1
0
mirror of https://github.com/postgres/postgres.git synced 2025-08-27 07:42:10 +03:00
Files
postgres/src/backend/optimizer/util/placeholder.c
Tom Lane 55dc86eca7 Fix pull_varnos' miscomputation of relids set for a PlaceHolderVar.
Previously, pull_varnos() took the relids of a PlaceHolderVar as being
equal to the relids in its contents, but that fails to account for the
possibility that we have to postpone evaluation of the PHV due to outer
joins.  This could result in a malformed plan.  The known cases end up
triggering the "failed to assign all NestLoopParams to plan nodes"
sanity check in createplan.c, but other symptoms may be possible.

The right value to use is the join level we actually intend to evaluate
the PHV at.  We can get that from the ph_eval_at field of the associated
PlaceHolderInfo.  However, there are some places that call pull_varnos()
before the PlaceHolderInfos have been created; in that case, fall back
to the conservative assumption that the PHV will be evaluated at its
syntactic level.  (In principle this might result in missing some legal
optimization, but I'm not aware of any cases where it's an issue in
practice.)  Things are also a bit ticklish for calls occurring during
deconstruct_jointree(), but AFAICS the ph_eval_at fields should have
reached their final values by the time we need them.

The main problem in making this work is that pull_varnos() has no
way to get at the PlaceHolderInfos.  We can fix that easily, if a
bit tediously, in HEAD by passing it the planner "root" pointer.
In the back branches that'd cause an unacceptable API/ABI break for
extensions, so leave the existing entry points alone and add new ones
with the additional parameter.  (If an old entry point is called and
encounters a PHV, it'll fall back to using the syntactic level,
again possibly missing some valid optimization.)

Back-patch to v12.  The computation is surely also wrong before that,
but it appears that we cannot reach a bad plan thanks to join order
restrictions imposed on the subquery that the PlaceHolderVar came from.
The error only became reachable when commit 4be058fe9 allowed trivial
subqueries to be collapsed out completely, eliminating their join order
restrictions.

Per report from Stephan Springl.

Discussion: https://postgr.es/m/171041.1610849523@sss.pgh.pa.us
2021-01-21 15:37:23 -05:00

