mirror of
https://github.com/postgres/postgres.git
synced 2025-04-24 10:47:04 +03:00
892 lines
23 KiB
C
892 lines
23 KiB
C
/*-------------------------------------------------------------------------
|
|
*
|
|
* nodeHash.c
|
|
* Routines to hash relations for hashjoin
|
|
*
|
|
* Portions Copyright (c) 1996-2007, PostgreSQL Global Development Group
|
|
* Portions Copyright (c) 1994, Regents of the University of California
|
|
*
|
|
*
|
|
* IDENTIFICATION
|
|
* $PostgreSQL: pgsql/src/backend/executor/nodeHash.c,v 1.115 2007/11/15 21:14:34 momjian Exp $
|
|
*
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
/*
|
|
* INTERFACE ROUTINES
|
|
* MultiExecHash - generate an in-memory hash table of the relation
|
|
* ExecInitHash - initialize node and subnodes
|
|
* ExecEndHash - shutdown node and subnodes
|
|
*/
|
|
|
|
#include "postgres.h"
|
|
|
|
#include <math.h>
|
|
#include <limits.h>
|
|
|
|
#include "commands/tablespace.h"
|
|
#include "executor/execdebug.h"
|
|
#include "executor/hashjoin.h"
|
|
#include "executor/instrument.h"
|
|
#include "executor/nodeHash.h"
|
|
#include "executor/nodeHashjoin.h"
|
|
#include "miscadmin.h"
|
|
#include "parser/parse_expr.h"
|
|
#include "utils/dynahash.h"
|
|
#include "utils/memutils.h"
|
|
#include "utils/lsyscache.h"
|
|
|
|
|
|
static void ExecHashIncreaseNumBatches(HashJoinTable hashtable);
|
|
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecHash
|
|
*
|
|
* stub for pro forma compliance
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
TupleTableSlot *
|
|
ExecHash(HashState *node)
|
|
{
|
|
elog(ERROR, "Hash node does not support ExecProcNode call convention");
|
|
return NULL;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* MultiExecHash
|
|
*
|
|
* build hash table for hashjoin, doing partitioning if more
|
|
* than one batch is required.
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
Node *
|
|
MultiExecHash(HashState *node)
|
|
{
|
|
PlanState *outerNode;
|
|
List *hashkeys;
|
|
HashJoinTable hashtable;
|
|
TupleTableSlot *slot;
|
|
ExprContext *econtext;
|
|
uint32 hashvalue;
|
|
|
|
/* must provide our own instrumentation support */
|
|
if (node->ps.instrument)
|
|
InstrStartNode(node->ps.instrument);
|
|
|
|
/*
|
|
* get state info from node
|
|
*/
|
|
outerNode = outerPlanState(node);
|
|
hashtable = node->hashtable;
|
|
|
|
/*
|
|
* set expression context
|
|
*/
|
|
hashkeys = node->hashkeys;
|
|
econtext = node->ps.ps_ExprContext;
|
|
|
|
/*
|
|
* get all inner tuples and insert into the hash table (or temp files)
|
|
*/
|
|
for (;;)
|
|
{
|
|
slot = ExecProcNode(outerNode);
|
|
if (TupIsNull(slot))
|
|
break;
|
|
/* We have to compute the hash value */
|
|
econtext->ecxt_innertuple = slot;
|
|
if (ExecHashGetHashValue(hashtable, econtext, hashkeys, false, false,
|
|
&hashvalue))
|
|
{
|
|
ExecHashTableInsert(hashtable, slot, hashvalue);
|
|
hashtable->totalTuples += 1;
|
|
}
|
|
}
|
|
|
|
/* must provide our own instrumentation support */
|
|
if (node->ps.instrument)
|
|
InstrStopNode(node->ps.instrument, hashtable->totalTuples);
|
|
|
|
/*
|
|
* We do not return the hash table directly because it's not a subtype of
|
|
* Node, and so would violate the MultiExecProcNode API. Instead, our
|
|
* parent Hashjoin node is expected to know how to fish it out of our node
|
|
* state. Ugly but not really worth cleaning up, since Hashjoin knows
|
|
* quite a bit more about Hash besides that.
