mirror of
https://github.com/postgres/postgres.git
synced 2025-04-22 23:02:54 +03:00
Ensure that the trig functions return NaN for NaN input regardless of what the underlying C library functions might do. Also ensure that an error is thrown for Inf (or otherwise out-of-range) input, except for atan/atan2 which should accept it. All these behaviors should now conform to the POSIX spec; previously, all our popular platforms deviated from that in one case or another. The main remaining platform dependency here is whether the C library might choose to throw a domain error for sin/cos/tan inputs that are large but less than infinity. (Doing so is not unreasonable, since once a single unit-in-the-last-place exceeds PI, there can be no significance at all in the result; however there doesn't seem to be any suggestion in POSIX that such an error is allowed.) We will report such errors if they are reported via "errno", but not if they are reported via "fetestexcept" which is the other mechanism sanctioned by POSIX. Some preliminary experiments with fetestexcept indicated that it might also report errors we could do without, such as complaining about underflow at an unreasonably large threshold. So let's skip that complexity for now. Dean Rasheed, reviewed by Michael Paquier
2882 lines
63 KiB
C
2882 lines
63 KiB
C
/*-------------------------------------------------------------------------
|
|
*
|
|
* float.c
|
|
* Functions for the built-in floating-point types.
|
|
*
|
|
* Portions Copyright (c) 1996-2016, PostgreSQL Global Development Group
|
|
* Portions Copyright (c) 1994, Regents of the University of California
|
|
*
|
|
*
|
|
* IDENTIFICATION
|
|
* src/backend/utils/adt/float.c
|
|
*
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
#include "postgres.h"
|
|
|
|
#include <ctype.h>
|
|
#include <float.h>
|
|
#include <math.h>
|
|
#include <limits.h>
|
|
|
|
#include "catalog/pg_type.h"
|
|
#include "libpq/pqformat.h"
|
|
#include "utils/array.h"
|
|
#include "utils/builtins.h"
|
|
#include "utils/sortsupport.h"
|
|
|
|
|
|
#ifndef M_PI
|
|
/* from my RH5.2 gcc math.h file - thomas 2000-04-03 */
|
|
#define M_PI 3.14159265358979323846
|
|
#endif
|
|
|
|
/* Visual C++ etc lacks NAN, and won't accept 0.0/0.0. NAN definition from
|
|
* http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vclang/html/vclrfNotNumberNANItems.asp
|
|
*/
|
|
#if defined(WIN32) && !defined(NAN)
|
|
static const uint32 nan[2] = {0xffffffff, 0x7fffffff};
|
|
|
|
#define NAN (*(const double *) nan)
|
|
#endif
|
|
|
|
/* not sure what the following should be, but better to make it over-sufficient */
|
|
#define MAXFLOATWIDTH 64
|
|
#define MAXDOUBLEWIDTH 128
|
|
|
|
/*
|
|
* check to see if a float4/8 val has underflowed or overflowed
|
|
*/
|
|
#define CHECKFLOATVAL(val, inf_is_valid, zero_is_valid) \
|
|
do { \
|
|
if (isinf(val) && !(inf_is_valid)) \
|
|
ereport(ERROR, \
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), \
|
|
errmsg("value out of range: overflow"))); \
|
|
\
|
|
if ((val) == 0.0 && !(zero_is_valid)) \
|
|
ereport(ERROR, \
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE), \
|
|
errmsg("value out of range: underflow"))); \
|
|
} while(0)
|
|
|
|
|
|
/* ========== USER I/O ROUTINES ========== */
|
|
|
|
|
|
/* Configurable GUC parameter */
|
|
int extra_float_digits = 0; /* Added to DBL_DIG or FLT_DIG */
|
|
|
|
|
|
static int float4_cmp_internal(float4 a, float4 b);
|
|
static int float8_cmp_internal(float8 a, float8 b);
|
|
|
|
#ifndef HAVE_CBRT
|
|
/*
|
|
* Some machines (in particular, some versions of AIX) have an extern
|
|
* declaration for cbrt() in <math.h> but fail to provide the actual
|
|
* function, which causes configure to not set HAVE_CBRT. Furthermore,
|
|
* their compilers spit up at the mismatch between extern declaration
|
|
* and static definition. We work around that here by the expedient
|
|
* of a #define to make the actual name of the static function different.
|
|
*/
|
|
#define cbrt my_cbrt
|
|
static double cbrt(double x);
|
|
#endif /* HAVE_CBRT */
|
|
|
|
|
|
/*
|
|
* Routines to provide reasonably platform-independent handling of
|
|
* infinity and NaN. We assume that isinf() and isnan() are available
|
|
* and work per spec. (On some platforms, we have to supply our own;
|
|
* see src/port.) However, generating an Infinity or NaN in the first
|
|
* place is less well standardized; pre-C99 systems tend not to have C99's
|
|
* INFINITY and NAN macros. We centralize our workarounds for this here.
|
|
*/
|
|
|
|
double
|
|
get_float8_infinity(void)
|
|
{
|
|
#ifdef INFINITY
|
|
/* C99 standard way */
|
|
return (double) INFINITY;
|
|
#else
|
|
|
|
/*
|
|
* On some platforms, HUGE_VAL is an infinity, elsewhere it's just the
|
|
* largest normal double. We assume forcing an overflow will get us a
|
|
* true infinity.
|
|
*/
|
|
return (double) (HUGE_VAL * HUGE_VAL);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* The funny placements of the two #pragmas is necessary because of a
|
|
* long lived bug in the Microsoft compilers.
|
|
* See http://support.microsoft.com/kb/120968/en-us for details
|
|
*/
|
|
#if (_MSC_VER >= 1800)
|
|
#pragma warning(disable:4756)
|
|
#endif
|
|
float
|
|
get_float4_infinity(void)
|
|
{
|
|
#ifdef INFINITY
|
|
/* C99 standard way */
|
|
return (float) INFINITY;
|
|
#else
|
|
#if (_MSC_VER >= 1800)
|
|
#pragma warning(default:4756)
|
|
#endif
|
|
|
|
/*
|
|
* On some platforms, HUGE_VAL is an infinity, elsewhere it's just the
|
|
* largest normal double. We assume forcing an overflow will get us a
|
|
* true infinity.
|
|
*/
|
|
return (float) (HUGE_VAL * HUGE_VAL);
|
|
#endif
|
|
}
|
|
|
|
double
|
|
get_float8_nan(void)
|
|
{
|
|
/* (double) NAN doesn't work on some NetBSD/MIPS releases */
|
|
#if defined(NAN) && !(defined(__NetBSD__) && defined(__mips__))
|
|
/* C99 standard way */
|
|
return (double) NAN;
|
|
#else
|
|
/* Assume we can get a NAN via zero divide */
|
|
return (double) (0.0 / 0.0);
|
|
#endif
|
|
}
|
|
|
|
float
|
|
get_float4_nan(void)
|
|
{
|
|
#ifdef NAN
|
|
/* C99 standard way */
|
|
return (float) NAN;
|
|
#else
|
|
/* Assume we can get a NAN via zero divide */
|
|
return (float) (0.0 / 0.0);
|
|
#endif
|
|
}
|
|
|
|
|
|
/*
|
|
* Returns -1 if 'val' represents negative infinity, 1 if 'val'
|
|
* represents (positive) infinity, and 0 otherwise. On some platforms,
|
|
* this is equivalent to the isinf() macro, but not everywhere: C99
|
|
* does not specify that isinf() needs to distinguish between positive
|
|
* and negative infinity.
|
|
*/
|
|
int
|
|
is_infinite(double val)
|
|
{
|
|
int inf = isinf(val);
|
|
|
|
if (inf == 0)
|
|
return 0;
|
|
else if (val > 0)
|
|
return 1;
|
|
else
|
|
return -1;
|
|
}
|
|
|
|
|
|
/*
|
|
* float4in - converts "num" to float4
|
|
*/
|
|
Datum
|
|
float4in(PG_FUNCTION_ARGS)
|
|
{
|
|
char *num = PG_GETARG_CSTRING(0);
|
|
char *orig_num;
|
|
double val;
|
|
char *endptr;
|
|
|
|
/*
|
|
* endptr points to the first character _after_ the sequence we recognized
|
|
* as a valid floating point number. orig_num points to the original input
|
|
* string.
|
|
*/
|
|
orig_num = num;
|
|
|
|
/* skip leading whitespace */
|
|
while (*num != '\0' && isspace((unsigned char) *num))
|
|
num++;
|
|
|
|
/*
|
|
* Check for an empty-string input to begin with, to avoid the vagaries of
|
|
* strtod() on different platforms.
|
|
*/
|
|
if (*num == '\0')
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("invalid input syntax for type real: \"%s\"",
|
|
orig_num)));
|
|
|
|
errno = 0;
|
|
val = strtod(num, &endptr);
|
|
|
|
/* did we not see anything that looks like a double? */
|
|
if (endptr == num || errno != 0)
|
|
{
|
|
int save_errno = errno;
|
|
|
|
/*
|
|
* C99 requires that strtod() accept NaN, [+-]Infinity, and [+-]Inf,
|
|
* but not all platforms support all of these (and some accept them
|
|
* but set ERANGE anyway...) Therefore, we check for these inputs
|
|
* ourselves if strtod() fails.
|
|
*
|
|
* Note: C99 also requires hexadecimal input as well as some extended
|
|
* forms of NaN, but we consider these forms unportable and don't try
|
|
* to support them. You can use 'em if your strtod() takes 'em.
|
|
*/
|
|
if (pg_strncasecmp(num, "NaN", 3) == 0)
|
|
{
|
|
val = get_float4_nan();
|
|
endptr = num + 3;
|
|
}
|
|
else if (pg_strncasecmp(num, "Infinity", 8) == 0)
|
|
{
|
|
val = get_float4_infinity();
|
|
endptr = num + 8;
|
|
}
|
|
else if (pg_strncasecmp(num, "+Infinity", 9) == 0)
|
|
{
|
|
val = get_float4_infinity();
|
|
endptr = num + 9;
|
|
}
|
|
else if (pg_strncasecmp(num, "-Infinity", 9) == 0)
|
|
{
|
|
val = -get_float4_infinity();
|
|
endptr = num + 9;
|
|
}
|
|
else if (pg_strncasecmp(num, "inf", 3) == 0)
|
|
{
|
|
val = get_float4_infinity();
|
|
endptr = num + 3;
|
|
}
|
|
else if (pg_strncasecmp(num, "+inf", 4) == 0)
|
|
{
|
|
val = get_float4_infinity();
|
|
endptr = num + 4;
|
|
}
|
|
else if (pg_strncasecmp(num, "-inf", 4) == 0)
|
|
{
|
|
val = -get_float4_infinity();
|
|
endptr = num + 4;
|
|
}
|
|
else if (save_errno == ERANGE)
|
|
{
|
|
/*
|
|
* Some platforms return ERANGE for denormalized numbers (those
|
|
* that are not zero, but are too close to zero to have full
|
|
* precision). We'd prefer not to throw error for that, so try to
|
|
* detect whether it's a "real" out-of-range condition by checking
|
|
* to see if the result is zero or huge.
