1
0
mirror of https://github.com/postgres/postgres.git synced 2025-04-29 13:56:47 +03:00
postgres/src/backend/parser/parse_func.c
Tom Lane f9e4f611a1 First pass at set-returning-functions in FROM, by Joe Conway with
some kibitzing from Tom Lane.  Not everything works yet, and there's
no documentation or regression test, but let's commit this so Joe
doesn't need to cope with tracking changes in so many files ...
2002-05-12 20:10:05 +00:00

1413 lines
37 KiB
C

/*-------------------------------------------------------------------------
*
* parse_func.c
* handle function calls in parser
*
* Portions Copyright (c) 1996-2001, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/parser/parse_func.c,v 1.128 2002/05/12 20:10:04 tgl Exp $
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/heapam.h"
#include "catalog/catname.h"
#include "catalog/namespace.h"
#include "catalog/pg_inherits.h"
#include "catalog/pg_proc.h"
#include "nodes/makefuncs.h"
#include "parser/parse_coerce.h"
#include "parser/parse_expr.h"
#include "parser/parse_func.h"
#include "parser/parse_relation.h"
#include "parser/parse_type.h"
#include "utils/builtins.h"
#include "utils/fmgroids.h"
#include "utils/lsyscache.h"
#include "utils/syscache.h"
static Node *ParseComplexProjection(ParseState *pstate,
char *funcname,
Node *first_arg);
static Oid **argtype_inherit(int nargs, Oid *argtypes);
static int find_inheritors(Oid relid, Oid **supervec);
static Oid **gen_cross_product(InhPaths *arginh, int nargs);
static void make_arguments(ParseState *pstate,
int nargs,
List *fargs,
Oid *input_typeids,
Oid *function_typeids);
static int match_argtypes(int nargs,
Oid *input_typeids,
FuncCandidateList function_typeids,
FuncCandidateList *candidates);
static FieldSelect *setup_field_select(Node *input, char *attname, Oid relid);
static FuncCandidateList func_select_candidate(int nargs, Oid *input_typeids,
FuncCandidateList candidates);
/*
* Parse a function call
*
* For historical reasons, Postgres tries to treat the notations tab.col
* and col(tab) as equivalent: if a single-argument function call has an
* argument of complex type and the (unqualified) function name matches
* any attribute of the type, we take it as a column projection.
*
* Hence, both cases come through here. The is_column parameter tells us
* which syntactic construct is actually being dealt with, but this is
* intended to be used only to deliver an appropriate error message,
* not to affect the semantics. When is_column is true, we should have
* a single argument (the putative table), unqualified function name
* equal to the column name, and no aggregate decoration.
*
* In the function-call case, the argument expressions have been transformed
* already. In the column case, we may get either a transformed expression
* or a RangeVar node as argument.
*/
Node *
ParseFuncOrColumn(ParseState *pstate, List *funcname, List *fargs,
bool agg_star, bool agg_distinct, bool is_column)
{
Oid rettype;
Oid funcid;
List *i;
Node *first_arg = NULL;
char *refname;
int nargs = length(fargs);
int argn;
Oid oid_array[FUNC_MAX_ARGS];
Oid *true_oid_array;
Node *retval;
bool retset;
FuncDetailCode fdresult;
/*
* Most of the rest of the parser just assumes that functions do not
* have more than FUNC_MAX_ARGS parameters. We have to test here to
* protect against array overruns, etc. Of course, this may not be a
* function, but the test doesn't hurt.
*/
if (nargs > FUNC_MAX_ARGS)
elog(ERROR, "Cannot pass more than %d arguments to a function",
FUNC_MAX_ARGS);
if (fargs)
{
first_arg = lfirst(fargs);
if (first_arg == NULL) /* should not happen */
elog(ERROR, "Function '%s' does not allow NULL input",
NameListToString(funcname));
}
/*
* check for column projection: if function has one argument, and that
* argument is of complex type, and function name is not qualified,
* then the "function call" could be a projection. We also check
* that there wasn't any aggregate decoration.
*/
if (nargs == 1 && !agg_star && !agg_distinct && length(funcname) == 1)
{
char *cname = strVal(lfirst(funcname));
/* Is it a not-yet-transformed RangeVar node? */
if (IsA(first_arg, RangeVar))
{
/* First arg is a relation. This could be a projection. */
refname = ((RangeVar *) first_arg)->relname;
/* XXX WRONG: ignores possible qualification of argument */
retval = qualifiedNameToVar(pstate, refname, cname, true);
if (retval)
return retval;
}
else if (ISCOMPLEX(exprType(first_arg)))
{
/*
* Attempt to handle projection of a complex argument. If
* ParseComplexProjection can't handle the projection, we have
* to keep going.