|
|
*/
|
|
return NULL;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecInitHash
|
|
*
|
|
* Init routine for Hash node
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
HashState *
|
|
ExecInitHash(Hash *node, EState *estate, int eflags)
|
|
{
|
|
HashState *hashstate;
|
|
|
|
/* check for unsupported flags */
|
|
Assert(!(eflags & (EXEC_FLAG_BACKWARD | EXEC_FLAG_MARK)));
|
|
|
|
/*
|
|
* create state structure
|
|
*/
|
|
hashstate = makeNode(HashState);
|
|
hashstate->ps.plan = (Plan *) node;
|
|
hashstate->ps.state = estate;
|
|
hashstate->hashtable = NULL;
|
|
hashstate->hashkeys = NIL; /* will be set by parent HashJoin */
|
|
|
|
/*
|
|
* Miscellaneous initialization
|
|
*
|
|
* create expression context for node
|
|
*/
|
|
ExecAssignExprContext(estate, &hashstate->ps);
|
|
|
|
#define HASH_NSLOTS 1
|
|
|
|
/*
|
|
* initialize our result slot
|
|
*/
|
|
ExecInitResultTupleSlot(estate, &hashstate->ps);
|
|
|
|
/*
|
|
* initialize child expressions
|
|
*/
|
|
hashstate->ps.targetlist = (List *)
|
|
ExecInitExpr((Expr *) node->plan.targetlist,
|
|
(PlanState *) hashstate);
|
|
hashstate->ps.qual = (List *)
|
|
ExecInitExpr((Expr *) node->plan.qual,
|
|
(PlanState *) hashstate);
|
|
|
|
/*
|
|
* initialize child nodes
|
|
*/
|
|
outerPlanState(hashstate) = ExecInitNode(outerPlan(node), estate, eflags);
|
|
|
|
/*
|
|
* initialize tuple type. no need to initialize projection info because
|
|
* this node doesn't do projections
|
|
*/
|
|
ExecAssignResultTypeFromTL(&hashstate->ps);
|
|
hashstate->ps.ps_ProjInfo = NULL;
|
|
|
|
return hashstate;
|
|
}
|
|
|
|
int
|
|
ExecCountSlotsHash(Hash *node)
|
|
{
|
|
return ExecCountSlotsNode(outerPlan(node)) +
|
|
ExecCountSlotsNode(innerPlan(node)) +
|
|
HASH_NSLOTS;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------
|
|
* ExecEndHash
|
|
*
|
|
* clean up routine for Hash node
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
void
|
|
ExecEndHash(HashState *node)
|
|
{
|
|
PlanState *outerPlan;
|
|
|
|
/*
|
|
* free exprcontext
|
|
*/
|
|
ExecFreeExprContext(&node->ps);
|
|
|
|
/*
|
|
* shut down the subplan
|
|
*/
|
|
outerPlan = outerPlanState(node);
|
|
ExecEndNode(outerPlan);
|
|
}
|
|
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecHashTableCreate
|
|
*
|
|
* create an empty hashtable data structure for hashjoin.
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
HashJoinTable
|
|
ExecHashTableCreate(Hash *node, List *hashOperators)
|
|
{
|
|
HashJoinTable hashtable;
|
|
Plan *outerNode;
|
|
int nbuckets;
|
|
int nbatch;
|
|
int log2_nbuckets;
|
|
int nkeys;
|
|
int i;
|
|
ListCell *ho;
|
|
MemoryContext oldcxt;
|
|
|
|
/*
|
|
* Get information about the size of the relation to be hashed (it's the
|
|
* "outer" subtree of this node, but the inner relation of the hashjoin).
|
|
* Compute the appropriate size of the hash table.
|
|
*/
|
|
outerNode = outerPlan(node);
|
|
|
|
ExecChooseHashTableSize(outerNode->plan_rows, outerNode->plan_width,
|
|
&nbuckets, &nbatch);
|
|
|
|
#ifdef HJDEBUG
|
|
printf("nbatch = %d, nbuckets = %d\n", nbatch, nbuckets);
|
|
#endif
|
|
|
|
/* nbuckets must be a power of 2 */
|
|
log2_nbuckets = my_log2(nbuckets);
|
|
Assert(nbuckets == (1 << log2_nbuckets));
|
|
|
|
/*
|
|
* Initialize the hash table control block.