|
|
*/
|
|
if (val == 0.0 || val >= HUGE_VAL || val <= -HUGE_VAL)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("\"%s\" is out of range for type real",
|
|
orig_num)));
|
|
}
|
|
else
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("invalid input syntax for type real: \"%s\"",
|
|
orig_num)));
|
|
}
|
|
#ifdef HAVE_BUGGY_SOLARIS_STRTOD
|
|
else
|
|
{
|
|
/*
|
|
* Many versions of Solaris have a bug wherein strtod sets endptr to
|
|
* point one byte beyond the end of the string when given "inf" or
|
|
* "infinity".
|
|
*/
|
|
if (endptr != num && endptr[-1] == '\0')
|
|
endptr--;
|
|
}
|
|
#endif /* HAVE_BUGGY_SOLARIS_STRTOD */
|
|
|
|
/* skip trailing whitespace */
|
|
while (*endptr != '\0' && isspace((unsigned char) *endptr))
|
|
endptr++;
|
|
|
|
/* if there is any junk left at the end of the string, bail out */
|
|
if (*endptr != '\0')
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("invalid input syntax for type real: \"%s\"",
|
|
orig_num)));
|
|
|
|
/*
|
|
* if we get here, we have a legal double, still need to check to see if
|
|
* it's a legal float4
|
|
*/
|
|
CHECKFLOATVAL((float4) val, isinf(val), val == 0);
|
|
|
|
PG_RETURN_FLOAT4((float4) val);
|
|
}
|
|
|
|
/*
|
|
* float4out - converts a float4 number to a string
|
|
* using a standard output format
|
|
*/
|
|
Datum
|
|
float4out(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 num = PG_GETARG_FLOAT4(0);
|
|
char *ascii = (char *) palloc(MAXFLOATWIDTH + 1);
|
|
|
|
if (isnan(num))
|
|
PG_RETURN_CSTRING(strcpy(ascii, "NaN"));
|
|
|
|
switch (is_infinite(num))
|
|
{
|
|
case 1:
|
|
strcpy(ascii, "Infinity");
|
|
break;
|
|
case -1:
|
|
strcpy(ascii, "-Infinity");
|
|
break;
|
|
default:
|
|
{
|
|
int ndig = FLT_DIG + extra_float_digits;
|
|
|
|
if (ndig < 1)
|
|
ndig = 1;
|
|
|
|
snprintf(ascii, MAXFLOATWIDTH + 1, "%.*g", ndig, num);
|
|
}
|
|
}
|
|
|
|
PG_RETURN_CSTRING(ascii);
|
|
}
|
|
|
|
/*
|
|
* float4recv - converts external binary format to float4
|
|
*/
|
|
Datum
|
|
float4recv(PG_FUNCTION_ARGS)
|
|
{
|
|
StringInfo buf = (StringInfo) PG_GETARG_POINTER(0);
|
|
|
|
PG_RETURN_FLOAT4(pq_getmsgfloat4(buf));
|
|
}
|
|
|
|
/*
|
|
* float4send - converts float4 to binary format
|
|
*/
|
|
Datum
|
|
float4send(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 num = PG_GETARG_FLOAT4(0);
|
|
StringInfoData buf;
|
|
|
|
pq_begintypsend(&buf);
|
|
pq_sendfloat4(&buf, num);
|
|
PG_RETURN_BYTEA_P(pq_endtypsend(&buf));
|
|
}
|
|
|
|
/*
|
|
* float8in - converts "num" to float8
|
|
*/
|
|
Datum
|
|
float8in(PG_FUNCTION_ARGS)
|
|
{
|
|
char *num = PG_GETARG_CSTRING(0);
|
|
char *orig_num;
|
|
double val;
|
|
char *endptr;
|
|
|
|
/*
|
|
* endptr points to the first character _after_ the sequence we recognized
|
|
* as a valid floating point number. orig_num points to the original input
|
|
* string.
|
|
*/
|
|
orig_num = num;
|
|
|
|
/* skip leading whitespace */
|
|
while (*num != '\0' && isspace((unsigned char) *num))
|
|
num++;
|
|
|
|
/*
|
|
* Check for an empty-string input to begin with, to avoid the vagaries of
|
|
* strtod() on different platforms.
|
|
*/
|
|
if (*num == '\0')
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("invalid input syntax for type double precision: \"%s\"",
|
|
orig_num)));
|
|
|
|
errno = 0;
|
|
val = strtod(num, &endptr);
|
|
|
|
/* did we not see anything that looks like a double? */
|
|
if (endptr == num || errno != 0)
|
|
{
|
|
int save_errno = errno;
|
|
|
|
/*
|
|
* C99 requires that strtod() accept NaN, [+-]Infinity, and [+-]Inf,
|
|
* but not all platforms support all of these (and some accept them
|
|
* but set ERANGE anyway...) Therefore, we check for these inputs
|
|
* ourselves if strtod() fails.
|
|
*
|
|
* Note: C99 also requires hexadecimal input as well as some extended
|
|
* forms of NaN, but we consider these forms unportable and don't try
|
|
* to support them. You can use 'em if your strtod() takes 'em.
|
|
*/
|
|
if (pg_strncasecmp(num, "NaN", 3) == 0)
|
|
{
|
|
val = get_float8_nan();
|
|
endptr = num + 3;
|
|
}
|
|
else if (pg_strncasecmp(num, "Infinity", 8) == 0)
|
|
{
|
|
val = get_float8_infinity();
|
|
endptr = num + 8;
|
|
}
|
|
else if (pg_strncasecmp(num, "+Infinity", 9) == 0)
|
|
{
|
|
val = get_float8_infinity();
|
|
endptr = num + 9;
|
|
}
|
|
else if (pg_strncasecmp(num, "-Infinity", 9) == 0)
|
|
{
|
|
val = -get_float8_infinity();
|
|
endptr = num + 9;
|
|
}
|
|
else if (pg_strncasecmp(num, "inf", 3) == 0)
|
|
{
|
|
val = get_float8_infinity();
|
|
endptr = num + 3;
|
|
}
|
|
else if (pg_strncasecmp(num, "+inf", 4) == 0)
|
|
{
|
|
val = get_float8_infinity();
|
|
endptr = num + 4;
|
|
}
|
|
else if (pg_strncasecmp(num, "-inf", 4) == 0)
|
|
{
|
|
val = -get_float8_infinity();
|
|
endptr = num + 4;
|
|
}
|
|
else if (save_errno == ERANGE)
|
|
{
|
|
/*
|
|
* Some platforms return ERANGE for denormalized numbers (those
|
|
* that are not zero, but are too close to zero to have full
|
|
* precision). We'd prefer not to throw error for that, so try to
|
|
* detect whether it's a "real" out-of-range condition by checking
|
|
* to see if the result is zero or huge.
|
|
*/
|
|
if (val == 0.0 || val >= HUGE_VAL || val <= -HUGE_VAL)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("\"%s\" is out of range for type double precision",
|
|
orig_num)));
|
|
}
|
|
else
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("invalid input syntax for type double precision: \"%s\"",
|
|
orig_num)));
|
|
}
|
|
#ifdef HAVE_BUGGY_SOLARIS_STRTOD
|
|
else
|
|
{
|
|
/*
|
|
* Many versions of Solaris have a bug wherein strtod sets endptr to
|
|
* point one byte beyond the end of the string when given "inf" or
|
|
* "infinity".
