscan(relation,
|
|
cache->cc_indexoid,
|
|
IndexScanOK(cache, cur_skey),
|
|
NULL,
|
|
nkeys,
|
|
cur_skey);
|
|
|
|
/* The list will be ordered iff we are doing an index scan */
|
|
ordered = (scandesc->irel != NULL);
|
|
|
|
stale = false;
|
|
|
|
while (HeapTupleIsValid(ntp = systable_getnext(scandesc)))
|
|
{
|
|
uint32 hashValue;
|
|
Index hashIndex;
|
|
bool found = false;
|
|
dlist_head *bucket;
|
|
|
|
/*
|
|
* See if there's an entry for this tuple already.
|
|
*/
|
|
ct = NULL;
|
|
hashValue = CatalogCacheComputeTupleHashValue(cache, cache->cc_nkeys, ntp);
|
|
hashIndex = HASH_INDEX(hashValue, cache->cc_nbuckets);
|
|
|
|
bucket = &cache->cc_bucket[hashIndex];
|
|
dlist_foreach(iter, bucket)
|
|
{
|
|
ct = dlist_container(CatCTup, cache_elem, iter.cur);
|
|
|
|
if (ct->dead || ct->negative)
|
|
continue; /* ignore dead and negative entries */
|
|
|
|
if (ct->hash_value != hashValue)
|
|
continue; /* quickly skip entry if wrong hash val */
|
|
|
|
if (!ItemPointerEquals(&(ct->tuple.t_self), &(ntp->t_self)))
|
|
continue; /* not same tuple */
|
|
|
|
/*
|
|
* Found a match, but can't use it if it belongs to
|
|
* another list already
|
|
*/
|
|
if (ct->c_list)
|
|
continue;
|
|
|
|
found = true;
|
|
break; /* A-OK */
|
|
}
|
|
|
|
if (!found)
|
|
{
|
|
/* We didn't find a usable entry, so make a new one */
|
|
ct = CatalogCacheCreateEntry(cache, ntp, scandesc, NULL,
|
|
hashValue, hashIndex);
|
|
/* upon failure, we must start the scan over */
|
|
if (ct == NULL)
|
|
{
|
|
/*
|
|
* Release refcounts on any items we already had. We
|
|
* dare not try to free them if they're now
|
|
* unreferenced, since an error while doing that would
|
|
* result in the PG_CATCH below doing extra refcount
|
|
* decrements. Besides, we'll likely re-adopt those
|
|
* items in the next iteration, so it's not worth
|
|
* complicating matters to try to get rid of them.
|
|
*/
|
|
foreach(ctlist_item, ctlist)
|
|
{
|
|
ct = (CatCTup *) lfirst(ctlist_item);
|
|
Assert(ct->c_list == NULL);
|
|
Assert(ct->refcount > 0);
|
|
ct->refcount--;
|
|
}
|
|
/* Reset ctlist in preparation for new try */
|
|
ctlist = NIL;
|
|
stale = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Careful here: add entry to ctlist, then bump its refcount */
|
|
/* This way leaves state correct if lappend runs out of memory */
|
|
ctlist = lappend(ctlist, ct);
|
|
ct->refcount++;
|
|
}
|
|
|
|
systable_endscan(scandesc);
|
|
} while (stale);
|
|
|
|
table_close(relation, AccessShareLock);
|
|
|
|
/* Now we can build the CatCList entry. */
|
|
oldcxt = MemoryContextSwitchTo(CacheMemoryContext);
|
|
nmembers = list_length(ctlist);
|
|
cl = (CatCList *)
|
|
palloc(offsetof(CatCList, members) + nmembers * sizeof(CatCTup *));
|
|
|
|
/* Extract key values */
|
|
CatCacheCopyKeys(cache->cc_tupdesc, nkeys, cache->cc_keyno,
|
|
arguments, cl->keys);
|
|
MemoryContextSwitchTo(oldcxt);
|
|
|
|
/*
|
|
* We are now past the last thing that could trigger an elog before we
|
|
* have finished building the CatCList and remembering it in the
|
|
* resource owner. So it's OK to fall out of the PG_TRY, and indeed
|
|
* we'd better do so before we start marking the members as belonging
|
|
* to the list.