*/
retval = ParseComplexProjection(pstate, cname, first_arg);
if (retval)
return retval;
}
}
/*
* Okay, it's not a column projection, so it must really be a function.
* Extract arg type info and transform RangeVar arguments into varnodes
* of the appropriate form.
*/
MemSet(oid_array, 0, FUNC_MAX_ARGS * sizeof(Oid));
argn = 0;
foreach(i, fargs)
{
Node *arg = lfirst(i);
Oid toid;
if (IsA(arg, RangeVar))
{
RangeTblEntry *rte;
int vnum;
int sublevels_up;
/*
* a relation
*/
refname = ((RangeVar *) arg)->relname;
rte = refnameRangeTblEntry(pstate, refname,
&sublevels_up);
if (rte == NULL)
rte = addImplicitRTE(pstate, (RangeVar *) arg);
vnum = RTERangeTablePosn(pstate, rte, &sublevels_up);
/*
* The parameter to be passed to the function is the whole
* tuple from the relation. We build a special VarNode to
* reflect this -- it has varno set to the correct range table
* entry, but has varattno == 0 to signal that the whole tuple
* is the argument. Also, it has typmod set to
* sizeof(Pointer) to signal that the runtime representation
* will be a pointer not an Oid.
*/
switch (rte->rtekind)
{
case RTE_RELATION:
toid = get_rel_type_id(rte->relid);
if (!OidIsValid(toid))
elog(ERROR, "Cannot find type OID for relation %u",
rte->relid);
break;
case RTE_FUNCTION:
toid = exprType(rte->funcexpr);
break;
default:
/*
* RTE is a join or subselect; must fail for lack of a
* named tuple type
*/
if (is_column)
elog(ERROR, "No such attribute %s.%s",
refname, strVal(lfirst(funcname)));
else
elog(ERROR, "Cannot pass result of sub-select or join %s to a function",
refname);
toid = InvalidOid; /* keep compiler quiet */
break;
}
/* replace RangeVar in the arg list */
lfirst(i) = makeVar(vnum,
InvalidAttrNumber,
toid,
sizeof(Pointer),
sublevels_up);
}
else
toid = exprType(arg);
oid_array[argn++] = toid;
}
/*
* func_get_detail looks up the function in the catalogs, does
* disambiguation for polymorphic functions, handles inheritance,
* and returns the funcid and type and set or singleton status of
* the function's return value. it also returns the true argument
* types to the function.
*/
fdresult = func_get_detail(funcname, fargs, nargs, oid_array,
&funcid, &rettype, &retset,
&true_oid_array);
if (fdresult == FUNCDETAIL_COERCION)
{
/*
* We can do it as a trivial coercion. coerce_type can handle
* these cases, so why duplicate code...
*/
return coerce_type(pstate, lfirst(fargs),
oid_array[0], rettype, -1, true);
}
else if (fdresult == FUNCDETAIL_NORMAL)
{
/*
* Normal function found; was there anything indicating it must be
* an aggregate?
*/
if (agg_star)
elog(ERROR, "%s(*) specified, but %s is not an aggregate function",
NameListToString(funcname), NameListToString(funcname));
if (agg_distinct)
elog(ERROR, "DISTINCT specified, but %s is not an aggregate function",
NameListToString(funcname));
}
else if (fdresult != FUNCDETAIL_AGGREGATE)
{
/*
* Oops. Time to die.
*
* If we are dealing with the attribute notation rel.function,
* give an error message that is appropriate for that case.
*/
if (is_column)
elog(ERROR, "Attribute \"%s\" not found",
strVal(lfirst(funcname)));
/* Else generate a detailed complaint */
func_error(NULL, funcname, nargs, oid_array,
"Unable to identify a function that satisfies the "
"given argument types"
"\n\tYou may need to add explicit typecasts");
}
/* perform the necessary typecasting of arguments */
make_arguments(pstate, nargs, fargs, oid_array, true_oid_array);
/* build the appropriate output structure */
if (fdresult == FUNCDETAIL_NORMAL)
{
Expr *expr = makeNode(Expr);
Func *funcnode = makeNode(Func);
funcnode->funcid = funcid;
funcnode->functype = rettype;
funcnode->func_fcache = NULL;
expr->typeOid = rettype;
expr->opType = FUNC_EXPR;
expr->oper = (Node *) funcnode;
expr->args = fargs;
retval = (Node *) expr;
/*
* if the function returns a set of values, then we need to iterate
* over all the returned values in the executor, so we stick an iter
* node here. if it returns a singleton, then we don't need the iter
* node.