|
|
*/
|
|
if (endptr != num && endptr[-1] == '\0')
|
|
endptr--;
|
|
}
|
|
#endif /* HAVE_BUGGY_SOLARIS_STRTOD */
|
|
|
|
/* skip trailing whitespace */
|
|
while (*endptr != '\0' && isspace((unsigned char) *endptr))
|
|
endptr++;
|
|
|
|
/* if there is any junk left at the end of the string, bail out */
|
|
if (*endptr != '\0')
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("invalid input syntax for type double precision: \"%s\"",
|
|
orig_num)));
|
|
|
|
CHECKFLOATVAL(val, true, true);
|
|
|
|
PG_RETURN_FLOAT8(val);
|
|
}
|
|
|
|
/*
|
|
* float8out - converts float8 number to a string
|
|
* using a standard output format
|
|
*/
|
|
Datum
|
|
float8out(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 num = PG_GETARG_FLOAT8(0);
|
|
char *ascii = (char *) palloc(MAXDOUBLEWIDTH + 1);
|
|
|
|
if (isnan(num))
|
|
PG_RETURN_CSTRING(strcpy(ascii, "NaN"));
|
|
|
|
switch (is_infinite(num))
|
|
{
|
|
case 1:
|
|
strcpy(ascii, "Infinity");
|
|
break;
|
|
case -1:
|
|
strcpy(ascii, "-Infinity");
|
|
break;
|
|
default:
|
|
{
|
|
int ndig = DBL_DIG + extra_float_digits;
|
|
|
|
if (ndig < 1)
|
|
ndig = 1;
|
|
|
|
snprintf(ascii, MAXDOUBLEWIDTH + 1, "%.*g", ndig, num);
|
|
}
|
|
}
|
|
|
|
PG_RETURN_CSTRING(ascii);
|
|
}
|
|
|
|
/*
|
|
* float8recv - converts external binary format to float8
|
|
*/
|
|
Datum
|
|
float8recv(PG_FUNCTION_ARGS)
|
|
{
|
|
StringInfo buf = (StringInfo) PG_GETARG_POINTER(0);
|
|
|
|
PG_RETURN_FLOAT8(pq_getmsgfloat8(buf));
|
|
}
|
|
|
|
/*
|
|
* float8send - converts float8 to binary format
|
|
*/
|
|
Datum
|
|
float8send(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 num = PG_GETARG_FLOAT8(0);
|
|
StringInfoData buf;
|
|
|
|
pq_begintypsend(&buf);
|
|
pq_sendfloat8(&buf, num);
|
|
PG_RETURN_BYTEA_P(pq_endtypsend(&buf));
|
|
}
|
|
|
|
|
|
/* ========== PUBLIC ROUTINES ========== */
|
|
|
|
|
|
/*
|
|
* ======================
|
|
* FLOAT4 BASE OPERATIONS
|
|
* ======================
|
|
*/
|
|
|
|
/*
|
|
* float4abs - returns |arg1| (absolute value)
|
|
*/
|
|
Datum
|
|
float4abs(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
|
|
PG_RETURN_FLOAT4((float4) fabs(arg1));
|
|
}
|
|
|
|
/*
|
|
* float4um - returns -arg1 (unary minus)
|
|
*/
|
|
Datum
|
|
float4um(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float4 result;
|
|
|
|
result = -arg1;
|
|
PG_RETURN_FLOAT4(result);
|
|
}
|
|
|
|
Datum
|
|
float4up(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg = PG_GETARG_FLOAT4(0);
|
|
|
|
PG_RETURN_FLOAT4(arg);
|
|
}
|
|
|
|
Datum
|
|
float4larger(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
float4 result;
|
|
|
|
if (float4_cmp_internal(arg1, arg2) > 0)
|
|
result = arg1;
|
|
else
|
|
result = arg2;
|
|
PG_RETURN_FLOAT4(result);
|
|
}
|
|
|
|
Datum
|
|
float4smaller(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
float4 result;
|
|
|
|
if (float4_cmp_internal(arg1, arg2) < 0)
|
|
result = arg1;
|
|
else
|
|
result = arg2;
|
|
PG_RETURN_FLOAT4(result);
|
|
}
|
|
|
|
/*
|
|
* ======================
|
|
* FLOAT8 BASE OPERATIONS
|
|
* ======================
|
|
*/
|
|
|
|
/*
|
|
* float8abs - returns |arg1| (absolute value)
|
|
*/
|
|
Datum
|
|
float8abs(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
|
|
PG_RETURN_FLOAT8(fabs(arg1));
|
|
}
|
|
|
|
|
|
/*
|
|
* float8um - returns -arg1 (unary minus)
|
|
*/
|
|
Datum
|
|
float8um(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
|
|
result = -arg1;
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
Datum
|
|
float8up(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg = PG_GETARG_FLOAT8(0);
|
|
|
|
PG_RETURN_FLOAT8(arg);
|
|
}
|
|
|
|
Datum
|
|
float8larger(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
float8 result;
|
|
|
|
if (float8_cmp_internal(arg1, arg2) > 0)
|
|
result = arg1;
|
|
else
|
|
result = arg2;
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
Datum
|
|
float8smaller(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
float8 result;
|
|
|
|
if (float8_cmp_internal(arg1, arg2) < 0)
|
|
result = arg1;
|
|
else
|
|
result = arg2;
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* ====================
|
|
* ARITHMETIC OPERATORS
|
|
* ====================
|
|
*/
|
|
|
|
/*
|
|
* float4pl - returns arg1 + arg2
|
|
* float4mi - returns arg1 - arg2
|
|
* float4mul - returns arg1 * arg2
|
|
* float4div - returns arg1 / arg2
|
|
*/
|
|
Datum
|
|
float4pl(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
float4 result;
|
|
|
|
result = arg1 + arg2;
|
|
|
|
/*
|
|
* There isn't any way to check for underflow of addition/subtraction
|
|
* because numbers near the underflow value have already been rounded to
|
|
* the point where we can't detect that the two values were originally
|
|
* different, e.g. on x86, '1e-45'::float4 == '2e-45'::float4 ==
|
|
* 1.4013e-45.
|
|
*/
|
|
CHECKFLOATVAL(result, isinf(arg1) || isinf(arg2), true);
|
|
PG_RETURN_FLOAT4(result);
|
|
}
|
|
|
|
Datum
|
|
float4mi(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
float4 result;
|
|
|
|
result = arg1 - arg2;
|
|
CHECKFLOATVAL(result, isinf(arg1) || isinf(arg2), true);
|
|
PG_RETURN_FLOAT4(result);
|
|
}
|
|
|
|
Datum
|
|
float4mul(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
float4 result;
|
|
|
|
result = arg1 * arg2;
|
|
CHECKFLOATVAL(result, isinf(arg1) || isinf(arg2),
|
|
arg1 == 0 || arg2 == 0);
|
|
PG_RETURN_FLOAT4(result);
|
|
}
|
|
|
|
Datum
|
|
float4div(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
float4 result;
|
|
|
|
if (arg2 == 0.0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DIVISION_BY_ZERO),
|
|
errmsg("division by zero")));
|
|
|
|
result = arg1 / arg2;
|
|
|
|
CHECKFLOATVAL(result, isinf(arg1) || isinf(arg2), arg1 == 0);
|
|
PG_RETURN_FLOAT4(result);
|
|
}
|
|
|
|
/*
|
|
* float8pl - returns arg1 + arg2
|
|
* float8mi - returns arg1 - arg2
|
|
* float8mul - returns arg1 * arg2
|
|
* float8div - returns arg1 / arg2
|
|
*/
|
|
Datum
|
|
float8pl(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
float8 result;
|
|
|
|
result = arg1 + arg2;
|
|
|
|
CHECKFLOATVAL(result, isinf(arg1) || isinf(arg2), true);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
Datum
|
|
float8mi(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
float8 result;
|
|
|
|
result = arg1 - arg2;
|
|
|
|
CHECKFLOATVAL(result, isinf(arg1) || isinf(arg2), true);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
Datum
|
|
float8mul(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
float8 result;
|
|
|
|
result = arg1 * arg2;
|
|
|
|
CHECKFLOATVAL(result, isinf(arg1) || isinf(arg2),
|
|
arg1 == 0 || arg2 == 0);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
Datum
|
|
float8div(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
float8 result;
|
|
|
|
if (arg2 == 0.0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DIVISION_BY_ZERO),
|
|
errmsg("division by zero")));
|
|
|
|
result = arg1 / arg2;
|
|
|
|
CHECKFLOATVAL(result, isinf(arg1) || isinf(arg2), arg1 == 0);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* ====================
|
|
* COMPARISON OPERATORS
|
|
* ====================
|
|
*/
|
|
|
|
/*
|
|
* float4{eq,ne,lt,le,gt,ge} - float4/float4 comparison operations
|
|
*/
|
|
static int
|
|
float4_cmp_internal(float4 a, float4 b)
|
|
{
|
|
/*
|
|
* We consider all NANs to be equal and larger than any non-NAN. This is
|
|
* somewhat arbitrary; the important thing is to have a consistent sort
|
|
* order.
|
|
*/
|
|
if (isnan(a))
|
|
{
|
|
if (isnan(b))
|
|
return 0; /* NAN = NAN */
|
|
else
|
|
return 1; /* NAN > non-NAN */
|
|
}
|
|
else if (isnan(b))
|
|
{
|
|
return -1; /* non-NAN < NAN */
|
|
}
|
|
else
|
|
{
|
|
if (a > b)
|
|
return 1;
|
|
else if (a < b)
|
|
return -1;
|
|
else
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
Datum
|
|
float4eq(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
|
|
PG_RETURN_BOOL(float4_cmp_internal(arg1, arg2) == 0);
|
|
}
|
|
|
|
Datum
|
|
float4ne(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
|
|
PG_RETURN_BOOL(float4_cmp_internal(arg1, arg2) != 0);
|
|
}
|
|
|
|
Datum
|
|
float4lt(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
|
|
PG_RETURN_BOOL(float4_cmp_internal(arg1, arg2) < 0);
|
|
}
|
|
|
|
Datum
|
|
float4le(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
|
|
PG_RETURN_BOOL(float4_cmp_internal(arg1, arg2) <= 0);
|
|
}
|
|
|
|
Datum
|
|
float4gt(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
|
|
PG_RETURN_BOOL(float4_cmp_internal(arg1, arg2) > 0);
|
|
}
|
|
|
|
Datum
|
|
float4ge(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
|
|
PG_RETURN_BOOL(float4_cmp_internal(arg1, arg2) >= 0);
|
|
}
|
|
|
|
Datum
|
|
btfloat4cmp(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
|
|
PG_RETURN_INT32(float4_cmp_internal(arg1, arg2));
|
|
}
|
|
|
|
static int
|
|
btfloat4fastcmp(Datum x, Datum y, SortSupport ssup)
|
|
{
|
|
float4 arg1 = DatumGetFloat4(x);
|
|
float4 arg2 = DatumGetFloat4(y);
|
|
|
|
return float4_cmp_internal(arg1, arg2);
|
|
}
|
|
|
|
Datum
|
|
btfloat4sortsupport(PG_FUNCTION_ARGS)
|
|
{
|
|
SortSupport ssup = (SortSupport) PG_GETARG_POINTER(0);
|
|
|
|
ssup->comparator = btfloat4fastcmp;
|
|
PG_RETURN_VOID();
|
|
}
|
|
|
|
/*
|
|
* float8{eq,ne,lt,le,gt,ge} - float8/float8 comparison operations
|
|
*/
|
|
static int
|
|
float8_cmp_internal(float8 a, float8 b)
|
|
{
|
|
/*
|
|
* We consider all NANs to be equal and larger than any non-NAN. This is
|
|
* somewhat arbitrary; the important thing is to have a consistent sort
|
|
* order.