478 lines
15 KiB
C

/*-------------------------------------------------------------------------
*
* placeholder.c
* PlaceHolderVar and PlaceHolderInfo manipulation routines
*
*
* Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* src/backend/optimizer/util/placeholder.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "nodes/nodeFuncs.h"
#include "optimizer/cost.h"
#include "optimizer/optimizer.h"
#include "optimizer/pathnode.h"
#include "optimizer/placeholder.h"
#include "optimizer/planmain.h"
#include "utils/lsyscache.h"
/* Local functions */
static void find_placeholders_recurse(PlannerInfo *root, Node *jtnode);
static void find_placeholders_in_expr(PlannerInfo *root, Node *expr);
/*
* make_placeholder_expr
* Make a PlaceHolderVar for the given expression.
*
* phrels is the syntactic location (as a set of baserels) to attribute
* to the expression.
*/
PlaceHolderVar *
make_placeholder_expr(PlannerInfo *root, Expr *expr, Relids phrels)
{
PlaceHolderVar *phv = makeNode(PlaceHolderVar);
phv->phexpr = expr;
phv->phrels = phrels;
phv->phid = ++(root->glob->lastPHId);
phv->phlevelsup = 0;
return phv;
}
/*
* find_placeholder_info
* Fetch the PlaceHolderInfo for the given PHV
*
* If the PlaceHolderInfo doesn't exist yet, create it if create_new_ph is
* true, else throw an error.
*
* This is separate from make_placeholder_expr because subquery pullup has
* to make PlaceHolderVars for expressions that might not be used at all in
* the upper query, or might not remain after const-expression simplification.
* We build PlaceHolderInfos only for PHVs that are still present in the
* simplified query passed to query_planner().
*
* Note: this should only be called after query_planner() has started. Also,
* create_new_ph must not be true after deconstruct_jointree begins, because
* make_outerjoininfo assumes that we already know about all placeholders.
*/
PlaceHolderInfo *
find_placeholder_info(PlannerInfo *root, PlaceHolderVar *phv,
bool create_new_ph)
{
PlaceHolderInfo *phinfo;
Relids rels_used;
ListCell *lc;
/* if this ever isn't true, we'd need to be able to look in parent lists */
Assert(phv->phlevelsup == 0);
foreach(lc, root->placeholder_list)
{
phinfo = (PlaceHolderInfo *) lfirst(lc);
if (phinfo->phid == phv->phid)
return phinfo;
}
/* Not found, so create it */
if (!create_new_ph)
elog(ERROR, "too late to create a new PlaceHolderInfo");
phinfo = makeNode(PlaceHolderInfo);
phinfo->phid = phv->phid;
phinfo->ph_var = copyObject(phv);
/*
* Any referenced rels that are outside the PHV's syntactic scope are
* LATERAL references, which should be included in ph_lateral but not in
* ph_eval_at. If no referenced rels are within the syntactic scope,
* force evaluation at the syntactic location.
*/
rels_used = pull_varnos(root, (Node *) phv->phexpr);
phinfo->ph_lateral = bms_difference(rels_used, phv->phrels);
if (bms_is_empty(phinfo->ph_lateral))
phinfo->ph_lateral = NULL; /* make it exactly NULL if empty */
phinfo->ph_eval_at = bms_int_members(rels_used, phv->phrels);
/* If no contained vars, force evaluation at syntactic location */
if (bms_is_empty(phinfo->ph_eval_at))
{
phinfo->ph_eval_at = bms_copy(phv->phrels);
Assert(!bms_is_empty(phinfo->ph_eval_at));
}
/* ph_eval_at may change later, see update_placeholder_eval_levels */
phinfo->ph_needed = NULL; /* initially it's unused */
/* for the moment, estimate width using just the datatype info */
phinfo->ph_width = get_typavgwidth(exprType((Node *) phv->phexpr),
exprTypmod((Node *) phv->phexpr));
root->placeholder_list = lappend(root->placeholder_list, phinfo);
/*
* The PHV's contained expression may contain other, lower-level PHVs. We
* now know we need to get those into the PlaceHolderInfo list, too, so we
* may as well do that immediately.
*/
find_placeholders_in_expr(root, (Node *) phinfo->ph_var->phexpr);
return phinfo;
}
/*
* find_placeholders_in_jointree
* Search the jointree for PlaceHolderVars, and build PlaceHolderInfos
*
* We don't need to look at the targetlist because build_base_rel_tlists()
* will already have made entries for any PHVs in the tlist.
*
* This is called before we begin deconstruct_jointree. Once we begin
* deconstruct_jointree, all active placeholders must be present in
* root->placeholder_list, because make_outerjoininfo and
* update_placeholder_eval_levels require this info to be available
* while we crawl up the join tree.
*/
void
find_placeholders_in_jointree(PlannerInfo *root)
{
/* We need do nothing if the query contains no PlaceHolderVars */
if (root->glob->lastPHId != 0)
{
/* Start recursion at top of jointree */
Assert(root->parse->jointree != NULL &&
IsA(root->parse->jointree, FromExpr));
find_placeholders_recurse(root, (Node *) root->parse->jointree);
}
}
/*
* find_placeholders_recurse
* One recursion level of find_placeholders_in_jointree.
*