|
|
*
|
|
* The hashtable control block is just palloc'd from the executor's
|
|
* per-query memory context.
|
|
*/
|
|
hashtable = (HashJoinTable) palloc(sizeof(HashJoinTableData));
|
|
hashtable->nbuckets = nbuckets;
|
|
hashtable->log2_nbuckets = log2_nbuckets;
|
|
hashtable->buckets = NULL;
|
|
hashtable->nbatch = nbatch;
|
|
hashtable->curbatch = 0;
|
|
hashtable->nbatch_original = nbatch;
|
|
hashtable->nbatch_outstart = nbatch;
|
|
hashtable->growEnabled = true;
|
|
hashtable->totalTuples = 0;
|
|
hashtable->innerBatchFile = NULL;
|
|
hashtable->outerBatchFile = NULL;
|
|
hashtable->spaceUsed = 0;
|
|
hashtable->spaceAllowed = work_mem * 1024L;
|
|
|
|
/*
|
|
* Get info about the hash functions to be used for each hash key. Also
|
|
* remember whether the join operators are strict.
|
|
*/
|
|
nkeys = list_length(hashOperators);
|
|
hashtable->outer_hashfunctions =
|
|
(FmgrInfo *) palloc(nkeys * sizeof(FmgrInfo));
|
|
hashtable->inner_hashfunctions =
|
|
(FmgrInfo *) palloc(nkeys * sizeof(FmgrInfo));
|
|
hashtable->hashStrict = (bool *) palloc(nkeys * sizeof(bool));
|
|
i = 0;
|
|
foreach(ho, hashOperators)
|
|
{
|
|
Oid hashop = lfirst_oid(ho);
|
|
Oid left_hashfn;
|
|
Oid right_hashfn;
|
|
|
|
if (!get_op_hash_functions(hashop, &left_hashfn, &right_hashfn))
|
|
elog(ERROR, "could not find hash function for hash operator %u",
|
|
hashop);
|
|
fmgr_info(left_hashfn, &hashtable->outer_hashfunctions[i]);
|
|
fmgr_info(right_hashfn, &hashtable->inner_hashfunctions[i]);
|
|
hashtable->hashStrict[i] = op_strict(hashop);
|
|
i++;
|
|
}
|
|
|
|
/*
|
|
* Create temporary memory contexts in which to keep the hashtable working
|
|
* storage. See notes in executor/hashjoin.h.
|
|
*/
|
|
hashtable->hashCxt = AllocSetContextCreate(CurrentMemoryContext,
|
|
"HashTableContext",
|
|
ALLOCSET_DEFAULT_MINSIZE,
|
|
ALLOCSET_DEFAULT_INITSIZE,
|
|
ALLOCSET_DEFAULT_MAXSIZE);
|
|
|
|
hashtable->batchCxt = AllocSetContextCreate(hashtable->hashCxt,
|
|
"HashBatchContext",
|
|
ALLOCSET_DEFAULT_MINSIZE,
|
|
ALLOCSET_DEFAULT_INITSIZE,
|
|
ALLOCSET_DEFAULT_MAXSIZE);
|
|
|
|
/* Allocate data that will live for the life of the hashjoin */
|
|
|
|
oldcxt = MemoryContextSwitchTo(hashtable->hashCxt);
|
|
|
|
if (nbatch > 1)
|
|
{
|
|
/*
|
|
* allocate and initialize the file arrays in hashCxt
|
|
*/
|
|
hashtable->innerBatchFile = (BufFile **)
|
|
palloc0(nbatch * sizeof(BufFile *));
|
|
hashtable->outerBatchFile = (BufFile **)
|
|
palloc0(nbatch * sizeof(BufFile *));
|
|
/* The files will not be opened until needed... */
|
|
/* ... but make sure we have temp tablespaces established for them */
|
|
PrepareTempTablespaces();
|
|
}
|
|
|
|
/*
|
|
* Prepare context for the first-scan space allocations; allocate the
|
|
* hashbucket array therein, and set each bucket "empty".
|
|
*/
|
|
MemoryContextSwitchTo(hashtable->batchCxt);
|
|
|
|
hashtable->buckets = (HashJoinTuple *)
|
|
palloc0(nbuckets * sizeof(HashJoinTuple));
|
|
|
|
MemoryContextSwitchTo(oldcxt);
|
|
|
|
return hashtable;
|
|
}
|
|
|
|
|
|
/*
|
|
* Compute appropriate size for hashtable given the estimated size of the
|
|
* relation to be hashed (number of rows and average row width).