|
|
*/
|
|
if (isnan(a))
|
|
{
|
|
if (isnan(b))
|
|
return 0; /* NAN = NAN */
|
|
else
|
|
return 1; /* NAN > non-NAN */
|
|
}
|
|
else if (isnan(b))
|
|
{
|
|
return -1; /* non-NAN < NAN */
|
|
}
|
|
else
|
|
{
|
|
if (a > b)
|
|
return 1;
|
|
else if (a < b)
|
|
return -1;
|
|
else
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
Datum
|
|
float8eq(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
|
|
PG_RETURN_BOOL(float8_cmp_internal(arg1, arg2) == 0);
|
|
}
|
|
|
|
Datum
|
|
float8ne(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
|
|
PG_RETURN_BOOL(float8_cmp_internal(arg1, arg2) != 0);
|
|
}
|
|
|
|
Datum
|
|
float8lt(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
|
|
PG_RETURN_BOOL(float8_cmp_internal(arg1, arg2) < 0);
|
|
}
|
|
|
|
Datum
|
|
float8le(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
|
|
PG_RETURN_BOOL(float8_cmp_internal(arg1, arg2) <= 0);
|
|
}
|
|
|
|
Datum
|
|
float8gt(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
|
|
PG_RETURN_BOOL(float8_cmp_internal(arg1, arg2) > 0);
|
|
}
|
|
|
|
Datum
|
|
float8ge(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
|
|
PG_RETURN_BOOL(float8_cmp_internal(arg1, arg2) >= 0);
|
|
}
|
|
|
|
Datum
|
|
btfloat8cmp(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
|
|
PG_RETURN_INT32(float8_cmp_internal(arg1, arg2));
|
|
}
|
|
|
|
static int
|
|
btfloat8fastcmp(Datum x, Datum y, SortSupport ssup)
|
|
{
|
|
float8 arg1 = DatumGetFloat8(x);
|
|
float8 arg2 = DatumGetFloat8(y);
|
|
|
|
return float8_cmp_internal(arg1, arg2);
|
|
}
|
|
|
|
Datum
|
|
btfloat8sortsupport(PG_FUNCTION_ARGS)
|
|
{
|
|
SortSupport ssup = (SortSupport) PG_GETARG_POINTER(0);
|
|
|
|
ssup->comparator = btfloat8fastcmp;
|
|
PG_RETURN_VOID();
|
|
}
|
|
|
|
Datum
|
|
btfloat48cmp(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
|
|
/* widen float4 to float8 and then compare */
|
|
PG_RETURN_INT32(float8_cmp_internal(arg1, arg2));
|
|
}
|
|
|
|
Datum
|
|
btfloat84cmp(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
|
|
/* widen float4 to float8 and then compare */
|
|
PG_RETURN_INT32(float8_cmp_internal(arg1, arg2));
|
|
}
|
|
|
|
|
|
/*
|
|
* ===================
|
|
* CONVERSION ROUTINES
|
|
* ===================
|
|
*/
|
|
|
|
/*
|
|
* ftod - converts a float4 number to a float8 number
|
|
*/
|
|
Datum
|
|
ftod(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 num = PG_GETARG_FLOAT4(0);
|
|
|
|
PG_RETURN_FLOAT8((float8) num);
|
|
}
|
|
|
|
|
|
/*
|
|
* dtof - converts a float8 number to a float4 number
|
|
*/
|
|
Datum
|
|
dtof(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 num = PG_GETARG_FLOAT8(0);
|
|
|
|
CHECKFLOATVAL((float4) num, isinf(num), num == 0);
|
|
|
|
PG_RETURN_FLOAT4((float4) num);
|
|
}
|
|
|
|
|
|
/*
|
|
* dtoi4 - converts a float8 number to an int4 number
|
|
*/
|
|
Datum
|
|
dtoi4(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 num = PG_GETARG_FLOAT8(0);
|
|
int32 result;
|
|
|
|
/* 'Inf' is handled by INT_MAX */
|
|
if (num < INT_MIN || num > INT_MAX || isnan(num))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("integer out of range")));
|
|
|
|
result = (int32) rint(num);
|
|
PG_RETURN_INT32(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* dtoi2 - converts a float8 number to an int2 number
|
|
*/
|
|
Datum
|
|
dtoi2(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 num = PG_GETARG_FLOAT8(0);
|
|
|
|
if (num < SHRT_MIN || num > SHRT_MAX || isnan(num))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("smallint out of range")));
|
|
|
|
PG_RETURN_INT16((int16) rint(num));
|
|
}
|
|
|
|
|
|
/*
|
|
* i4tod - converts an int4 number to a float8 number
|
|
*/
|
|
Datum
|
|
i4tod(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 num = PG_GETARG_INT32(0);
|
|
|
|
PG_RETURN_FLOAT8((float8) num);
|
|
}
|
|
|
|
|
|
/*
|
|
* i2tod - converts an int2 number to a float8 number
|
|
*/
|
|
Datum
|
|
i2tod(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 num = PG_GETARG_INT16(0);
|
|
|
|
PG_RETURN_FLOAT8((float8) num);
|
|
}
|
|
|
|
|
|
/*
|
|
* ftoi4 - converts a float4 number to an int4 number
|
|
*/
|
|
Datum
|
|
ftoi4(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 num = PG_GETARG_FLOAT4(0);
|
|
|
|
if (num < INT_MIN || num > INT_MAX || isnan(num))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("integer out of range")));
|
|
|
|
PG_RETURN_INT32((int32) rint(num));
|
|
}
|
|
|
|
|
|
/*
|
|
* ftoi2 - converts a float4 number to an int2 number
|
|
*/
|
|
Datum
|
|
ftoi2(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 num = PG_GETARG_FLOAT4(0);
|
|
|
|
if (num < SHRT_MIN || num > SHRT_MAX || isnan(num))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("smallint out of range")));
|
|
|
|
PG_RETURN_INT16((int16) rint(num));
|
|
}
|
|
|
|
|
|
/*
|
|
* i4tof - converts an int4 number to a float4 number
|
|
*/
|
|
Datum
|
|
i4tof(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 num = PG_GETARG_INT32(0);
|
|
|
|
PG_RETURN_FLOAT4((float4) num);
|
|
}
|
|
|
|
|
|
/*
|
|
* i2tof - converts an int2 number to a float4 number
|
|
*/
|
|
Datum
|
|
i2tof(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 num = PG_GETARG_INT16(0);
|
|
|
|
PG_RETURN_FLOAT4((float4) num);
|
|
}
|
|
|
|
|
|
/*
|
|
* =======================
|
|
* RANDOM FLOAT8 OPERATORS
|
|
* =======================
|
|
*/
|
|
|
|
/*
|
|
* dround - returns ROUND(arg1)
|
|
*/
|
|
Datum
|
|
dround(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
|
|
PG_RETURN_FLOAT8(rint(arg1));
|
|
}
|
|
|
|
/*
|
|
* dceil - returns the smallest integer greater than or
|
|
* equal to the specified float
|
|
*/
|
|
Datum
|
|
dceil(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
|
|
PG_RETURN_FLOAT8(ceil(arg1));
|
|
}
|
|
|
|
/*
|
|
* dfloor - returns the largest integer lesser than or
|
|
* equal to the specified float
|
|
*/
|
|
Datum
|
|
dfloor(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
|
|
PG_RETURN_FLOAT8(floor(arg1));
|
|
}
|
|
|
|
/*
|
|
* dsign - returns -1 if the argument is less than 0, 0
|
|
* if the argument is equal to 0, and 1 if the
|
|
* argument is greater than zero.
|
|
*/
|
|
Datum
|
|
dsign(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
|
|
if (arg1 > 0)
|
|
result = 1.0;
|
|
else if (arg1 < 0)
|
|
result = -1.0;
|
|
else
|
|
result = 0.0;
|
|
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
/*
|
|
* dtrunc - returns truncation-towards-zero of arg1,
|
|
* arg1 >= 0 ... the greatest integer less
|
|
* than or equal to arg1
|
|
* arg1 < 0 ... the least integer greater
|
|
* than or equal to arg1
|
|
*/
|
|
Datum
|
|
dtrunc(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
|
|
if (arg1 >= 0)
|
|
result = floor(arg1);
|
|
else
|
|
result = -floor(-arg1);
|
|
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* dsqrt - returns square root of arg1
|
|
*/
|
|
Datum
|
|
dsqrt(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
|
|
if (arg1 < 0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_ARGUMENT_FOR_POWER_FUNCTION),
|
|
errmsg("cannot take square root of a negative number")));
|
|
|
|
result = sqrt(arg1);
|
|
|
|
CHECKFLOATVAL(result, isinf(arg1), arg1 == 0);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* dcbrt - returns cube root of arg1
|
|
*/
|
|
Datum
|
|
dcbrt(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
|
|
result = cbrt(arg1);
|
|
CHECKFLOATVAL(result, isinf(arg1), arg1 == 0);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* dpow - returns pow(arg1,arg2)
|
|
*/
|
|
Datum
|
|
dpow(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
float8 result;
|
|
|
|
/*
|
|
* The SQL spec requires that we emit a particular SQLSTATE error code for
|
|
* certain error conditions. Specifically, we don't return a
|
|
* divide-by-zero error code for 0 ^ -1.
|
|
*/
|
|
if (arg1 == 0 && arg2 < 0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_ARGUMENT_FOR_POWER_FUNCTION),
|
|
errmsg("zero raised to a negative power is undefined")));
|
|
if (arg1 < 0 && floor(arg2) != arg2)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_ARGUMENT_FOR_POWER_FUNCTION),
|
|
errmsg("a negative number raised to a non-integer power yields a complex result")));
|
|
|
|
/*
|
|
* pow() sets errno only on some platforms, depending on whether it
|
|
* follows _IEEE_, _POSIX_, _XOPEN_, or _SVID_, so we try to avoid using
|
|
* errno. However, some platform/CPU combinations return errno == EDOM
|
|
* and result == Nan for negative arg1 and very large arg2 (they must be
|
|
* using something different from our floor() test to decide it's
|
|
* invalid). Other platforms (HPPA) return errno == ERANGE and a large
|
|
* (HUGE_VAL) but finite result to signal overflow.
|
|
*/
|
|
errno = 0;
|
|
result = pow(arg1, arg2);
|
|
if (errno == EDOM && isnan(result))
|
|
{
|
|
if ((fabs(arg1) > 1 && arg2 >= 0) || (fabs(arg1) < 1 && arg2 < 0))
|
|
/* The sign of Inf is not significant in this case. */
|
|
result = get_float8_infinity();
|
|
else if (fabs(arg1) != 1)
|
|
result = 0;
|
|
else
|
|
result = 1;
|
|
}
|
|
else if (errno == ERANGE && result != 0 && !isinf(result))
|
|
result = get_float8_infinity();
|
|
|
|
CHECKFLOATVAL(result, isinf(arg1) || isinf(arg2), arg1 == 0);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* dexp - returns the exponential function of arg1
|
|
*/
|
|
Datum
|
|
dexp(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
|
|
errno = 0;
|
|
result = exp(arg1);
|
|
if (errno == ERANGE && result != 0 && !isinf(result))
|
|
result = get_float8_infinity();
|
|
|
|
CHECKFLOATVAL(result, isinf(arg1), false);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* dlog1 - returns the natural logarithm of arg1
|
|
*/
|
|
Datum
|
|
dlog1(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
|
|
/*
|
|
* Emit particular SQLSTATE error codes for ln(). This is required by the
|
|
* SQL standard.
|
|
*/
|
|
if (arg1 == 0.0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_ARGUMENT_FOR_LOG),
|
|
errmsg("cannot take logarithm of zero")));
|
|
if (arg1 < 0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_ARGUMENT_FOR_LOG),
|
|
errmsg("cannot take logarithm of a negative number")));
|
|
|
|
result = log(arg1);
|
|
|
|
CHECKFLOATVAL(result, isinf(arg1), arg1 == 1);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* dlog10 - returns the base 10 logarithm of arg1
|
|
*/
|
|
Datum
|
|
dlog10(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
|
|
/*
|
|
* Emit particular SQLSTATE error codes for log(). The SQL spec doesn't
|
|
* define log(), but it does define ln(), so it makes sense to emit the
|
|
* same error code for an analogous error condition.