|
|
*/
|
|
|
|
}
|
|
PG_CATCH();
|
|
{
|
|
foreach(ctlist_item, ctlist)
|
|
{
|
|
ct = (CatCTup *) lfirst(ctlist_item);
|
|
Assert(ct->c_list == NULL);
|
|
Assert(ct->refcount > 0);
|
|
ct->refcount--;
|
|
if (
|
|
#ifndef CATCACHE_FORCE_RELEASE
|
|
ct->dead &&
|
|
#endif
|
|
ct->refcount == 0 &&
|
|
(ct->c_list == NULL || ct->c_list->refcount == 0))
|
|
CatCacheRemoveCTup(cache, ct);
|
|
}
|
|
|
|
PG_RE_THROW();
|
|
}
|
|
PG_END_TRY();
|
|
|
|
cl->cl_magic = CL_MAGIC;
|
|
cl->my_cache = cache;
|
|
cl->refcount = 0; /* for the moment */
|
|
cl->dead = false;
|
|
cl->ordered = ordered;
|
|
cl->nkeys = nkeys;
|
|
cl->hash_value = lHashValue;
|
|
cl->n_members = nmembers;
|
|
|
|
i = 0;
|
|
foreach(ctlist_item, ctlist)
|
|
{
|
|
cl->members[i++] = ct = (CatCTup *) lfirst(ctlist_item);
|
|
Assert(ct->c_list == NULL);
|
|
ct->c_list = cl;
|
|
/* release the temporary refcount on the member */
|
|
Assert(ct->refcount > 0);
|
|
ct->refcount--;
|
|
/* mark list dead if any members already dead */
|
|
if (ct->dead)
|
|
cl->dead = true;
|
|
}
|
|
Assert(i == nmembers);
|
|
|
|
dlist_push_head(&cache->cc_lists, &cl->cache_elem);
|
|
|
|
/* Finally, bump the list's refcount and return it */
|
|
cl->refcount++;
|
|
ResourceOwnerRememberCatCacheListRef(CurrentResourceOwner, cl);
|
|
|
|
CACHE_elog(DEBUG2, "SearchCatCacheList(%s): made list of %d members",
|
|
cache->cc_relname, nmembers);
|
|
|
|
return cl;
|
|
}
|
|
|
|
/*
|
|
* ReleaseCatCacheList
|
|
*
|
|
* Decrement the reference count of a catcache list.
|
|
*/
|
|
void
|
|
ReleaseCatCacheList(CatCList *list)
|
|
{
|
|
/* Safety checks to ensure we were handed a cache entry */
|
|
Assert(list->cl_magic == CL_MAGIC);
|
|
Assert(list->refcount > 0);
|
|
list->refcount--;
|
|
ResourceOwnerForgetCatCacheListRef(CurrentResourceOwner, list);
|
|
|
|
if (
|
|
#ifndef CATCACHE_FORCE_RELEASE
|
|
list->dead &&
|
|
#endif
|
|
list->refcount == 0)
|
|
CatCacheRemoveCList(list->my_cache, list);
|
|
}
|
|
|
|
|
|
/*
|
|
* equalTuple
|
|
* Are these tuples memcmp()-equal?
|
|
*/
|
|
static bool
|
|
equalTuple(HeapTuple a, HeapTuple b)
|
|
{
|
|
uint32 alen;
|
|
uint32 blen;
|
|
|
|
alen = a->t_len;
|
|
blen = b->t_len;
|
|
return (alen == blen &&
|
|
memcmp((char *) a->t_data,
|
|
(char *) b->t_data, blen) == 0);
|
|
}
|
|
|
|
/*
|
|
* CatalogCacheCreateEntry
|
|
* Create a new CatCTup entry, copying the given HeapTuple and other
|
|
* supplied data into it. The new entry initially has refcount 0.
|
|
*
|
|
* To create a normal cache entry, ntp must be the HeapTuple just fetched
|
|
* from scandesc, and "arguments" is not used. To create a negative cache
|
|
* entry, pass NULL for ntp and scandesc; then "arguments" is the cache
|
|
* keys to use. In either case, hashValue/hashIndex are the hash values
|
|
* computed from the cache keys.
|
|
*
|
|
* Returns NULL if we attempt to detoast the tuple and observe that it
|
|
* became stale. (This cannot happen for a negative entry.) Caller must
|
|
* retry the tuple lookup in that case.