|
|
*
|
|
* This is exported so that the planner's costsize.c can use it.
|
|
*/
|
|
|
|
/* Target bucket loading (tuples per bucket) */
|
|
#define NTUP_PER_BUCKET 10
|
|
|
|
void
|
|
ExecChooseHashTableSize(double ntuples, int tupwidth,
|
|
int *numbuckets,
|
|
int *numbatches)
|
|
{
|
|
int tupsize;
|
|
double inner_rel_bytes;
|
|
long hash_table_bytes;
|
|
int nbatch;
|
|
int nbuckets;
|
|
int i;
|
|
|
|
/* Force a plausible relation size if no info */
|
|
if (ntuples <= 0.0)
|
|
ntuples = 1000.0;
|
|
|
|
/*
|
|
* Estimate tupsize based on footprint of tuple in hashtable... note this
|
|
* does not allow for any palloc overhead. The manipulations of spaceUsed
|
|
* don't count palloc overhead either.
|
|
*/
|
|
tupsize = HJTUPLE_OVERHEAD +
|
|
MAXALIGN(sizeof(MinimalTupleData)) +
|
|
MAXALIGN(tupwidth);
|
|
inner_rel_bytes = ntuples * tupsize;
|
|
|
|
/*
|
|
* Target in-memory hashtable size is work_mem kilobytes.
|
|
*/
|
|
hash_table_bytes = work_mem * 1024L;
|
|
|
|
/*
|
|
* Set nbuckets to achieve an average bucket load of NTUP_PER_BUCKET when
|
|
* memory is filled. Set nbatch to the smallest power of 2 that appears
|
|
* sufficient.
|
|
*/
|
|
if (inner_rel_bytes > hash_table_bytes)
|
|
{
|
|
/* We'll need multiple batches */
|
|
long lbuckets;
|
|
double dbatch;
|
|
int minbatch;
|
|
|
|
lbuckets = (hash_table_bytes / tupsize) / NTUP_PER_BUCKET;
|
|
lbuckets = Min(lbuckets, INT_MAX / 2);
|
|
nbuckets = (int) lbuckets;
|
|
|
|
dbatch = ceil(inner_rel_bytes / hash_table_bytes);
|
|
dbatch = Min(dbatch, INT_MAX / 2);
|
|
minbatch = (int) dbatch;
|
|
nbatch = 2;
|
|
while (nbatch < minbatch)
|
|
nbatch <<= 1;
|
|
}
|
|
else
|
|
{
|
|
/* We expect the hashtable to fit in memory */
|
|
double dbuckets;
|
|
|
|
dbuckets = ceil(ntuples / NTUP_PER_BUCKET);
|
|
dbuckets = Min(dbuckets, INT_MAX / 2);
|
|
nbuckets = (int) dbuckets;
|
|
|
|
nbatch = 1;
|
|
}
|
|
|
|
/*
|
|
* Both nbuckets and nbatch must be powers of 2 to make
|
|
* ExecHashGetBucketAndBatch fast. We already fixed nbatch; now inflate
|
|
* nbuckets to the next larger power of 2. We also force nbuckets to not
|
|
* be real small, by starting the search at 2^10.
|
|
*/
|
|
i = 10;
|
|
while ((1 << i) < nbuckets)
|
|
i++;
|
|
nbuckets = (1 << i);
|
|
|
|
*numbuckets = nbuckets;
|
|
*numbatches = nbatch;
|
|
}
|
|
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecHashTableDestroy
|
|
*
|
|
* destroy a hash table
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
void
|
|
ExecHashTableDestroy(HashJoinTable hashtable)
|
|
{
|
|
int i;
|
|
|
|
/*
|
|
* Make sure all the temp files are closed. We skip batch 0, since it
|
|
* can't have any temp files (and the arrays might not even exist if
|
|
* nbatch is only 1).