|
|
*/
|
|
if (arg1 == 0.0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_ARGUMENT_FOR_LOG),
|
|
errmsg("cannot take logarithm of zero")));
|
|
if (arg1 < 0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_ARGUMENT_FOR_LOG),
|
|
errmsg("cannot take logarithm of a negative number")));
|
|
|
|
result = log10(arg1);
|
|
|
|
CHECKFLOATVAL(result, isinf(arg1), arg1 == 1);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* dacos - returns the arccos of arg1 (radians)
|
|
*/
|
|
Datum
|
|
dacos(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
|
|
/* Per the POSIX spec, return NaN if the input is NaN */
|
|
if (isnan(arg1))
|
|
PG_RETURN_FLOAT8(get_float8_nan());
|
|
|
|
/*
|
|
* The principal branch of the inverse cosine function maps values in the
|
|
* range [-1, 1] to values in the range [0, Pi], so we should reject any
|
|
* inputs outside that range and the result will always be finite.
|
|
*/
|
|
if (arg1 < -1.0 || arg1 > 1.0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("input is out of range")));
|
|
|
|
result = acos(arg1);
|
|
|
|
CHECKFLOATVAL(result, false, true);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* dasin - returns the arcsin of arg1 (radians)
|
|
*/
|
|
Datum
|
|
dasin(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
|
|
/* Per the POSIX spec, return NaN if the input is NaN */
|
|
if (isnan(arg1))
|
|
PG_RETURN_FLOAT8(get_float8_nan());
|
|
|
|
/*
|
|
* The principal branch of the inverse sine function maps values in the
|
|
* range [-1, 1] to values in the range [-Pi/2, Pi/2], so we should reject
|
|
* any inputs outside that range and the result will always be finite.
|
|
*/
|
|
if (arg1 < -1.0 || arg1 > 1.0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("input is out of range")));
|
|
|
|
result = asin(arg1);
|
|
|
|
CHECKFLOATVAL(result, false, true);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* datan - returns the arctan of arg1 (radians)
|
|
*/
|
|
Datum
|
|
datan(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
|
|
/* Per the POSIX spec, return NaN if the input is NaN */
|
|
if (isnan(arg1))
|
|
PG_RETURN_FLOAT8(get_float8_nan());
|
|
|
|
/*
|
|
* The principal branch of the inverse tangent function maps all inputs to
|
|
* values in the range [-Pi/2, Pi/2], so the result should always be
|
|
* finite, even if the input is infinite.
|
|
*/
|
|
result = atan(arg1);
|
|
|
|
CHECKFLOATVAL(result, false, true);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* atan2 - returns the arctan2 of arg1 (radians)
|
|
*/
|
|
Datum
|
|
datan2(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
float8 result;
|
|
|
|
/* Per the POSIX spec, return NaN if either input is NaN */
|
|
if (isnan(arg1) || isnan(arg2))
|
|
PG_RETURN_FLOAT8(get_float8_nan());
|
|
|
|
/*
|
|
* atan2 maps all inputs to values in the range [-Pi, Pi], so the result
|
|
* should always be finite, even if the inputs are infinite.
|
|
*/
|
|
result = atan2(arg1, arg2);
|
|
|
|
CHECKFLOATVAL(result, false, true);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* dcos - returns the cosine of arg1 (radians)
|
|
*/
|
|
Datum
|
|
dcos(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
|
|
/* Per the POSIX spec, return NaN if the input is NaN */
|
|
if (isnan(arg1))
|
|
PG_RETURN_FLOAT8(get_float8_nan());
|
|
|
|
/*
|
|
* cos() is periodic and so theoretically can work for all finite inputs,
|
|
* but some implementations may choose to throw error if the input is so
|
|
* large that there are no significant digits in the result. So we should
|
|
* check for errors. POSIX allows an error to be reported either via
|
|
* errno or via fetestexcept(), but currently we only support checking
|
|
* errno. (fetestexcept() is rumored to report underflow unreasonably
|
|
* early on some platforms, so it's not clear that believing it would be a
|
|
* net improvement anyway.)
|
|
*
|
|
* For infinite inputs, POSIX specifies that the trigonometric functions
|
|
* should return a domain error; but we won't notice that unless the
|
|
* platform reports via errno, so also explicitly test for infinite
|
|
* inputs.
|
|
*/
|
|
errno = 0;
|
|
result = cos(arg1);
|
|
if (errno != 0 || isinf(arg1))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("input is out of range")));
|
|
|
|
CHECKFLOATVAL(result, false, true);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* dcot - returns the cotangent of arg1 (radians)
|
|
*/
|
|
Datum
|
|
dcot(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
|
|
/* Per the POSIX spec, return NaN if the input is NaN */
|
|
if (isnan(arg1))
|
|
PG_RETURN_FLOAT8(get_float8_nan());
|
|
|
|
/* Be sure to throw an error if the input is infinite --- see dcos() */
|
|
errno = 0;
|
|
result = tan(arg1);
|
|
if (errno != 0 || isinf(arg1))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("input is out of range")));
|
|
|
|
result = 1.0 / result;
|
|
CHECKFLOATVAL(result, true /* cot(0) == Inf */ , true);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* dsin - returns the sine of arg1 (radians)
|
|
*/
|
|
Datum
|
|
dsin(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
|
|
/* Per the POSIX spec, return NaN if the input is NaN */
|
|
if (isnan(arg1))
|
|
PG_RETURN_FLOAT8(get_float8_nan());
|
|
|
|
/* Be sure to throw an error if the input is infinite --- see dcos() */
|
|
errno = 0;
|
|
result = sin(arg1);
|
|
if (errno != 0 || isinf(arg1))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("input is out of range")));
|
|
|
|
CHECKFLOATVAL(result, false, true);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* dtan - returns the tangent of arg1 (radians)
|
|
*/
|
|
Datum
|
|
dtan(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
|
|
/* Per the POSIX spec, return NaN if the input is NaN */
|
|
if (isnan(arg1))
|
|
PG_RETURN_FLOAT8(get_float8_nan());
|
|
|
|
/* Be sure to throw an error if the input is infinite --- see dcos() */
|
|
errno = 0;
|
|
result = tan(arg1);
|
|
if (errno != 0 || isinf(arg1))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("input is out of range")));
|
|
|
|
CHECKFLOATVAL(result, true /* tan(pi/2) == Inf */ , true);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* degrees - returns degrees converted from radians
|
|
*/
|
|
Datum
|
|
degrees(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
|
|
result = arg1 * (180.0 / M_PI);
|
|
|
|
CHECKFLOATVAL(result, isinf(arg1), arg1 == 0);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* dpi - returns the constant PI
|
|
*/
|
|
Datum
|
|
dpi(PG_FUNCTION_ARGS)
|
|
{
|
|
PG_RETURN_FLOAT8(M_PI);
|
|
}
|
|
|
|
|
|
/*
|
|
* radians - returns radians converted from degrees
|
|
*/
|
|
Datum
|
|
radians(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float8 result;
|
|
|
|
result = arg1 * (M_PI / 180.0);
|
|
|
|
CHECKFLOATVAL(result, isinf(arg1), arg1 == 0);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* drandom - returns a random number
|
|
*/
|
|
Datum
|
|
drandom(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 result;
|
|
|
|
/* result [0.0 - 1.0) */
|
|
result = (double) random() / ((double) MAX_RANDOM_VALUE + 1);
|
|
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* setseed - set seed for the random number generator
|
|
*/
|
|
Datum
|
|
setseed(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 seed = PG_GETARG_FLOAT8(0);
|
|
int iseed;
|
|
|
|
if (seed < -1 || seed > 1)
|
|
elog(ERROR, "setseed parameter %f out of range [-1,1]", seed);
|
|
|
|
iseed = (int) (seed * MAX_RANDOM_VALUE);
|
|
srandom((unsigned int) iseed);
|
|
|
|
PG_RETURN_VOID();
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
* =========================
|
|
* FLOAT AGGREGATE OPERATORS
|
|
* =========================
|
|
*
|
|
* float8_accum - accumulate for AVG(), variance aggregates, etc.
|
|
* float4_accum - same, but input data is float4
|
|
* float8_avg - produce final result for float AVG()
|
|
* float8_var_samp - produce final result for float VAR_SAMP()
|
|
* float8_var_pop - produce final result for float VAR_POP()
|
|
* float8_stddev_samp - produce final result for float STDDEV_SAMP()
|
|
* float8_stddev_pop - produce final result for float STDDEV_POP()
|
|
*
|
|
* The transition datatype for all these aggregates is a 3-element array
|
|
* of float8, holding the values N, sum(X), sum(X*X) in that order.
|
|
*
|
|
* Note that we represent N as a float to avoid having to build a special
|
|
* datatype. Given a reasonable floating-point implementation, there should
|
|
* be no accuracy loss unless N exceeds 2 ^ 52 or so (by which time the
|
|
* user will have doubtless lost interest anyway...)
|
|
*/
|
|
|
|
static float8 *
|
|
check_float8_array(ArrayType *transarray, const char *caller, int n)
|
|
{
|
|
/*
|
|
* We expect the input to be an N-element float array; verify that. We
|
|
* don't need to use deconstruct_array() since the array data is just
|
|
* going to look like a C array of N float8 values.
|
|
*/
|
|
if (ARR_NDIM(transarray) != 1 ||
|
|
ARR_DIMS(transarray)[0] != n ||
|
|
ARR_HASNULL(transarray) ||
|
|
ARR_ELEMTYPE(transarray) != FLOAT8OID)
|
|
elog(ERROR, "%s: expected %d-element float8 array", caller, n);
|
|
return (float8 *) ARR_DATA_PTR(transarray);
|
|
}
|
|
|
|
Datum
|
|
float8_accum(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
|
|
float8 newval = PG_GETARG_FLOAT8(1);
|
|
float8 *transvalues;
|
|
float8 N,
|
|
sumX,
|
|
sumX2;
|
|
|
|
transvalues = check_float8_array(transarray, "float8_accum", 3);
|
|
N = transvalues[0];
|
|
sumX = transvalues[1];
|
|
sumX2 = transvalues[2];
|
|
|
|
N += 1.0;
|
|
sumX += newval;
|
|
CHECKFLOATVAL(sumX, isinf(transvalues[1]) || isinf(newval), true);
|
|
sumX2 += newval * newval;
|
|
CHECKFLOATVAL(sumX2, isinf(transvalues[2]) || isinf(newval), true);
|
|
|
|
/*
|
|
* If we're invoked as an aggregate, we can cheat and modify our first
|
|
* parameter in-place to reduce palloc overhead. Otherwise we construct a
|
|
* new array with the updated transition data and return it.