|
|
*/
|
|
static CatCTup *
|
|
CatalogCacheCreateEntry(CatCache *cache, HeapTuple ntp, SysScanDesc scandesc,
|
|
Datum *arguments,
|
|
uint32 hashValue, Index hashIndex)
|
|
{
|
|
CatCTup *ct;
|
|
HeapTuple dtp;
|
|
MemoryContext oldcxt;
|
|
|
|
if (ntp)
|
|
{
|
|
int i;
|
|
|
|
/*
|
|
* The visibility recheck below essentially never fails during our
|
|
* regression tests, and there's no easy way to force it to fail for
|
|
* testing purposes. To ensure we have test coverage for the retry
|
|
* paths in our callers, make debug builds randomly fail about 0.1% of
|
|
* the times through this code path, even when there's no toasted
|
|
* fields.
|
|
*/
|
|
#ifdef USE_ASSERT_CHECKING
|
|
if (random() <= (MAX_RANDOM_VALUE / 1000))
|
|
return NULL;
|
|
#endif
|
|
|
|
/*
|
|
* If there are any out-of-line toasted fields in the tuple, expand
|
|
* them in-line. This saves cycles during later use of the catcache
|
|
* entry, and also protects us against the possibility of the toast
|
|
* tuples being freed before we attempt to fetch them, in case of
|
|
* something using a slightly stale catcache entry.
|
|
*/
|
|
if (HeapTupleHasExternal(ntp))
|
|
{
|
|
bool need_cmp = IsInplaceUpdateOid(cache->cc_reloid);
|
|
HeapTuple before = NULL;
|
|
bool matches = true;
|
|
|
|
if (need_cmp)
|
|
before = heap_copytuple(ntp);
|
|
dtp = toast_flatten_tuple(ntp, cache->cc_tupdesc);
|
|
|
|
/*
|
|
* The tuple could become stale while we are doing toast table
|
|
* access (since AcceptInvalidationMessages can run then).
|
|
* equalTuple() detects staleness from inplace updates, while
|
|
* systable_recheck_tuple() detects staleness from normal updates.
|
|
*
|
|
* While this equalTuple() follows the usual rule of reading with
|
|
* a pin and no buffer lock, it warrants suspicion since an
|
|
* inplace update could appear at any moment. It's safe because
|
|
* the inplace update sends an invalidation that can't reorder
|
|
* before the inplace heap change. If the heap change reaches
|
|
* this process just after equalTuple() looks, we've not missed
|
|
* its inval.
|
|
*/
|
|
if (need_cmp)
|
|
{
|
|
matches = equalTuple(before, ntp);
|
|
heap_freetuple(before);
|
|
}
|
|
if (!matches || !systable_recheck_tuple(scandesc, ntp))
|
|
{
|
|
heap_freetuple(dtp);
|
|
return NULL;
|
|
}
|
|
}
|
|
else
|
|
dtp = ntp;
|
|
|
|
/* Allocate memory for CatCTup and the cached tuple in one go */
|
|
oldcxt = MemoryContextSwitchTo(CacheMemoryContext);
|
|
|
|
ct = (CatCTup *) palloc(sizeof(CatCTup) +
|
|
MAXIMUM_ALIGNOF + dtp->t_len);
|
|
ct->tuple.t_len = dtp->t_len;
|
|
ct->tuple.t_self = dtp->t_self;
|
|
ct->tuple.t_tableOid = dtp->t_tableOid;
|
|
ct->tuple.t_data = (HeapTupleHeader)
|
|
MAXALIGN(((char *) ct) + sizeof(CatCTup));
|
|
/* copy tuple contents */
|
|
memcpy((char *) ct->tuple.t_data,
|
|
(const char *) dtp->t_data,
|
|
dtp->t_len);
|
|
MemoryContextSwitchTo(oldcxt);
|
|
|
|
if (dtp != ntp)
|
|
heap_freetuple(dtp);
|
|
|
|
/* extract keys - they'll point into the tuple if not by-value */
|
|
for (i = 0; i < cache->cc_nkeys; i++)
|
|
{
|
|
Datum atp;
|
|
bool isnull;
|
|
|
|
atp = heap_getattr(&ct->tuple,
|
|
cache->cc_keyno[i],
|
|
cache->cc_tupdesc,
|
|
&isnull);
|
|
Assert(!isnull);
|
|
ct->keys[i] = atp;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Set up keys for a negative cache entry */
|
|
oldcxt = MemoryContextSwitchTo(CacheMemoryContext);
|
|
ct = (CatCTup *) palloc(sizeof(CatCTup));
|
|
|
|
/*
|
|
* Store keys - they'll point into separately allocated memory if not
|
|
* by-value.