*/
if (retset)
{
Iter *iter = makeNode(Iter);
iter->itertype = rettype;
iter->iterexpr = retval;
retval = (Node *) iter;
}
}
else
{
/* aggregate function */
Aggref *aggref = makeNode(Aggref);
aggref->aggfnoid = funcid;
aggref->aggtype = rettype;
aggref->target = lfirst(fargs);
aggref->aggstar = agg_star;
aggref->aggdistinct = agg_distinct;
retval = (Node *) aggref;
if (retset)
elog(ERROR, "Aggregates may not return sets");
pstate->p_hasAggs = true;
}
return retval;
}
/* match_argtypes()
*
* Given a list of possible typeid arrays to a function and an array of
* input typeids, produce a shortlist of those function typeid arrays
* that match the input typeids (either exactly or by coercion), and
* return the number of such arrays.
*
* NB: okay to modify input list structure, as long as we find at least
* one match.
*/
static int
match_argtypes(int nargs,
Oid *input_typeids,
FuncCandidateList function_typeids,
FuncCandidateList *candidates) /* return value */
{
FuncCandidateList current_candidate;
FuncCandidateList next_candidate;
int ncandidates = 0;
*candidates = NULL;
for (current_candidate = function_typeids;
current_candidate != NULL;
current_candidate = next_candidate)
{
next_candidate = current_candidate->next;
if (can_coerce_type(nargs, input_typeids, current_candidate->args,
false))
{
current_candidate->next = *candidates;
*candidates = current_candidate;
ncandidates++;
}
}
return ncandidates;
} /* match_argtypes() */
/* func_select_candidate()
* Given the input argtype array and more than one candidate
* for the function, attempt to resolve the conflict.
* Returns the selected candidate if the conflict can be resolved,
* otherwise returns NULL.
*
* By design, this is pretty similar to oper_select_candidate in parse_oper.c.
* However, the calling convention is a little different: we assume the caller
* already pruned away "candidates" that aren't actually coercion-compatible
* with the input types, whereas oper_select_candidate must do that itself.
*/
static FuncCandidateList
func_select_candidate(int nargs,
Oid *input_typeids,
FuncCandidateList candidates)
{
FuncCandidateList current_candidate;
FuncCandidateList last_candidate;
Oid *current_typeids;
Oid current_type;
int i;
int ncandidates;
int nbestMatch,
nmatch;
CATEGORY slot_category[FUNC_MAX_ARGS],
current_category;
bool slot_has_preferred_type[FUNC_MAX_ARGS];
bool resolved_unknowns;
/*
* Run through all candidates and keep those with the most matches on
* exact types. Keep all candidates if none match.
*/
ncandidates = 0;
nbestMatch = 0;
last_candidate = NULL;
for (current_candidate = candidates;
current_candidate != NULL;
current_candidate = current_candidate->next)
{
current_typeids = current_candidate->args;
nmatch = 0;
for (i = 0; i < nargs; i++)
{
if (input_typeids[i] != UNKNOWNOID &&
current_typeids[i] == input_typeids[i])
nmatch++;
}
/* take this one as the best choice so far? */
if ((nmatch > nbestMatch) || (last_candidate == NULL))
{
nbestMatch = nmatch;
candidates = current_candidate;
last_candidate = current_candidate;
ncandidates = 1;
}
/* no worse than the last choice, so keep this one too? */
else if (nmatch == nbestMatch)
{
last_candidate->next = current_candidate;
last_candidate = current_candidate;
ncandidates++;
}
/* otherwise, don't bother keeping this one... */
}
if (last_candidate) /* terminate rebuilt list */
last_candidate->next = NULL;
if (ncandidates == 1)
return candidates;
/*
* Still too many candidates? Run through all candidates and keep
* those with the most matches on exact types + binary-compatible
* types. Keep all candidates if none match.
*/
ncandidates = 0;
nbestMatch = 0;
last_candidate = NULL;
for (current_candidate = candidates;
current_candidate != NULL;
current_candidate = current_candidate->next)
{
current_typeids = current_candidate->args;
nmatch = 0;
for (i = 0; i < nargs; i++)
{
if (input_typeids[i] != UNKNOWNOID)
{
if (IsBinaryCompatible(current_typeids[i], input_typeids[i]))
nmatch++;
}
}
/* take this one as the best choice so far? */
if ((nmatch > nbestMatch) || (last_candidate == NULL))
{
nbestMatch = nmatch;
candidates = current_candidate;
last_candidate = current_candidate;
ncandidates = 1;
}
/* no worse than the last choice, so keep this one too? */
else if (nmatch == nbestMatch)
{
last_candidate->next = current_candidate;
last_candidate = current_candidate;
ncandidates++;
}
/* otherwise, don't bother keeping this one... */
}
if (last_candidate) /* terminate rebuilt list */
last_candidate->next = NULL;
if (ncandidates == 1)
return candidates;
/*
* Still too many candidates? Now look for candidates which are
* preferred types at the args that will require coercion. Keep all
* candidates if none match.