|
|
*/
|
|
if (AggCheckCallContext(fcinfo, NULL))
|
|
{
|
|
transvalues[0] = N;
|
|
transvalues[1] = sumX;
|
|
transvalues[2] = sumX2;
|
|
|
|
PG_RETURN_ARRAYTYPE_P(transarray);
|
|
}
|
|
else
|
|
{
|
|
Datum transdatums[3];
|
|
ArrayType *result;
|
|
|
|
transdatums[0] = Float8GetDatumFast(N);
|
|
transdatums[1] = Float8GetDatumFast(sumX);
|
|
transdatums[2] = Float8GetDatumFast(sumX2);
|
|
|
|
result = construct_array(transdatums, 3,
|
|
FLOAT8OID,
|
|
sizeof(float8), FLOAT8PASSBYVAL, 'd');
|
|
|
|
PG_RETURN_ARRAYTYPE_P(result);
|
|
}
|
|
}
|
|
|
|
Datum
|
|
float4_accum(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
|
|
|
|
/* do computations as float8 */
|
|
float8 newval = PG_GETARG_FLOAT4(1);
|
|
float8 *transvalues;
|
|
float8 N,
|
|
sumX,
|
|
sumX2;
|
|
|
|
transvalues = check_float8_array(transarray, "float4_accum", 3);
|
|
N = transvalues[0];
|
|
sumX = transvalues[1];
|
|
sumX2 = transvalues[2];
|
|
|
|
N += 1.0;
|
|
sumX += newval;
|
|
CHECKFLOATVAL(sumX, isinf(transvalues[1]) || isinf(newval), true);
|
|
sumX2 += newval * newval;
|
|
CHECKFLOATVAL(sumX2, isinf(transvalues[2]) || isinf(newval), true);
|
|
|
|
/*
|
|
* If we're invoked as an aggregate, we can cheat and modify our first
|
|
* parameter in-place to reduce palloc overhead. Otherwise we construct a
|
|
* new array with the updated transition data and return it.
|
|
*/
|
|
if (AggCheckCallContext(fcinfo, NULL))
|
|
{
|
|
transvalues[0] = N;
|
|
transvalues[1] = sumX;
|
|
transvalues[2] = sumX2;
|
|
|
|
PG_RETURN_ARRAYTYPE_P(transarray);
|
|
}
|
|
else
|
|
{
|
|
Datum transdatums[3];
|
|
ArrayType *result;
|
|
|
|
transdatums[0] = Float8GetDatumFast(N);
|
|
transdatums[1] = Float8GetDatumFast(sumX);
|
|
transdatums[2] = Float8GetDatumFast(sumX2);
|
|
|
|
result = construct_array(transdatums, 3,
|
|
FLOAT8OID,
|
|
sizeof(float8), FLOAT8PASSBYVAL, 'd');
|
|
|
|
PG_RETURN_ARRAYTYPE_P(result);
|
|
}
|
|
}
|
|
|
|
Datum
|
|
float8_avg(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
|
|
float8 *transvalues;
|
|
float8 N,
|
|
sumX;
|
|
|
|
transvalues = check_float8_array(transarray, "float8_avg", 3);
|
|
N = transvalues[0];
|
|
sumX = transvalues[1];
|
|
/* ignore sumX2 */
|
|
|
|
/* SQL defines AVG of no values to be NULL */
|
|
if (N == 0.0)
|
|
PG_RETURN_NULL();
|
|
|
|
PG_RETURN_FLOAT8(sumX / N);
|
|
}
|
|
|
|
Datum
|
|
float8_var_pop(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
|
|
float8 *transvalues;
|
|
float8 N,
|
|
sumX,
|
|
sumX2,
|
|
numerator;
|
|
|
|
transvalues = check_float8_array(transarray, "float8_var_pop", 3);
|
|
N = transvalues[0];
|
|
sumX = transvalues[1];
|
|
sumX2 = transvalues[2];
|
|
|
|
/* Population variance is undefined when N is 0, so return NULL */
|
|
if (N == 0.0)
|
|
PG_RETURN_NULL();
|
|
|
|
numerator = N * sumX2 - sumX * sumX;
|
|
CHECKFLOATVAL(numerator, isinf(sumX2) || isinf(sumX), true);
|
|
|
|
/* Watch out for roundoff error producing a negative numerator */
|
|
if (numerator <= 0.0)
|
|
PG_RETURN_FLOAT8(0.0);
|
|
|
|
PG_RETURN_FLOAT8(numerator / (N * N));
|
|
}
|
|
|
|
Datum
|
|
float8_var_samp(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
|
|
float8 *transvalues;
|
|
float8 N,
|
|
sumX,
|
|
sumX2,
|
|
numerator;
|
|
|
|
transvalues = check_float8_array(transarray, "float8_var_samp", 3);
|
|
N = transvalues[0];
|
|
sumX = transvalues[1];
|
|
sumX2 = transvalues[2];
|
|
|
|
/* Sample variance is undefined when N is 0 or 1, so return NULL */
|
|
if (N <= 1.0)
|
|
PG_RETURN_NULL();
|
|
|
|
numerator = N * sumX2 - sumX * sumX;
|
|
CHECKFLOATVAL(numerator, isinf(sumX2) || isinf(sumX), true);
|
|
|
|
/* Watch out for roundoff error producing a negative numerator */
|
|
if (numerator <= 0.0)
|
|
PG_RETURN_FLOAT8(0.0);
|
|
|
|
PG_RETURN_FLOAT8(numerator / (N * (N - 1.0)));
|
|
}
|
|
|
|
Datum
|
|
float8_stddev_pop(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
|
|
float8 *transvalues;
|
|
float8 N,
|
|
sumX,
|
|
sumX2,
|
|
numerator;
|
|
|
|
transvalues = check_float8_array(transarray, "float8_stddev_pop", 3);
|
|
N = transvalues[0];
|
|
sumX = transvalues[1];
|
|
sumX2 = transvalues[2];
|
|
|
|
/* Population stddev is undefined when N is 0, so return NULL */
|
|
if (N == 0.0)
|
|
PG_RETURN_NULL();
|
|
|
|
numerator = N * sumX2 - sumX * sumX;
|
|
CHECKFLOATVAL(numerator, isinf(sumX2) || isinf(sumX), true);
|
|
|
|
/* Watch out for roundoff error producing a negative numerator */
|
|
if (numerator <= 0.0)
|
|
PG_RETURN_FLOAT8(0.0);
|
|
|
|
PG_RETURN_FLOAT8(sqrt(numerator / (N * N)));
|
|
}
|
|
|
|
Datum
|
|
float8_stddev_samp(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
|
|
float8 *transvalues;
|
|
float8 N,
|
|
sumX,
|
|
sumX2,
|
|
numerator;
|
|
|
|
transvalues = check_float8_array(transarray, "float8_stddev_samp", 3);
|
|
N = transvalues[0];
|
|
sumX = transvalues[1];
|
|
sumX2 = transvalues[2];
|
|
|
|
/* Sample stddev is undefined when N is 0 or 1, so return NULL */
|
|
if (N <= 1.0)
|
|
PG_RETURN_NULL();
|
|
|
|
numerator = N * sumX2 - sumX * sumX;
|
|
CHECKFLOATVAL(numerator, isinf(sumX2) || isinf(sumX), true);
|
|
|
|
/* Watch out for roundoff error producing a negative numerator */
|
|
if (numerator <= 0.0)
|
|
PG_RETURN_FLOAT8(0.0);
|
|
|
|
PG_RETURN_FLOAT8(sqrt(numerator / (N * (N - 1.0))));
|
|
}
|
|
|
|
/*
|
|
* =========================
|
|
* SQL2003 BINARY AGGREGATES
|
|
* =========================
|
|
*
|
|
* The transition datatype for all these aggregates is a 6-element array of
|
|
* float8, holding the values N, sum(X), sum(X*X), sum(Y), sum(Y*Y), sum(X*Y)
|
|
* in that order. Note that Y is the first argument to the aggregates!
|
|
*
|
|
* It might seem attractive to optimize this by having multiple accumulator
|
|
* functions that only calculate the sums actually needed. But on most
|
|
* modern machines, a couple of extra floating-point multiplies will be
|
|
* insignificant compared to the other per-tuple overhead, so I've chosen
|
|
* to minimize code space instead.
|
|
*/
|
|
|
|
Datum
|
|
float8_regr_accum(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
|
|
float8 newvalY = PG_GETARG_FLOAT8(1);
|
|
float8 newvalX = PG_GETARG_FLOAT8(2);
|
|
float8 *transvalues;
|
|
float8 N,
|
|
sumX,
|
|
sumX2,
|
|
sumY,
|
|
sumY2,
|
|
sumXY;
|
|
|
|
transvalues = check_float8_array(transarray, "float8_regr_accum", 6);
|
|
N = transvalues[0];
|
|
sumX = transvalues[1];
|
|
sumX2 = transvalues[2];
|
|
sumY = transvalues[3];
|
|
sumY2 = transvalues[4];
|
|
sumXY = transvalues[5];
|
|
|
|
N += 1.0;
|
|
sumX += newvalX;
|
|
CHECKFLOATVAL(sumX, isinf(transvalues[1]) || isinf(newvalX), true);
|
|
sumX2 += newvalX * newvalX;
|
|
CHECKFLOATVAL(sumX2, isinf(transvalues[2]) || isinf(newvalX), true);
|
|
sumY += newvalY;
|
|
CHECKFLOATVAL(sumY, isinf(transvalues[3]) || isinf(newvalY), true);
|
|
sumY2 += newvalY * newvalY;
|
|
CHECKFLOATVAL(sumY2, isinf(transvalues[4]) || isinf(newvalY), true);
|
|
sumXY += newvalX * newvalY;
|
|
CHECKFLOATVAL(sumXY, isinf(transvalues[5]) || isinf(newvalX) ||
|
|
isinf(newvalY), true);
|
|
|
|
/*
|
|
* If we're invoked as an aggregate, we can cheat and modify our first
|
|
* parameter in-place to reduce palloc overhead. Otherwise we construct a
|
|
* new array with the updated transition data and return it.