|
|
*/
|
|
for (i = 1; i < hashtable->nbatch; i++)
|
|
{
|
|
if (hashtable->innerBatchFile[i])
|
|
BufFileClose(hashtable->innerBatchFile[i]);
|
|
if (hashtable->outerBatchFile[i])
|
|
BufFileClose(hashtable->outerBatchFile[i]);
|
|
}
|
|
|
|
/* Release working memory (batchCxt is a child, so it goes away too) */
|
|
MemoryContextDelete(hashtable->hashCxt);
|
|
|
|
/* And drop the control block */
|
|
pfree(hashtable);
|
|
}
|
|
|
|
/*
|
|
* ExecHashIncreaseNumBatches
|
|
* increase the original number of batches in order to reduce
|
|
* current memory consumption
|
|
*/
|
|
static void
|
|
ExecHashIncreaseNumBatches(HashJoinTable hashtable)
|
|
{
|
|
int oldnbatch = hashtable->nbatch;
|
|
int curbatch = hashtable->curbatch;
|
|
int nbatch;
|
|
int i;
|
|
MemoryContext oldcxt;
|
|
long ninmemory;
|
|
long nfreed;
|
|
|
|
/* do nothing if we've decided to shut off growth */
|
|
if (!hashtable->growEnabled)
|
|
return;
|
|
|
|
/* safety check to avoid overflow */
|
|
if (oldnbatch > INT_MAX / 2)
|
|
return;
|
|
|
|
nbatch = oldnbatch * 2;
|
|
Assert(nbatch > 1);
|
|
|
|
#ifdef HJDEBUG
|
|
printf("Increasing nbatch to %d because space = %lu\n",
|
|
nbatch, (unsigned long) hashtable->spaceUsed);
|
|
#endif
|
|
|
|
oldcxt = MemoryContextSwitchTo(hashtable->hashCxt);
|
|
|
|
if (hashtable->innerBatchFile == NULL)
|
|
{
|
|
/* we had no file arrays before */
|
|
hashtable->innerBatchFile = (BufFile **)
|
|
palloc0(nbatch * sizeof(BufFile *));
|
|
hashtable->outerBatchFile = (BufFile **)
|
|
palloc0(nbatch * sizeof(BufFile *));
|
|
/* time to establish the temp tablespaces, too */
|
|
PrepareTempTablespaces();
|
|
}
|
|
else
|
|
{
|
|
/* enlarge arrays and zero out added entries */
|
|
hashtable->innerBatchFile = (BufFile **)
|
|
repalloc(hashtable->innerBatchFile, nbatch * sizeof(BufFile *));
|
|
hashtable->outerBatchFile = (BufFile **)
|
|
repalloc(hashtable->outerBatchFile, nbatch * sizeof(BufFile *));
|
|
MemSet(hashtable->innerBatchFile + oldnbatch, 0,
|
|
(nbatch - oldnbatch) * sizeof(BufFile *));
|
|
MemSet(hashtable->outerBatchFile + oldnbatch, 0,
|
|
(nbatch - oldnbatch) * sizeof(BufFile *));
|
|
}
|
|
|
|
MemoryContextSwitchTo(oldcxt);
|
|
|
|
hashtable->nbatch = nbatch;
|
|
|
|
/*
|
|
* Scan through the existing hash table entries and dump out any that are
|
|
* no longer of the current batch.
|
|
*/
|
|
ninmemory = nfreed = 0;
|
|
|
|
for (i = 0; i < hashtable->nbuckets; i++)
|
|
{
|
|
HashJoinTuple prevtuple;
|
|
HashJoinTuple tuple;
|
|
|
|
prevtuple = NULL;
|
|
tuple = hashtable->buckets[i];
|
|
|
|
while (tuple != NULL)
|
|
{
|
|
/* save link in case we delete */
|
|
HashJoinTuple nexttuple = tuple->next;
|
|
int bucketno;
|
|
int batchno;
|
|
|
|
ninmemory++;
|
|
ExecHashGetBucketAndBatch(hashtable, tuple->hashvalue,
|
|
&bucketno, &batchno);
|
|
Assert(bucketno == i);
|
|
if (batchno == curbatch)
|
|
{
|
|
/* keep tuple */
|
|
prevtuple = tuple;
|
|
}
|
|
else
|
|
{
|
|
/* dump it out */
|
|
Assert(batchno > curbatch);
|
|
ExecHashJoinSaveTuple(HJTUPLE_MINTUPLE(tuple),
|
|
tuple->hashvalue,
|
|
&hashtable->innerBatchFile[batchno]);
|
|
/* and remove from hash table */
|
|
if (prevtuple)
|
|
prevtuple->next = nexttuple;
|
|
else
|
|
hashtable->buckets[i] = nexttuple;
|
|
/* prevtuple doesn't change */
|
|
hashtable->spaceUsed -=
|
|
HJTUPLE_OVERHEAD + HJTUPLE_MINTUPLE(tuple)->t_len;
|
|
pfree(tuple);
|
|
nfreed++;
|
|
}
|
|
|
|
tuple = nexttuple;
|
|
}
|
|
}
|
|
|
|
#ifdef HJDEBUG
|
|
printf("Freed %ld of %ld tuples, space now %lu\n",
|
|
nfreed, ninmemory, (unsigned long) hashtable->spaceUsed);
|
|
#endif
|
|
|
|
/*
|
|
* If we dumped out either all or none of the tuples in the table, disable
|
|
* further expansion of nbatch. This situation implies that we have
|
|
* enough tuples of identical hashvalues to overflow spaceAllowed.