*/
ncandidates = 0;
nbestMatch = 0;
last_candidate = NULL;
for (current_candidate = candidates;
current_candidate != NULL;
current_candidate = current_candidate->next)
{
current_typeids = current_candidate->args;
nmatch = 0;
for (i = 0; i < nargs; i++)
{
if (input_typeids[i] != UNKNOWNOID)
{
current_category = TypeCategory(current_typeids[i]);
if (current_typeids[i] == input_typeids[i] ||
IsPreferredType(current_category, current_typeids[i]))
nmatch++;
}
}
if ((nmatch > nbestMatch) || (last_candidate == NULL))
{
nbestMatch = nmatch;
candidates = current_candidate;
last_candidate = current_candidate;
ncandidates = 1;
}
else if (nmatch == nbestMatch)
{
last_candidate->next = current_candidate;
last_candidate = current_candidate;
ncandidates++;
}
}
if (last_candidate) /* terminate rebuilt list */
last_candidate->next = NULL;
if (ncandidates == 1)
return candidates;
/*
* Still too many candidates? Try assigning types for the unknown
* columns.
*
* We do this by examining each unknown argument position to see if we
* can determine a "type category" for it. If any candidate has an
* input datatype of STRING category, use STRING category (this bias
* towards STRING is appropriate since unknown-type literals look like
* strings). Otherwise, if all the candidates agree on the type
* category of this argument position, use that category. Otherwise,
* fail because we cannot determine a category.
*
* If we are able to determine a type category, also notice whether any
* of the candidates takes a preferred datatype within the category.
*
* Having completed this examination, remove candidates that accept the
* wrong category at any unknown position. Also, if at least one
* candidate accepted a preferred type at a position, remove
* candidates that accept non-preferred types.
*
* If we are down to one candidate at the end, we win.
*/
resolved_unknowns = false;
for (i = 0; i < nargs; i++)
{
bool have_conflict;
if (input_typeids[i] != UNKNOWNOID)
continue;
resolved_unknowns = true; /* assume we can do it */
slot_category[i] = INVALID_TYPE;
slot_has_preferred_type[i] = false;
have_conflict = false;
for (current_candidate = candidates;
current_candidate != NULL;
current_candidate = current_candidate->next)
{
current_typeids = current_candidate->args;
current_type = current_typeids[i];
current_category = TypeCategory(current_type);
if (slot_category[i] == INVALID_TYPE)
{
/* first candidate */
slot_category[i] = current_category;
slot_has_preferred_type[i] =
IsPreferredType(current_category, current_type);
}
else if (current_category == slot_category[i])
{
/* more candidates in same category */
slot_has_preferred_type[i] |=
IsPreferredType(current_category, current_type);
}
else
{
/* category conflict! */
if (current_category == STRING_TYPE)
{
/* STRING always wins if available */
slot_category[i] = current_category;
slot_has_preferred_type[i] =
IsPreferredType(current_category, current_type);
}
else
{
/*
* Remember conflict, but keep going (might find
* STRING)
*/
have_conflict = true;
}
}
}
if (have_conflict && slot_category[i] != STRING_TYPE)
{
/* Failed to resolve category conflict at this position */
resolved_unknowns = false;
break;
}
}
if (resolved_unknowns)
{
/* Strip non-matching candidates */
ncandidates = 0;
last_candidate = NULL;
for (current_candidate = candidates;
current_candidate != NULL;
current_candidate = current_candidate->next)
{
bool keepit = true;
current_typeids = current_candidate->args;
for (i = 0; i < nargs; i++)
{
if (input_typeids[i] != UNKNOWNOID)
continue;
current_type = current_typeids[i];
current_category = TypeCategory(current_type);
if (current_category != slot_category[i])
{
keepit = false;
break;
}
if (slot_has_preferred_type[i] &&
!IsPreferredType(current_category, current_type))
{
keepit = false;
break;
}
}
if (keepit)
{
/* keep this candidate */
last_candidate = current_candidate;
ncandidates++;
}
else
{
/* forget this candidate */
if (last_candidate)
last_candidate->next = current_candidate->next;
else
candidates = current_candidate->next;
}
}
if (last_candidate) /* terminate rebuilt list */
last_candidate->next = NULL;
}
if (ncandidates == 1)
return candidates;
return NULL; /* failed to determine a unique candidate */
} /* func_select_candidate() */
/* func_get_detail()
*
* Find the named function in the system catalogs.
*
* Attempt to find the named function in the system catalogs with
* arguments exactly as specified, so that the normal case
* (exact match) is as quick as possible.