|
|
*/
|
|
if (AggCheckCallContext(fcinfo, NULL))
|
|
{
|
|
transvalues[0] = N;
|
|
transvalues[1] = sumX;
|
|
transvalues[2] = sumX2;
|
|
transvalues[3] = sumY;
|
|
transvalues[4] = sumY2;
|
|
transvalues[5] = sumXY;
|
|
|
|
PG_RETURN_ARRAYTYPE_P(transarray);
|
|
}
|
|
else
|
|
{
|
|
Datum transdatums[6];
|
|
ArrayType *result;
|
|
|
|
transdatums[0] = Float8GetDatumFast(N);
|
|
transdatums[1] = Float8GetDatumFast(sumX);
|
|
transdatums[2] = Float8GetDatumFast(sumX2);
|
|
transdatums[3] = Float8GetDatumFast(sumY);
|
|
transdatums[4] = Float8GetDatumFast(sumY2);
|
|
transdatums[5] = Float8GetDatumFast(sumXY);
|
|
|
|
result = construct_array(transdatums, 6,
|
|
FLOAT8OID,
|
|
sizeof(float8), FLOAT8PASSBYVAL, 'd');
|
|
|
|
PG_RETURN_ARRAYTYPE_P(result);
|
|
}
|
|
}
|
|
|
|
Datum
|
|
float8_regr_sxx(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
|
|
float8 *transvalues;
|
|
float8 N,
|
|
sumX,
|
|
sumX2,
|
|
numerator;
|
|
|
|
transvalues = check_float8_array(transarray, "float8_regr_sxx", 6);
|
|
N = transvalues[0];
|
|
sumX = transvalues[1];
|
|
sumX2 = transvalues[2];
|
|
|
|
/* if N is 0 we should return NULL */
|
|
if (N < 1.0)
|
|
PG_RETURN_NULL();
|
|
|
|
numerator = N * sumX2 - sumX * sumX;
|
|
CHECKFLOATVAL(numerator, isinf(sumX2) || isinf(sumX), true);
|
|
|
|
/* Watch out for roundoff error producing a negative numerator */
|
|
if (numerator <= 0.0)
|
|
PG_RETURN_FLOAT8(0.0);
|
|
|
|
PG_RETURN_FLOAT8(numerator / N);
|
|
}
|
|
|
|
Datum
|
|
float8_regr_syy(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
|
|
float8 *transvalues;
|
|
float8 N,
|
|
sumY,
|
|
sumY2,
|
|
numerator;
|
|
|
|
transvalues = check_float8_array(transarray, "float8_regr_syy", 6);
|
|
N = transvalues[0];
|
|
sumY = transvalues[3];
|
|
sumY2 = transvalues[4];
|
|
|
|
/* if N is 0 we should return NULL */
|
|
if (N < 1.0)
|
|
PG_RETURN_NULL();
|
|
|
|
numerator = N * sumY2 - sumY * sumY;
|
|
CHECKFLOATVAL(numerator, isinf(sumY2) || isinf(sumY), true);
|
|
|
|
/* Watch out for roundoff error producing a negative numerator */
|
|
if (numerator <= 0.0)
|
|
PG_RETURN_FLOAT8(0.0);
|
|
|
|
PG_RETURN_FLOAT8(numerator / N);
|
|
}
|
|
|
|
Datum
|
|
float8_regr_sxy(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
|
|
float8 *transvalues;
|
|
float8 N,
|
|
sumX,
|
|
sumY,
|
|
sumXY,
|
|
numerator;
|
|
|
|
transvalues = check_float8_array(transarray, "float8_regr_sxy", 6);
|
|
N = transvalues[0];
|
|
sumX = transvalues[1];
|
|
sumY = transvalues[3];
|
|
sumXY = transvalues[5];
|
|
|
|
/* if N is 0 we should return NULL */
|
|
if (N < 1.0)
|
|
PG_RETURN_NULL();
|
|
|
|
numerator = N * sumXY - sumX * sumY;
|
|
CHECKFLOATVAL(numerator, isinf(sumXY) || isinf(sumX) ||
|
|
isinf(sumY), true);
|
|
|
|
/* A negative result is valid here */
|
|
|
|
PG_RETURN_FLOAT8(numerator / N);
|
|
}
|
|
|
|
Datum
|
|
float8_regr_avgx(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
|
|
float8 *transvalues;
|
|
float8 N,
|
|
sumX;
|
|
|
|
transvalues = check_float8_array(transarray, "float8_regr_avgx", 6);
|
|
N = transvalues[0];
|
|
sumX = transvalues[1];
|
|
|
|
/* if N is 0 we should return NULL */
|
|
if (N < 1.0)
|
|
PG_RETURN_NULL();
|
|
|
|
PG_RETURN_FLOAT8(sumX / N);
|
|
}
|
|
|
|
Datum
|
|
float8_regr_avgy(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
|
|
float8 *transvalues;
|
|
float8 N,
|
|
sumY;
|
|
|
|
transvalues = check_float8_array(transarray, "float8_regr_avgy", 6);
|
|
N = transvalues[0];
|
|
sumY = transvalues[3];
|
|
|
|
/* if N is 0 we should return NULL */
|
|
if (N < 1.0)
|
|
PG_RETURN_NULL();
|
|
|
|
PG_RETURN_FLOAT8(sumY / N);
|
|
}
|
|
|
|
Datum
|
|
float8_covar_pop(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
|
|
float8 *transvalues;
|
|
float8 N,
|
|
sumX,
|
|
sumY,
|
|
sumXY,
|
|
numerator;
|
|
|
|
transvalues = check_float8_array(transarray, "float8_covar_pop", 6);
|
|
N = transvalues[0];
|
|
sumX = transvalues[1];
|
|
sumY = transvalues[3];
|
|
sumXY = transvalues[5];
|
|
|
|
/* if N is 0 we should return NULL */
|
|
if (N < 1.0)
|
|
PG_RETURN_NULL();
|
|
|
|
numerator = N * sumXY - sumX * sumY;
|
|
CHECKFLOATVAL(numerator, isinf(sumXY) || isinf(sumX) ||
|
|
isinf(sumY), true);
|
|
|
|
PG_RETURN_FLOAT8(numerator / (N * N));
|
|
}
|
|
|
|
Datum
|
|
float8_covar_samp(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
|
|
float8 *transvalues;
|
|
float8 N,
|
|
sumX,
|
|
sumY,
|
|
sumXY,
|
|
numerator;
|
|
|
|
transvalues = check_float8_array(transarray, "float8_covar_samp", 6);
|
|
N = transvalues[0];
|
|
sumX = transvalues[1];
|
|
sumY = transvalues[3];
|
|
sumXY = transvalues[5];
|
|
|
|
/* if N is <= 1 we should return NULL */
|
|
if (N < 2.0)
|
|
PG_RETURN_NULL();
|
|
|
|
numerator = N * sumXY - sumX * sumY;
|
|
CHECKFLOATVAL(numerator, isinf(sumXY) || isinf(sumX) ||
|
|
isinf(sumY), true);
|
|
|
|
PG_RETURN_FLOAT8(numerator / (N * (N - 1.0)));
|
|
}
|
|
|
|
Datum
|
|
float8_corr(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
|
|
float8 *transvalues;
|
|
float8 N,
|
|
sumX,
|
|
sumX2,
|
|
sumY,
|
|
sumY2,
|
|
sumXY,
|
|
numeratorX,
|
|
numeratorY,
|
|
numeratorXY;
|
|
|
|
transvalues = check_float8_array(transarray, "float8_corr", 6);
|
|
N = transvalues[0];
|
|
sumX = transvalues[1];
|
|
sumX2 = transvalues[2];
|
|
sumY = transvalues[3];
|
|
sumY2 = transvalues[4];
|
|
sumXY = transvalues[5];
|
|
|
|
/* if N is 0 we should return NULL */
|
|
if (N < 1.0)
|
|
PG_RETURN_NULL();
|
|
|
|
numeratorX = N * sumX2 - sumX * sumX;
|
|
CHECKFLOATVAL(numeratorX, isinf(sumX2) || isinf(sumX), true);
|
|
numeratorY = N * sumY2 - sumY * sumY;
|
|
CHECKFLOATVAL(numeratorY, isinf(sumY2) || isinf(sumY), true);
|
|
numeratorXY = N * sumXY - sumX * sumY;
|
|
CHECKFLOATVAL(numeratorXY, isinf(sumXY) || isinf(sumX) ||
|
|
isinf(sumY), true);
|
|
if (numeratorX <= 0 || numeratorY <= 0)
|
|
PG_RETURN_NULL();
|
|
|
|
PG_RETURN_FLOAT8(numeratorXY / sqrt(numeratorX * numeratorY));
|
|
}
|
|
|
|
Datum
|
|
float8_regr_r2(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
|
|
float8 *transvalues;
|
|
float8 N,
|
|
sumX,
|
|
sumX2,
|
|
sumY,
|
|
sumY2,
|
|
sumXY,
|
|
numeratorX,
|
|
numeratorY,
|
|
numeratorXY;
|
|
|
|
transvalues = check_float8_array(transarray, "float8_regr_r2", 6);
|
|
N = transvalues[0];
|
|
sumX = transvalues[1];
|
|
sumX2 = transvalues[2];
|
|
sumY = transvalues[3];
|
|
sumY2 = transvalues[4];
|
|
sumXY = transvalues[5];
|
|
|
|
/* if N is 0 we should return NULL */
|
|
if (N < 1.0)
|
|
PG_RETURN_NULL();
|
|
|
|
numeratorX = N * sumX2 - sumX * sumX;
|
|
CHECKFLOATVAL(numeratorX, isinf(sumX2) || isinf(sumX), true);
|
|
numeratorY = N * sumY2 - sumY * sumY;
|
|
CHECKFLOATVAL(numeratorY, isinf(sumY2) || isinf(sumY), true);
|
|
numeratorXY = N * sumXY - sumX * sumY;
|
|
CHECKFLOATVAL(numeratorXY, isinf(sumXY) || isinf(sumX) ||
|
|
isinf(sumY), true);
|
|
if (numeratorX <= 0)
|
|
PG_RETURN_NULL();
|
|
/* per spec, horizontal line produces 1.0 */
|
|
if (numeratorY <= 0)
|
|
PG_RETURN_FLOAT8(1.0);
|
|
|
|
PG_RETURN_FLOAT8((numeratorXY * numeratorXY) /
|
|
(numeratorX * numeratorY));
|
|
}
|
|
|
|
Datum
|
|
float8_regr_slope(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
|
|
float8 *transvalues;
|
|
float8 N,
|
|
sumX,
|
|
sumX2,
|
|
sumY,
|
|
sumXY,
|
|
numeratorX,
|
|
numeratorXY;
|
|
|
|
transvalues = check_float8_array(transarray, "float8_regr_slope", 6);
|
|
N = transvalues[0];
|
|
sumX = transvalues[1];
|
|
sumX2 = transvalues[2];
|
|
sumY = transvalues[3];
|
|
sumXY = transvalues[5];
|
|
|
|
/* if N is 0 we should return NULL */
|
|
if (N < 1.0)
|
|
PG_RETURN_NULL();
|
|
|
|
numeratorX = N * sumX2 - sumX * sumX;
|
|
CHECKFLOATVAL(numeratorX, isinf(sumX2) || isinf(sumX), true);
|
|
numeratorXY = N * sumXY - sumX * sumY;
|
|
CHECKFLOATVAL(numeratorXY, isinf(sumXY) || isinf(sumX) ||
|
|
isinf(sumY), true);
|
|
if (numeratorX <= 0)
|
|
PG_RETURN_NULL();
|
|
|
|
PG_RETURN_FLOAT8(numeratorXY / numeratorX);
|
|
}
|
|
|
|
Datum
|
|
float8_regr_intercept(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
|
|
float8 *transvalues;
|
|
float8 N,
|
|
sumX,
|
|
sumX2,
|
|
sumY,
|
|
sumXY,
|
|
numeratorX,
|
|
numeratorXXY;
|
|
|
|
transvalues = check_float8_array(transarray, "float8_regr_intercept", 6);
|
|
N = transvalues[0];
|
|
sumX = transvalues[1];
|
|
sumX2 = transvalues[2];
|
|
sumY = transvalues[3];
|
|
sumXY = transvalues[5];
|
|
|
|
/* if N is 0 we should return NULL */
|
|
if (N < 1.0)
|
|
PG_RETURN_NULL();
|
|
|
|
numeratorX = N * sumX2 - sumX * sumX;
|
|