|
|
*/
|
|
CatCacheCopyKeys(cache->cc_tupdesc, cache->cc_nkeys, cache->cc_keyno,
|
|
arguments, ct->keys);
|
|
MemoryContextSwitchTo(oldcxt);
|
|
}
|
|
|
|
/*
|
|
* Finish initializing the CatCTup header, and add it to the cache's
|
|
* linked list and counts.
|
|
*/
|
|
ct->ct_magic = CT_MAGIC;
|
|
ct->my_cache = cache;
|
|
ct->c_list = NULL;
|
|
ct->refcount = 0; /* for the moment */
|
|
ct->dead = false;
|
|
ct->negative = (ntp == NULL);
|
|
ct->hash_value = hashValue;
|
|
|
|
dlist_push_head(&cache->cc_bucket[hashIndex], &ct->cache_elem);
|
|
|
|
cache->cc_ntup++;
|
|
CacheHdr->ch_ntup++;
|
|
|
|
/*
|
|
* If the hash table has become too full, enlarge the buckets array. Quite
|
|
* arbitrarily, we enlarge when fill factor > 2.
|
|
*/
|
|
if (cache->cc_ntup > cache->cc_nbuckets * 2)
|
|
RehashCatCache(cache);
|
|
|
|
return ct;
|
|
}
|
|
|
|
/*
|
|
* Helper routine that frees keys stored in the keys array.
|
|
*/
|
|
static void
|
|
CatCacheFreeKeys(TupleDesc tupdesc, int nkeys, int *attnos, Datum *keys)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < nkeys; i++)
|
|
{
|
|
int attnum = attnos[i];
|
|
Form_pg_attribute att;
|
|
|
|
/* system attribute are not supported in caches */
|
|
Assert(attnum > 0);
|
|
|
|
att = TupleDescAttr(tupdesc, attnum - 1);
|
|
|
|
if (!att->attbyval)
|
|
pfree(DatumGetPointer(keys[i]));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Helper routine that copies the keys in the srckeys array into the dstkeys
|
|
* one, guaranteeing that the datums are fully allocated in the current memory
|
|
* context.
|
|
*/
|
|
static void
|
|
CatCacheCopyKeys(TupleDesc tupdesc, int nkeys, int *attnos,
|
|
Datum *srckeys, Datum *dstkeys)
|
|
{
|
|
int i;
|
|
|
|
/*
|
|
* XXX: memory and lookup performance could possibly be improved by
|
|
* storing all keys in one allocation.
|
|
*/
|
|
|
|
for (i = 0; i < nkeys; i++)
|
|
{
|
|
int attnum = attnos[i];
|
|
Form_pg_attribute att = TupleDescAttr(tupdesc, attnum - 1);
|
|
Datum src = srckeys[i];
|
|
NameData srcname;
|
|
|
|
/*
|
|
* Must be careful in case the caller passed a C string where a NAME
|
|
* is wanted: convert the given argument to a correctly padded NAME.
|
|
* Otherwise the memcpy() done by datumCopy() could fall off the end
|
|
* of memory.
|
|
*/
|
|
if (att->atttypid == NAMEOID)
|
|
{
|
|
namestrcpy(&srcname, DatumGetCString(src));
|
|
src = NameGetDatum(&srcname);
|
|
}
|
|
|
|
dstkeys[i] = datumCopy(src,
|
|
att->attbyval,
|
|
att->attlen);
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
|
* PrepareToInvalidateCacheTuple()
|
|
*
|
|
* This is part of a rather subtle chain of events, so pay attention:
|
|
*
|
|
* When a tuple is inserted or deleted, it cannot be flushed from the
|
|
* catcaches immediately, for reasons explained at the top of cache/inval.c.
|
|
* Instead we have to add entry(s) for the tuple to a list of pending tuple
|
|
* invalidations that will be done at the end of the command or transaction.
|
|
*
|
|
* The lists of tuples that need to be flushed are kept by inval.c. This
|
|
* routine is a helper routine for inval.c. Given a tuple belonging to
|
|
* the specified relation, find all catcaches it could be in, compute the
|
|
* correct hash value for each such catcache, and call the specified
|
|
* function to record the cache id and hash value in inval.c's lists.