|
|
* Increasing nbatch will not fix it since there's no way to subdivide the
|
|
* group any more finely. We have to just gut it out and hope the server
|
|
* has enough RAM.
|
|
*/
|
|
if (nfreed == 0 || nfreed == ninmemory)
|
|
{
|
|
hashtable->growEnabled = false;
|
|
#ifdef HJDEBUG
|
|
printf("Disabling further increase of nbatch\n");
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/*
|
|
* ExecHashTableInsert
|
|
* insert a tuple into the hash table depending on the hash value
|
|
* it may just go to a temp file for later batches
|
|
*
|
|
* Note: the passed TupleTableSlot may contain a regular, minimal, or virtual
|
|
* tuple; the minimal case in particular is certain to happen while reloading
|
|
* tuples from batch files. We could save some cycles in the regular-tuple
|
|
* case by not forcing the slot contents into minimal form; not clear if it's
|
|
* worth the messiness required.
|
|
*/
|
|
void
|
|
ExecHashTableInsert(HashJoinTable hashtable,
|
|
TupleTableSlot *slot,
|
|
uint32 hashvalue)
|
|
{
|
|
MinimalTuple tuple = ExecFetchSlotMinimalTuple(slot);
|
|
int bucketno;
|
|
int batchno;
|
|
|
|
ExecHashGetBucketAndBatch(hashtable, hashvalue,
|
|
&bucketno, &batchno);
|
|
|
|
/*
|
|
* decide whether to put the tuple in the hash table or a temp file
|
|
*/
|
|
if (batchno == hashtable->curbatch)
|
|
{
|
|
/*
|
|
* put the tuple in hash table
|
|
*/
|
|
HashJoinTuple hashTuple;
|
|
int hashTupleSize;
|
|
|
|
hashTupleSize = HJTUPLE_OVERHEAD + tuple->t_len;
|
|
hashTuple = (HashJoinTuple) MemoryContextAlloc(hashtable->batchCxt,
|
|
hashTupleSize);
|
|
hashTuple->hashvalue = hashvalue;
|
|
memcpy(HJTUPLE_MINTUPLE(hashTuple), tuple, tuple->t_len);
|
|
hashTuple->next = hashtable->buckets[bucketno];
|
|
hashtable->buckets[bucketno] = hashTuple;
|
|
hashtable->spaceUsed += hashTupleSize;
|
|
if (hashtable->spaceUsed > hashtable->spaceAllowed)
|
|
ExecHashIncreaseNumBatches(hashtable);
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* put the tuple into a temp file for later batches
|
|
*/
|
|
Assert(batchno > hashtable->curbatch);
|
|
ExecHashJoinSaveTuple(tuple,
|
|
hashvalue,
|
|
&hashtable->innerBatchFile[batchno]);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* ExecHashGetHashValue
|
|
* Compute the hash value for a tuple
|
|
*
|
|
* The tuple to be tested must be in either econtext->ecxt_outertuple or
|
|
* econtext->ecxt_innertuple. Vars in the hashkeys expressions reference
|
|
* either OUTER or INNER.