CHECKFLOATVAL(numeratorX, isinf(sumX2) || isinf(sumX), true);
|
|
numeratorXXY = sumY * sumX2 - sumX * sumXY;
|
|
CHECKFLOATVAL(numeratorXXY, isinf(sumY) || isinf(sumX2) ||
|
|
isinf(sumX) || isinf(sumXY), true);
|
|
if (numeratorX <= 0)
|
|
PG_RETURN_NULL();
|
|
|
|
PG_RETURN_FLOAT8(numeratorXXY / numeratorX);
|
|
}
|
|
|
|
|
|
/*
|
|
* ====================================
|
|
* MIXED-PRECISION ARITHMETIC OPERATORS
|
|
* ====================================
|
|
*/
|
|
|
|
/*
|
|
* float48pl - returns arg1 + arg2
|
|
* float48mi - returns arg1 - arg2
|
|
* float48mul - returns arg1 * arg2
|
|
* float48div - returns arg1 / arg2
|
|
*/
|
|
Datum
|
|
float48pl(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
float8 result;
|
|
|
|
result = arg1 + arg2;
|
|
CHECKFLOATVAL(result, isinf(arg1) || isinf(arg2), true);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
Datum
|
|
float48mi(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
float8 result;
|
|
|
|
result = arg1 - arg2;
|
|
CHECKFLOATVAL(result, isinf(arg1) || isinf(arg2), true);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
Datum
|
|
float48mul(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
float8 result;
|
|
|
|
result = arg1 * arg2;
|
|
CHECKFLOATVAL(result, isinf(arg1) || isinf(arg2),
|
|
arg1 == 0 || arg2 == 0);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
Datum
|
|
float48div(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
float8 result;
|
|
|
|
if (arg2 == 0.0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DIVISION_BY_ZERO),
|
|
errmsg("division by zero")));
|
|
|
|
result = arg1 / arg2;
|
|
CHECKFLOATVAL(result, isinf(arg1) || isinf(arg2), arg1 == 0);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
/*
|
|
* float84pl - returns arg1 + arg2
|
|
* float84mi - returns arg1 - arg2
|
|
* float84mul - returns arg1 * arg2
|
|
* float84div - returns arg1 / arg2
|
|
*/
|
|
Datum
|
|
float84pl(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
float8 result;
|
|
|
|
result = arg1 + arg2;
|
|
|
|
CHECKFLOATVAL(result, isinf(arg1) || isinf(arg2), true);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
Datum
|
|
float84mi(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
float8 result;
|
|
|
|
result = arg1 - arg2;
|
|
|
|
CHECKFLOATVAL(result, isinf(arg1) || isinf(arg2), true);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
Datum
|
|
float84mul(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
float8 result;
|
|
|
|
result = arg1 * arg2;
|
|
|
|
CHECKFLOATVAL(result, isinf(arg1) || isinf(arg2),
|
|
arg1 == 0 || arg2 == 0);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
Datum
|
|
float84div(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
float8 result;
|
|
|
|
if (arg2 == 0.0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DIVISION_BY_ZERO),
|
|
errmsg("division by zero")));
|
|
|
|
result = arg1 / arg2;
|
|
|
|
CHECKFLOATVAL(result, isinf(arg1) || isinf(arg2), arg1 == 0);
|
|
PG_RETURN_FLOAT8(result);
|
|
}
|
|
|
|
/*
|
|
* ====================
|
|
* COMPARISON OPERATORS
|
|
* ====================
|
|
*/
|
|
|
|
/*
|
|
* float48{eq,ne,lt,le,gt,ge} - float4/float8 comparison operations
|
|
*/
|
|
Datum
|
|
float48eq(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
|
|
PG_RETURN_BOOL(float8_cmp_internal(arg1, arg2) == 0);
|
|
}
|
|
|
|
Datum
|
|
float48ne(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
|
|
PG_RETURN_BOOL(float8_cmp_internal(arg1, arg2) != 0);
|
|
}
|
|
|
|
Datum
|
|
float48lt(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
|
|
PG_RETURN_BOOL(float8_cmp_internal(arg1, arg2) < 0);
|
|
}
|
|
|
|
Datum
|
|
float48le(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
|
|
PG_RETURN_BOOL(float8_cmp_internal(arg1, arg2) <= 0);
|
|
}
|
|
|
|
Datum
|
|
float48gt(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
|
|
PG_RETURN_BOOL(float8_cmp_internal(arg1, arg2) > 0);
|
|
}
|
|
|
|
Datum
|
|
float48ge(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 arg1 = PG_GETARG_FLOAT4(0);
|
|
float8 arg2 = PG_GETARG_FLOAT8(1);
|
|
|
|
PG_RETURN_BOOL(float8_cmp_internal(arg1, arg2) >= 0);
|
|
}
|
|
|
|
/*
|
|
* float84{eq,ne,lt,le,gt,ge} - float8/float4 comparison operations
|
|
*/
|
|
Datum
|
|
float84eq(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
|
|
PG_RETURN_BOOL(float8_cmp_internal(arg1, arg2) == 0);
|
|
}
|
|
|
|
Datum
|
|
float84ne(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
|
|
PG_RETURN_BOOL(float8_cmp_internal(arg1, arg2) != 0);
|
|
}
|
|
|
|
Datum
|
|
float84lt(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
|
|
PG_RETURN_BOOL(float8_cmp_internal(arg1, arg2) < 0);
|
|
}
|
|
|
|
Datum
|
|
float84le(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
|
|
PG_RETURN_BOOL(float8_cmp_internal(arg1, arg2) <= 0);
|
|
}
|
|
|
|
Datum
|
|
float84gt(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
|
|
PG_RETURN_BOOL(float8_cmp_internal(arg1, arg2) > 0);
|
|
}
|
|
|
|
Datum
|
|
float84ge(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 arg1 = PG_GETARG_FLOAT8(0);
|
|
float4 arg2 = PG_GETARG_FLOAT4(1);
|
|
|
|
PG_RETURN_BOOL(float8_cmp_internal(arg1, arg2) >= 0);
|
|
}
|
|
|
|
/*
|
|
* Implements the float8 version of the width_bucket() function
|
|
* defined by SQL2003. See also width_bucket_numeric().
|
|
*
|
|
* 'bound1' and 'bound2' are the lower and upper bounds of the
|
|
* histogram's range, respectively. 'count' is the number of buckets
|
|
* in the histogram. width_bucket() returns an integer indicating the
|
|
* bucket number that 'operand' belongs to in an equiwidth histogram
|
|
* with the specified characteristics. An operand smaller than the
|
|
* lower bound is assigned to bucket 0. An operand greater than the
|
|
* upper bound is assigned to an additional bucket (with number
|
|
* count+1). We don't allow "NaN" for any of the float8 inputs, and we
|
|
* don't allow either of the histogram bounds to be +/- infinity.
|
|
*/
|
|
Datum
|
|
width_bucket_float8(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 operand = PG_GETARG_FLOAT8(0);
|
|
float8 bound1 = PG_GETARG_FLOAT8(1);
|
|
float8 bound2 = PG_GETARG_FLOAT8(2);
|
|
int32 count = PG_GETARG_INT32(3);
|
|
int32 result;
|
|
|
|
if (count <= 0.0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_ARGUMENT_FOR_WIDTH_BUCKET_FUNCTION),
|
|
errmsg("count must be greater than zero")));
|
|
|
|
if (isnan(operand) || isnan(bound1) || isnan(bound2))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_ARGUMENT_FOR_WIDTH_BUCKET_FUNCTION),
|
|
errmsg("operand, lower bound, and upper bound cannot be NaN")));
|
|
|
|
/* Note that we allow "operand" to be infinite */
|
|
if (isinf(bound1) || isinf(bound2))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_ARGUMENT_FOR_WIDTH_BUCKET_FUNCTION),
|
|
errmsg("lower and upper bounds must be finite")));
|
|
|
|
if (bound1 < bound2)
|
|
{
|
|
if (operand < bound1)
|
|
result = 0;
|
|
else if (operand >= bound2)
|
|
{
|
|
result = count + 1;
|
|
/* check for overflow */
|
|
if (result < count)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("integer out of range")));
|
|
}
|
|
else
|
|
result = ((float8) count * (operand - bound1) / (bound2 - bound1)) + 1;
|
|
}
|
|
else if (bound1 > bound2)
|
|
{
|
|
if (operand > bound1)
|
|
result = 0;
|
|
else if (operand <= bound2)
|
|
{
|
|
result = count + 1;
|
|
/* check for overflow */
|
|
if (result < count)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("integer out of range")));
|
|
}
|
|
else
|
|
result = ((float8) count * (bound1 - operand) / (bound1 - bound2)) + 1;
|
|
}
|
|
else
|
|
{
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_ARGUMENT_FOR_WIDTH_BUCKET_FUNCTION),
|
|
errmsg("lower bound cannot equal upper bound")));
|
|
result = 0; /* keep the compiler quiet */
|
|
}
|
|
|
|
PG_RETURN_INT32(result);
|
|
}
|
|
|
|
/* ========== PRIVATE ROUTINES ========== */
|
|
|
|
#ifndef HAVE_CBRT
|
|
|
|
static double
|
|
cbrt(double x)
|
|
{
|
|
int isneg = (x < 0.0);
|
|
double absx = fabs(x);
|
|
double tmpres = pow(absx, (double) 1.0 / (double) 3.0);
|
|
|
|
/*
|
|
* The result is somewhat inaccurate --- not really pow()'s fault, as the
|
|
* exponent it's handed contains roundoff error. We can improve the
|
|
* accuracy by doing one iteration of Newton's formula. Beware of zero
|
|
* input however.
|
|
*/
|
|
if (tmpres > 0.0)
|
|
tmpres -= (tmpres - absx / (tmpres * tmpres)) / (double) 3.0;
|
|
|
|
return isneg ? -tmpres : tmpres;
|
|
}
|
|
|
|
#endif /* !HAVE_CBRT */
|