*
* If an exact match isn't found:
* 1) check for possible interpretation as a trivial type coercion
* 2) get a vector of all possible input arg type arrays constructed
* from the superclasses of the original input arg types
* 3) get a list of all possible argument type arrays to the function
* with given name and number of arguments
* 4) for each input arg type array from vector #1:
* a) find how many of the function arg type arrays from list #2
* it can be coerced to
* b) if the answer is one, we have our function
* c) if the answer is more than one, attempt to resolve the conflict
* d) if the answer is zero, try the next array from vector #1
*
* Note: we rely primarily on nargs/argtypes as the argument description.
* The actual expression node list is passed in fargs so that we can check
* for type coercion of a constant. Some callers pass fargs == NIL
* indicating they don't want that check made.
*/
FuncDetailCode
func_get_detail(List *funcname,
List *fargs,
int nargs,
Oid *argtypes,
Oid *funcid, /* return value */
Oid *rettype, /* return value */
bool *retset, /* return value */
Oid **true_typeids) /* return value */
{
FuncCandidateList function_typeids;
FuncCandidateList best_candidate;
/* Get list of possible candidates from namespace search */
function_typeids = FuncnameGetCandidates(funcname, nargs);
/*
* See if there is an exact match
*/
for (best_candidate = function_typeids;
best_candidate != NULL;
best_candidate = best_candidate->next)
{
if (memcmp(argtypes, best_candidate->args, nargs * sizeof(Oid)) == 0)
break;
}
if (best_candidate == NULL)
{
/*
* If we didn't find an exact match, next consider the possibility
* that this is really a type-coercion request: a single-argument
* function call where the function name is a type name. If so,
* and if we can do the coercion trivially (no run-time function
* call needed), then go ahead and treat the "function call" as a
* coercion. This interpretation needs to be given higher
* priority than interpretations involving a type coercion
* followed by a function call, otherwise we can produce
* surprising results. For example, we want "text(varchar)" to be
* interpreted as a trivial coercion, not as "text(name(varchar))"
* which the code below this point is entirely capable of
* selecting.
*
* "Trivial" coercions are ones that involve binary-compatible types
* and ones that are coercing a previously-unknown-type literal
* constant to a specific type.
*
* NB: it's important that this code stays in sync with what
* coerce_type can do, because the caller will try to apply
* coerce_type if we return FUNCDETAIL_COERCION. If we return
* that result for something coerce_type can't handle, we'll cause
* infinite recursion between this module and coerce_type!
*/
if (nargs == 1 && fargs != NIL)
{
Oid targetType;
TypeName *tn = makeNode(TypeName);
tn->names = funcname;
tn->typmod = -1;
targetType = LookupTypeName(tn);
if (OidIsValid(targetType) &&
!ISCOMPLEX(targetType))
{
Oid sourceType = argtypes[0];
Node *arg1 = lfirst(fargs);
if ((sourceType == UNKNOWNOID && IsA(arg1, Const)) ||
IsBinaryCompatible(sourceType, targetType))
{
/* Yup, it's a type coercion */
*funcid = InvalidOid;
*rettype = targetType;
*retset = false;
*true_typeids = argtypes;
return FUNCDETAIL_COERCION;
}
}
}
/*
* didn't find an exact match, so now try to match up
* candidates...
*/
if (function_typeids != NULL)
{
Oid **input_typeid_vector = NULL;
Oid *current_input_typeids;
/*
* First we will search with the given argtypes, then with
* variants based on replacing complex types with their
* inheritance ancestors. Stop as soon as any match is found.
*/
current_input_typeids = argtypes;
do
{
FuncCandidateList current_function_typeids;
int ncandidates;
ncandidates = match_argtypes(nargs, current_input_typeids,
function_typeids,
&current_function_typeids);
/* one match only? then run with it... */
if (ncandidates == 1)
{
best_candidate = current_function_typeids;
break;
}
/*
* multiple candidates? then better decide or throw an
* error...
*/
if (ncandidates > 1)
{
best_candidate = func_select_candidate(nargs,
current_input_typeids,
current_function_typeids);
/*
* If we were able to choose a best candidate, we're
* done. Otherwise, ambiguous function call, so fail
* by exiting loop with best_candidate still NULL.
* Either way, we're outta here.
*/
break;
}
/*
* No match here, so try the next inherited type vector.
* First time through, we need to compute the list of
* vectors.