|
|
*
|
|
* A TRUE result means the tuple's hash value has been successfully computed
|
|
* and stored at *hashvalue. A FALSE result means the tuple cannot match
|
|
* because it contains a null attribute, and hence it should be discarded
|
|
* immediately. (If keep_nulls is true then FALSE is never returned.)
|
|
*/
|
|
bool
|
|
ExecHashGetHashValue(HashJoinTable hashtable,
|
|
ExprContext *econtext,
|
|
List *hashkeys,
|
|
bool outer_tuple,
|
|
bool keep_nulls,
|
|
uint32 *hashvalue)
|
|
{
|
|
uint32 hashkey = 0;
|
|
FmgrInfo *hashfunctions;
|
|
ListCell *hk;
|
|
int i = 0;
|
|
MemoryContext oldContext;
|
|
|
|
/*
|
|
* We reset the eval context each time to reclaim any memory leaked in the
|
|
* hashkey expressions.
|
|
*/
|
|
ResetExprContext(econtext);
|
|
|
|
oldContext = MemoryContextSwitchTo(econtext->ecxt_per_tuple_memory);
|
|
|
|
if (outer_tuple)
|
|
hashfunctions = hashtable->outer_hashfunctions;
|
|
else
|
|
hashfunctions = hashtable->inner_hashfunctions;
|
|
|
|
foreach(hk, hashkeys)
|
|
{
|
|
ExprState *keyexpr = (ExprState *) lfirst(hk);
|
|
Datum keyval;
|
|
bool isNull;
|
|
|
|
/* rotate hashkey left 1 bit at each step */
|
|
hashkey = (hashkey << 1) | ((hashkey & 0x80000000) ? 1 : 0);
|
|
|
|
/*
|
|
* Get the join attribute value of the tuple
|
|
*/
|
|
keyval = ExecEvalExpr(keyexpr, econtext, &isNull, NULL);
|
|
|
|
/*
|
|
* If the attribute is NULL, and the join operator is strict, then
|
|
* this tuple cannot pass the join qual so we can reject it
|
|
* immediately (unless we're scanning the outside of an outer join, in
|
|
* which case we must not reject it). Otherwise we act like the
|
|
* hashcode of NULL is zero (this will support operators that act like
|
|
* IS NOT DISTINCT, though not any more-random behavior). We treat
|
|
* the hash support function as strict even if the operator is not.
|
|
*
|
|
* Note: currently, all hashjoinable operators must be strict since
|
|
* the hash index AM assumes that. However, it takes so little extra
|
|
* code here to allow non-strict that we may as well do it.
|
|
*/
|
|
if (isNull)
|
|
{
|
|
if (hashtable->hashStrict[i] && !keep_nulls)
|
|
{
|
|
MemoryContextSwitchTo(oldContext);
|
|
return false; /* cannot match */
|
|
}
|
|
/* else, leave hashkey unmodified, equivalent to hashcode 0 */
|
|
}
|
|
else
|
|
{
|
|
/* Compute the hash function */
|
|
uint32 hkey;
|
|
|
|
hkey = DatumGetUInt32(FunctionCall1(&hashfunctions[i], keyval));
|
|
hashkey ^= hkey;
|
|
}
|
|
|
|
i++;
|
|
}
|
|
|
|
MemoryContextSwitchTo(oldContext);
|
|
|
|
*hashvalue = hashkey;
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* ExecHashGetBucketAndBatch
|
|
* Determine the bucket number and batch number for a hash value
|
|
*
|
|
* Note: on-the-fly increases of nbatch must not change the bucket number
|
|
* for a given hash code (since we don't move tuples to different hash
|
|
* chains), and must only cause the batch number to remain the same or
|
|
* increase. Our algorithm is
|
|
* bucketno = hashvalue MOD nbuckets
|
|
* batchno = (hashvalue DIV nbuckets) MOD nbatch
|
|
* where nbuckets and nbatch are both expected to be powers of 2, so we can
|
|
* do the computations by shifting and masking. (This assumes that all hash
|
|
* functions are good about randomizing all their output bits, else we are
|
|
* likely to have very skewed bucket or batch occupancy.)
|
|
*
|
|
* nbuckets doesn't change over the course of the join.
|
|
*
|
|
* nbatch is always a power of 2; we increase it only by doubling it. This
|
|
* effectively adds one more bit to the top of the batchno.