|
|
* SysCacheInvalidate will be called later, if appropriate,
|
|
* using the recorded information.
|
|
*
|
|
* For an insert or delete, tuple is the target tuple and newtuple is NULL.
|
|
* For an update, we are called just once, with tuple being the old tuple
|
|
* version and newtuple the new version. We should make two list entries
|
|
* if the tuple's hash value changed, but only one if it didn't.
|
|
*
|
|
* Note that it is irrelevant whether the given tuple is actually loaded
|
|
* into the catcache at the moment. Even if it's not there now, it might
|
|
* be by the end of the command, or there might be a matching negative entry
|
|
* to flush --- or other backends' caches might have such entries --- so
|
|
* we have to make list entries to flush it later.
|
|
*
|
|
* Also note that it's not an error if there are no catcaches for the
|
|
* specified relation. inval.c doesn't know exactly which rels have
|
|
* catcaches --- it will call this routine for any tuple that's in a
|
|
* system relation.
|
|
*/
|
|
void
|
|
PrepareToInvalidateCacheTuple(Relation relation,
|
|
HeapTuple tuple,
|
|
HeapTuple newtuple,
|
|
void (*function) (int, uint32, Oid))
|
|
{
|
|
slist_iter iter;
|
|
Oid reloid;
|
|
|
|
CACHE_elog(DEBUG2, "PrepareToInvalidateCacheTuple: called");
|
|
|
|
/*
|
|
* sanity checks
|
|
*/
|
|
Assert(RelationIsValid(relation));
|
|
Assert(HeapTupleIsValid(tuple));
|
|
Assert(PointerIsValid(function));
|
|
Assert(CacheHdr != NULL);
|
|
|
|
reloid = RelationGetRelid(relation);
|
|
|
|
/* ----------------
|
|
* for each cache
|
|
* if the cache contains tuples from the specified relation
|
|
* compute the tuple's hash value(s) in this cache,
|
|
* and call the passed function to register the information.
|
|
* ----------------
|
|
*/
|
|
|
|
slist_foreach(iter, &CacheHdr->ch_caches)
|
|
{
|
|
CatCache *ccp = slist_container(CatCache, cc_next, iter.cur);
|
|
uint32 hashvalue;
|
|
Oid dbid;
|
|
|
|
if (ccp->cc_reloid != reloid)
|
|
continue;
|
|
|
|
/* Just in case cache hasn't finished initialization yet... */
|
|
if (ccp->cc_tupdesc == NULL)
|
|
CatalogCacheInitializeCache(ccp);
|
|
|
|
hashvalue = CatalogCacheComputeTupleHashValue(ccp, ccp->cc_nkeys, tuple);
|
|
dbid = ccp->cc_relisshared ? (Oid) 0 : MyDatabaseId;
|
|
|
|
(*function) (ccp->id, hashvalue, dbid);
|
|
|
|
if (newtuple)
|
|
{
|
|
uint32 newhashvalue;
|
|
|
|
newhashvalue = CatalogCacheComputeTupleHashValue(ccp, ccp->cc_nkeys, newtuple);
|
|
|
|
if (newhashvalue != hashvalue)
|
|
(*function) (ccp->id, newhashvalue, dbid);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Subroutines for warning about reference leaks. These are exported so
|
|
* that resowner.c can call them.
|
|
*/
|
|
void
|
|
PrintCatCacheLeakWarning(HeapTuple tuple)
|
|
{
|
|
CatCTup *ct = (CatCTup *) (((char *) tuple) -
|
|
offsetof(CatCTup, tuple));
|
|
|
|
/* Safety check to ensure we were handed a cache entry */
|
|
Assert(ct->ct_magic == CT_MAGIC);
|
|
|
|
elog(WARNING, "cache reference leak: cache %s (%d), tuple %u/%u has count %d",
|
|
ct->my_cache->cc_relname, ct->my_cache->id,
|
|
ItemPointerGetBlockNumber(&(tuple->t_self)),
|
|
ItemPointerGetOffsetNumber(&(tuple->t_self)),
|
|
ct->refcount);
|
|
}
|
|
|
|
void
|
|
PrintCatCacheListLeakWarning(CatCList *list)
|
|
{
|
|
elog(WARNING, "cache reference leak: cache %s (%d), list %p has count %d",
|
|
list->my_cache->cc_relname, list->my_cache->id,
|
|
list, list->refcount);
|
|
}
|