*/
if (input_typeid_vector == NULL)
input_typeid_vector = argtype_inherit(nargs, argtypes);
current_input_typeids = *input_typeid_vector++;
}
while (current_input_typeids != NULL);
}
}
if (best_candidate)
{
HeapTuple ftup;
Form_pg_proc pform;
FuncDetailCode result;
*funcid = best_candidate->oid;
*true_typeids = best_candidate->args;
ftup = SearchSysCache(PROCOID,
ObjectIdGetDatum(best_candidate->oid),
0, 0, 0);
if (!HeapTupleIsValid(ftup)) /* should not happen */
elog(ERROR, "function %u not found", best_candidate->oid);
pform = (Form_pg_proc) GETSTRUCT(ftup);
*rettype = pform->prorettype;
*retset = pform->proretset;
result = pform->proisagg ? FUNCDETAIL_AGGREGATE : FUNCDETAIL_NORMAL;
ReleaseSysCache(ftup);
return result;
}
return FUNCDETAIL_NOTFOUND;
} /* func_get_detail() */
/*
* argtype_inherit() -- Construct an argtype vector reflecting the
* inheritance properties of the supplied argv.
*
* This function is used to disambiguate among functions with the
* same name but different signatures. It takes an array of input
* type ids. For each type id in the array that's a complex type
* (a class), it walks up the inheritance tree, finding all
* superclasses of that type. A vector of new Oid type arrays
* is returned to the caller, reflecting the structure of the
* inheritance tree above the supplied arguments.
*
* The order of this vector is as follows: all superclasses of the
* rightmost complex class are explored first. The exploration
* continues from right to left. This policy means that we favor
* keeping the leftmost argument type as low in the inheritance tree
* as possible. This is intentional; it is exactly what we need to
* do for method dispatch. The last type array we return is all
* zeroes. This will match any functions for which return types are
* not defined. There are lots of these (mostly builtins) in the
* catalogs.
*/
static Oid **
argtype_inherit(int nargs, Oid *argtypes)
{
Oid relid;
int i;
InhPaths arginh[FUNC_MAX_ARGS];
for (i = 0; i < FUNC_MAX_ARGS; i++)
{
if (i < nargs)
{
arginh[i].self = argtypes[i];
if ((relid = typeidTypeRelid(argtypes[i])) != InvalidOid)
arginh[i].nsupers = find_inheritors(relid, &(arginh[i].supervec));
else
{
arginh[i].nsupers = 0;
arginh[i].supervec = (Oid *) NULL;
}
}
else
{
arginh[i].self = InvalidOid;
arginh[i].nsupers = 0;
arginh[i].supervec = (Oid *) NULL;
}
}
/* return an ordered cross-product of the classes involved */
return gen_cross_product(arginh, nargs);
}
static int
find_inheritors(Oid relid, Oid **supervec)
{
Relation inhrel;
HeapScanDesc inhscan;
ScanKeyData skey;
HeapTuple inhtup;
Oid *relidvec;
int nvisited;
List *visited,
*queue;
List *elt;
bool newrelid;
nvisited = 0;
queue = NIL;
visited = NIL;
inhrel = heap_openr(InheritsRelationName, AccessShareLock);
/*
* Use queue to do a breadth-first traversal of the inheritance graph
* from the relid supplied up to the root. At the top of the loop,
* relid is the OID of the reltype to check next, queue is the list of
* pending rels to check after this one, and visited is the list of
* relids we need to output.
*/
do
{
/* find all types this relid inherits from, and add them to queue */
ScanKeyEntryInitialize(&skey, 0x0, Anum_pg_inherits_inhrelid,
F_OIDEQ,
ObjectIdGetDatum(relid));
inhscan = heap_beginscan(inhrel, 0, SnapshotNow, 1, &skey);
while (HeapTupleIsValid(inhtup = heap_getnext(inhscan, 0)))
{
Form_pg_inherits inh = (Form_pg_inherits) GETSTRUCT(inhtup);
queue = lappendi(queue, inh->inhparent);
}
heap_endscan(inhscan);
/* pull next unvisited relid off the queue */
newrelid = false;
while (queue != NIL)
{
relid = lfirsti(queue);
queue = lnext(queue);
if (!intMember(relid, visited))
{
newrelid = true;
break;
}
}
if (newrelid)
{
visited = lappendi(visited, relid);
nvisited++;
}
} while (newrelid);
heap_close(inhrel, AccessShareLock);
if (nvisited > 0)
{
relidvec = (Oid *) palloc(nvisited * sizeof(Oid));
*supervec = relidvec;
foreach(elt, visited)
{
/* return the type id, rather than the relation id */
*relidvec++ = get_rel_type_id((Oid) lfirsti(elt));
}
}
else
*supervec = (Oid *) NULL;
freeList(visited);
/*
* there doesn't seem to be any equally easy way to release the queue
* list cells, but since they're palloc'd space it's not critical.