|
|
*/
|
|
void
|
|
ExecHashGetBucketAndBatch(HashJoinTable hashtable,
|
|
uint32 hashvalue,
|
|
int *bucketno,
|
|
int *batchno)
|
|
{
|
|
uint32 nbuckets = (uint32) hashtable->nbuckets;
|
|
uint32 nbatch = (uint32) hashtable->nbatch;
|
|
|
|
if (nbatch > 1)
|
|
{
|
|
/* we can do MOD by masking, DIV by shifting */
|
|
*bucketno = hashvalue & (nbuckets - 1);
|
|
*batchno = (hashvalue >> hashtable->log2_nbuckets) & (nbatch - 1);
|
|
}
|
|
else
|
|
{
|
|
*bucketno = hashvalue & (nbuckets - 1);
|
|
*batchno = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* ExecScanHashBucket
|
|
* scan a hash bucket for matches to the current outer tuple
|
|
*
|
|
* The current outer tuple must be stored in econtext->ecxt_outertuple.
|
|
*/
|
|
HashJoinTuple
|
|
ExecScanHashBucket(HashJoinState *hjstate,
|
|
ExprContext *econtext)
|
|
{
|
|
List *hjclauses = hjstate->hashclauses;
|
|
HashJoinTable hashtable = hjstate->hj_HashTable;
|
|
HashJoinTuple hashTuple = hjstate->hj_CurTuple;
|
|
uint32 hashvalue = hjstate->hj_CurHashValue;
|
|
|
|
/*
|
|
* hj_CurTuple is NULL to start scanning a new bucket, or the address of
|
|
* the last tuple returned from the current bucket.
|
|
*/
|
|
if (hashTuple == NULL)
|
|
hashTuple = hashtable->buckets[hjstate->hj_CurBucketNo];
|
|
else
|
|
hashTuple = hashTuple->next;
|
|
|
|
while (hashTuple != NULL)
|
|
{
|
|
if (hashTuple->hashvalue == hashvalue)
|
|
{
|
|
TupleTableSlot *inntuple;
|
|
|
|
/* insert hashtable's tuple into exec slot so ExecQual sees it */
|
|
inntuple = ExecStoreMinimalTuple(HJTUPLE_MINTUPLE(hashTuple),
|
|
hjstate->hj_HashTupleSlot,
|
|
false); /* do not pfree */
|
|
econtext->ecxt_innertuple = inntuple;
|
|
|
|
/* reset temp memory each time to avoid leaks from qual expr */
|
|
ResetExprContext(econtext);
|
|
|
|
if (ExecQual(hjclauses, econtext, false))
|
|
{
|
|
hjstate->hj_CurTuple = hashTuple;
|
|
return hashTuple;
|
|
}
|
|
}
|
|
|
|
hashTuple = hashTuple->next;
|
|
}
|
|
|
|
/*
|
|
* no match
|
|
*/
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* ExecHashTableReset
|
|
*
|
|
* reset hash table header for new batch
|
|
*/
|
|
void
|
|
ExecHashTableReset(HashJoinTable hashtable)
|
|
{
|
|
MemoryContext oldcxt;
|
|
int nbuckets = hashtable->nbuckets;
|
|
|
|
/*
|
|
* Release all the hash buckets and tuples acquired in the prior pass, and
|
|
* reinitialize the context for a new pass.
|
|
*/
|
|
MemoryContextReset(hashtable->batchCxt);
|
|
oldcxt = MemoryContextSwitchTo(hashtable->batchCxt);
|
|
|
|
/* Reallocate and reinitialize the hash bucket headers. */
|
|
hashtable->buckets = (HashJoinTuple *)
|
|
palloc0(nbuckets * sizeof(HashJoinTuple));
|
|
|
|
hashtable->spaceUsed = 0;
|
|
|
|
MemoryContextSwitchTo(oldcxt);
|
|
}
|
|
|
|
void
|
|
ExecReScanHash(HashState *node, ExprContext *exprCtxt)
|
|
{
|
|
/*
|
|
* if chgParam of subnode is not null then plan will be re-scanned by
|
|
* first ExecProcNode.
|
|
*/
|
|
if (((PlanState *) node)->lefttree->chgParam == NULL)
|
|
ExecReScan(((PlanState *) node)->lefttree, exprCtxt);
|
|
}
|