* jtnode is the current jointree node to examine.
*/
static void
find_placeholders_recurse(PlannerInfo *root, Node *jtnode)
{
if (jtnode == NULL)
return;
if (IsA(jtnode, RangeTblRef))
{
/* No quals to deal with here */
}
else if (IsA(jtnode, FromExpr))
{
FromExpr *f = (FromExpr *) jtnode;
ListCell *l;
/*
* First, recurse to handle child joins.
*/
foreach(l, f->fromlist)
{
find_placeholders_recurse(root, lfirst(l));
}
/*
* Now process the top-level quals.
*/
find_placeholders_in_expr(root, f->quals);
}
else if (IsA(jtnode, JoinExpr))
{
JoinExpr *j = (JoinExpr *) jtnode;
/*
* First, recurse to handle child joins.
*/
find_placeholders_recurse(root, j->larg);
find_placeholders_recurse(root, j->rarg);
/* Process the qual clauses */
find_placeholders_in_expr(root, j->quals);
}
else
elog(ERROR, "unrecognized node type: %d",
(int) nodeTag(jtnode));
}
/*
* find_placeholders_in_expr
* Find all PlaceHolderVars in the given expression, and create
* PlaceHolderInfo entries for them.
*/
static void
find_placeholders_in_expr(PlannerInfo *root, Node *expr)
{
List *vars;
ListCell *vl;
/*
* pull_var_clause does more than we need here, but it'll do and it's
* convenient to use.
*/
vars = pull_var_clause(expr,
PVC_RECURSE_AGGREGATES |
PVC_RECURSE_WINDOWFUNCS |
PVC_INCLUDE_PLACEHOLDERS);
foreach(vl, vars)
{
PlaceHolderVar *phv = (PlaceHolderVar *) lfirst(vl);
/* Ignore any plain Vars */
if (!IsA(phv, PlaceHolderVar))
continue;
/* Create a PlaceHolderInfo entry if there's not one already */
(void) find_placeholder_info(root, phv, true);
}
list_free(vars);
}
/*
* update_placeholder_eval_levels
* Adjust the target evaluation levels for placeholders
*
* The initial eval_at level set by find_placeholder_info was the set of
* rels used in the placeholder's expression (or the whole subselect below
* the placeholder's syntactic location, if the expr is variable-free).
* If the query contains any outer joins that can null any of those rels,
* we must delay evaluation to above those joins.
*
* We repeat this operation each time we add another outer join to
* root->join_info_list. It's somewhat annoying to have to do that, but
* since we don't have very much information on the placeholders' locations,
* it's hard to avoid. Each placeholder's eval_at level must be correct
* by the time it starts to figure in outer-join delay decisions for higher
* outer joins.
*
* In future we might want to put additional policy/heuristics here to
* try to determine an optimal evaluation level. The current rules will
* result in evaluation at the lowest possible level. However, pushing a
* placeholder eval up the tree is likely to further constrain evaluation
* order for outer joins, so it could easily be counterproductive; and we
* don't have enough information at this point to make an intelligent choice.
*/
void
update_placeholder_eval_levels(PlannerInfo *root, SpecialJoinInfo *new_sjinfo)
{
ListCell *lc1;
foreach(lc1, root->placeholder_list)
{
PlaceHolderInfo *phinfo = (PlaceHolderInfo *) lfirst(lc1);
Relids syn_level = phinfo->ph_var->phrels;
Relids eval_at;
bool found_some;
ListCell *lc2;
/*
* We don't need to do any work on this placeholder unless the
* newly-added outer join is syntactically beneath its location.
*/
if (!bms_is_subset(new_sjinfo->syn_lefthand, syn_level) ||
!bms_is_subset(new_sjinfo->syn_righthand, syn_level))
continue;
/*
* Check for delays due to lower outer joins. This is the same logic
* as in check_outerjoin_delay in initsplan.c, except that we don't
* have anything to do with the delay_upper_joins flags; delay of
* upper outer joins will be handled later, based on the eval_at
* values we compute now.
*/
eval_at = phinfo->ph_eval_at;
do
{
found_some = false;
foreach(lc2, root->join_info_list)
{
SpecialJoinInfo *sjinfo = (SpecialJoinInfo *) lfirst(lc2);
/* disregard joins not within the PHV's sub-select */
if (!bms_is_subset(sjinfo->syn_lefthand, syn_level) ||
!bms_is_subset(sjinfo->syn_righthand, syn_level))
continue;
/* do we reference any nullable rels of this OJ? */
if (bms_overlap(eval_at, sjinfo->min_righthand) ||
(sjinfo->jointype == JOIN_FULL &&
bms_overlap(eval_at, sjinfo->min_lefthand)))
{
/* yes; have we included all its rels in eval_at? */
if (!bms_is_subset(sjinfo->min_lefthand, eval_at) ||
!bms_is_subset(sjinfo->min_righthand, eval_at))
{
/* no, so add them in */
eval_at = bms_add_members(eval_at,
sjinfo->min_lefthand);
eval_at = bms_add_members(eval_at,
sjinfo->min_righthand);
/* we'll need another iteration */
found_some = true;
}
}
}
} while (found_some);
/* Can't move the PHV's eval_at level to above its syntactic level */
Assert(bms_is_subset(eval_at, syn_level));
phinfo->ph_eval_at = eval_at;
}
}
/*
* fix_placeholder_input_needed_levels
* Adjust the "needed at" levels for placeholder inputs
*