*/
return nvisited;
}
static Oid **
gen_cross_product(InhPaths *arginh, int nargs)
{
int nanswers;
Oid **result,
**iter;
Oid *oneres;
int i,
j;
int cur[FUNC_MAX_ARGS];
nanswers = 1;
for (i = 0; i < nargs; i++)
{
nanswers *= (arginh[i].nsupers + 2);
cur[i] = 0;
}
iter = result = (Oid **) palloc(sizeof(Oid *) * nanswers);
/* compute the cross product from right to left */
for (;;)
{
oneres = (Oid *) palloc(FUNC_MAX_ARGS * sizeof(Oid));
MemSet(oneres, 0, FUNC_MAX_ARGS * sizeof(Oid));
for (i = nargs - 1; i >= 0 && cur[i] > arginh[i].nsupers; i--)
continue;
/* if we're done, terminate with NULL pointer */
if (i < 0)
{
*iter = NULL;
return result;
}
/* no, increment this column and zero the ones after it */
cur[i] = cur[i] + 1;
for (j = nargs - 1; j > i; j--)
cur[j] = 0;
for (i = 0; i < nargs; i++)
{
if (cur[i] == 0)
oneres[i] = arginh[i].self;
else if (cur[i] > arginh[i].nsupers)
oneres[i] = 0; /* wild card */
else
oneres[i] = arginh[i].supervec[cur[i] - 1];
}
*iter++ = oneres;
}
}
/*
* Given two type OIDs, determine whether the first is a complex type
* (class type) that inherits from the second.
*/
bool
typeInheritsFrom(Oid subclassTypeId, Oid superclassTypeId)
{
Oid relid;
Oid *supervec;
int nsupers,
i;
bool result;
if (!ISCOMPLEX(subclassTypeId) || !ISCOMPLEX(superclassTypeId))
return false;
relid = typeidTypeRelid(subclassTypeId);
if (relid == InvalidOid)
return false;
nsupers = find_inheritors(relid, &supervec);
result = false;
for (i = 0; i < nsupers; i++)
{
if (supervec[i] == superclassTypeId)
{
result = true;
break;
}
}
if (supervec)
pfree(supervec);
return result;
}
/* make_arguments()
* Given the number and types of arguments to a function, and the
* actual arguments and argument types, do the necessary typecasting.
*/
static void
make_arguments(ParseState *pstate,
int nargs,
List *fargs,
Oid *input_typeids,
Oid *function_typeids)
{
List *current_fargs;
int i;
for (i = 0, current_fargs = fargs;
i < nargs;
i++, current_fargs = lnext(current_fargs))
{
/* types don't match? then force coercion using a function call... */
if (input_typeids[i] != function_typeids[i])
{
lfirst(current_fargs) = coerce_type(pstate,
lfirst(current_fargs),
input_typeids[i],
function_typeids[i], -1,
false);
}
}
}
/*
* setup_field_select
* Build a FieldSelect node that says which attribute to project to.
* This routine is called by ParseFuncOrColumn() when we have found
* a projection on a function result or parameter.
*/
static FieldSelect *
setup_field_select(Node *input, char *attname, Oid relid)
{
FieldSelect *fselect = makeNode(FieldSelect);
AttrNumber attno;
attno = get_attnum(relid, attname);
fselect->arg = input;
fselect->fieldnum = attno;
fselect->resulttype = get_atttype(relid, attno);
fselect->resulttypmod = get_atttypmod(relid, attno);
return fselect;
}
/*
* ParseComplexProjection -
* handles function calls with a single argument that is of complex type.
* If the function call is actually a column projection, return a suitably
* transformed expression tree. If not, return NULL.
*
* NB: argument is expected to be transformed already, ie, not a RangeVar.
*/
static Node *
ParseComplexProjection(ParseState *pstate,
char *funcname,
Node *first_arg)
{
Oid argtype = exprType(first_arg);
Oid argrelid;
AttrNumber attnum;
FieldSelect *fselect;
argrelid = typeidTypeRelid(argtype);
if (!argrelid)
return NULL; /* probably should not happen */
attnum = get_attnum(argrelid, funcname);
if (attnum == InvalidAttrNumber)
return NULL; /* funcname does not match any column */
/*
* Check for special cases where we don't want to return a FieldSelect.
*/
switch (nodeTag(first_arg))
{
case T_Iter:
{
Iter *iter = (Iter *) first_arg;
/*
* If it's an Iter, we stick the FieldSelect
* *inside* the Iter --- this is klugy, but necessary
* because ExecTargetList() currently does the right thing
* only when the Iter node is at the top level of a
* targetlist item.
*
* XXX Iter should go away altogether...
*/
fselect = setup_field_select(iter->iterexpr,
funcname, argrelid);
iter->iterexpr = (Node *) fselect;
iter->itertype = fselect->resulttype;
return (Node *) iter;
break;
}
case T_Var:
{
Var *var = (Var *) first_arg;
/*
* If the Var is a whole-row tuple, we can just replace it
* with a simple Var reference.