* This is called after we've finished determining the eval_at levels for
* all placeholders. We need to make sure that all vars and placeholders
* needed to evaluate each placeholder will be available at the scan or join
* level where the evaluation will be done. (It might seem that scan-level
* evaluations aren't interesting, but that's not so: a LATERAL reference
* within a placeholder's expression needs to cause the referenced var or
* placeholder to be marked as needed in the scan where it's evaluated.)
* Note that this loop can have side-effects on the ph_needed sets of other
* PlaceHolderInfos; that's okay because we don't examine ph_needed here, so
* there are no ordering issues to worry about.
*/
void
fix_placeholder_input_needed_levels(PlannerInfo *root)
{
ListCell *lc;
foreach(lc, root->placeholder_list)
{
PlaceHolderInfo *phinfo = (PlaceHolderInfo *) lfirst(lc);
List *vars = pull_var_clause((Node *) phinfo->ph_var->phexpr,
PVC_RECURSE_AGGREGATES |
PVC_RECURSE_WINDOWFUNCS |
PVC_INCLUDE_PLACEHOLDERS);
add_vars_to_targetlist(root, vars, phinfo->ph_eval_at, false);
list_free(vars);
}
}
/*
* add_placeholders_to_base_rels
* Add any required PlaceHolderVars to base rels' targetlists.
*
* If any placeholder can be computed at a base rel and is needed above it,
* add it to that rel's targetlist. This might look like it could be merged
* with fix_placeholder_input_needed_levels, but it must be separate because
* join removal happens in between, and can change the ph_eval_at sets. There
* is essentially the same logic in add_placeholders_to_joinrel, but we can't
* do that part until joinrels are formed.
*/
void
add_placeholders_to_base_rels(PlannerInfo *root)
{
ListCell *lc;
foreach(lc, root->placeholder_list)
{
PlaceHolderInfo *phinfo = (PlaceHolderInfo *) lfirst(lc);
Relids eval_at = phinfo->ph_eval_at;
int varno;
if (bms_get_singleton_member(eval_at, &varno) &&
bms_nonempty_difference(phinfo->ph_needed, eval_at))
{
RelOptInfo *rel = find_base_rel(root, varno);
rel->reltarget->exprs = lappend(rel->reltarget->exprs,
copyObject(phinfo->ph_var));
/* reltarget's cost and width fields will be updated later */
}
}
}
/*
* add_placeholders_to_joinrel
* Add any required PlaceHolderVars to a join rel's targetlist;
* and if they contain lateral references, add those references to the
* joinrel's direct_lateral_relids.
*
* A join rel should emit a PlaceHolderVar if (a) the PHV can be computed
* at or below this join level and (b) the PHV is needed above this level.
* However, condition (a) is sufficient to add to direct_lateral_relids,
* as explained below.
*/
void
add_placeholders_to_joinrel(PlannerInfo *root, RelOptInfo *joinrel,
RelOptInfo *outer_rel, RelOptInfo *inner_rel)
{
Relids relids = joinrel->relids;
ListCell *lc;
foreach(lc, root->placeholder_list)
{
PlaceHolderInfo *phinfo = (PlaceHolderInfo *) lfirst(lc);
/* Is it computable here? */
if (bms_is_subset(phinfo->ph_eval_at, relids))
{
/* Is it still needed above this joinrel? */
if (bms_nonempty_difference(phinfo->ph_needed, relids))
{
/* Yup, add it to the output */
joinrel->reltarget->exprs = lappend(joinrel->reltarget->exprs,
phinfo->ph_var);
joinrel->reltarget->width += phinfo->ph_width;
/*
* Charge the cost of evaluating the contained expression if
* the PHV can be computed here but not in either input. This
* is a bit bogus because we make the decision based on the
* first pair of possible input relations considered for the
* joinrel. With other pairs, it might be possible to compute
* the PHV in one input or the other, and then we'd be double
* charging the PHV's cost for some join paths. For now, live
* with that; but we might want to improve it later by
* refiguring the reltarget costs for each pair of inputs.
*/
if (!bms_is_subset(phinfo->ph_eval_at, outer_rel->relids) &&
!bms_is_subset(phinfo->ph_eval_at, inner_rel->relids))
{
QualCost cost;
cost_qual_eval_node(&cost, (Node *) phinfo->ph_var->phexpr,
root);
joinrel->reltarget->cost.startup += cost.startup;
joinrel->reltarget->cost.per_tuple += cost.per_tuple;
}
}
/*
* Also adjust joinrel's direct_lateral_relids to include the
* PHV's source rel(s). We must do this even if we're not
* actually going to emit the PHV, otherwise join_is_legal() will
* reject valid join orderings. (In principle maybe we could
* instead remove the joinrel's lateral_relids dependency; but
* that's complicated to get right, and cases where we're not
* going to emit the PHV are too rare to justify the work.)
*
* In principle we should only do this if the join doesn't yet
* include the PHV's source rel(s). But our caller
* build_join_rel() will clean things up by removing the join's
* own relids from its direct_lateral_relids, so we needn't
* account for that here.
*/
joinrel->direct_lateral_relids =
bms_add_members(joinrel->direct_lateral_relids,
phinfo->ph_lateral);
}
}
}