*/
if (var->varattno == InvalidAttrNumber)
{
Oid vartype;
int32 vartypmod;
get_atttypetypmod(argrelid, attnum,
&vartype, &vartypmod);
return (Node *) makeVar(var->varno,
attnum,
vartype,
vartypmod,
var->varlevelsup);
}
break;
}
default:
break;
}
/* Else generate a FieldSelect expression */
fselect = setup_field_select(first_arg, funcname, argrelid);
return (Node *) fselect;
}
/*
* Error message when function lookup fails that gives details of the
* argument types
*/
void
func_error(const char *caller, List *funcname,
int nargs, const Oid *argtypes,
const char *msg)
{
char p[(NAMEDATALEN + 2) * FUNC_MAX_ARGS],
*ptr;
int i;
ptr = p;
*ptr = '\0';
for (i = 0; i < nargs; i++)
{
if (i)
{
*ptr++ = ',';
*ptr++ = ' ';
}
if (OidIsValid(argtypes[i]))
{
strncpy(ptr, typeidTypeName(argtypes[i]), NAMEDATALEN);
*(ptr + NAMEDATALEN) = '\0';
}
else
strcpy(ptr, "opaque");
ptr += strlen(ptr);
}
if (caller == NULL)
{
elog(ERROR, "Function '%s(%s)' does not exist%s%s",
NameListToString(funcname), p,
((msg != NULL) ? "\n\t" : ""), ((msg != NULL) ? msg : ""));
}
else
{
elog(ERROR, "%s: function '%s(%s)' does not exist%s%s",
caller, NameListToString(funcname), p,
((msg != NULL) ? "\n\t" : ""), ((msg != NULL) ? msg : ""));
}
}
/*
* find_aggregate_func
* Convenience routine to check that a function exists and is an
* aggregate.
*
* Note: basetype is InvalidOid if we are looking for an aggregate on
* all types.
*/
Oid
find_aggregate_func(const char *caller, List *aggname, Oid basetype)
{
Oid oid;
HeapTuple ftup;
Form_pg_proc pform;
oid = LookupFuncName(aggname, 1, &basetype);
if (!OidIsValid(oid))
{
if (basetype == InvalidOid)
elog(ERROR, "%s: aggregate '%s' for all types does not exist",
caller, NameListToString(aggname));
else
elog(ERROR, "%s: aggregate '%s' for type %s does not exist",
caller, NameListToString(aggname),
format_type_be(basetype));
}
/* Make sure it's an aggregate */
ftup = SearchSysCache(PROCOID,
ObjectIdGetDatum(oid),
0, 0, 0);
if (!HeapTupleIsValid(ftup)) /* should not happen */
elog(ERROR, "function %u not found", oid);
pform = (Form_pg_proc) GETSTRUCT(ftup);
if (!pform->proisagg)
{
if (basetype == InvalidOid)
elog(ERROR, "%s: function %s(*) is not an aggregate",
caller, NameListToString(aggname));
else
elog(ERROR, "%s: function %s(%s) is not an aggregate",
caller, NameListToString(aggname),
format_type_be(basetype));
}
ReleaseSysCache(ftup);
return oid;
}
/*
* LookupFuncName
* Given a possibly-qualified function name and a set of argument types,
* look up the function. Returns InvalidOid if no such function.
*
* If the function name is not schema-qualified, it is sought in the current
* namespace search path.
*/
Oid
LookupFuncName(List *funcname, int nargs, const Oid *argtypes)
{
FuncCandidateList clist;
clist = FuncnameGetCandidates(funcname, nargs);
while (clist)
{
if (memcmp(argtypes, clist->args, nargs * sizeof(Oid)) == 0)
return clist->oid;
clist = clist->next;
}
return InvalidOid;
}
/*
* LookupFuncNameTypeNames
* Like LookupFuncName, but the argument types are specified by a
* list of TypeName nodes. Also, if we fail to find the function
* and caller is not NULL, then an error is reported via func_error.
*
* "opaque" is accepted as a typename only if opaqueOK is true.
*/
Oid
LookupFuncNameTypeNames(List *funcname, List *argtypes, bool opaqueOK,
const char *caller)
{
Oid funcoid;
Oid argoids[FUNC_MAX_ARGS];
int argcount;
int i;
MemSet(argoids, 0, FUNC_MAX_ARGS * sizeof(Oid));
argcount = length(argtypes);
if (argcount > FUNC_MAX_ARGS)
elog(ERROR, "functions cannot have more than %d arguments",
FUNC_MAX_ARGS);
for (i = 0; i < argcount; i++)
{
TypeName *t = (TypeName *) lfirst(argtypes);
argoids[i] = LookupTypeName(t);
if (!OidIsValid(argoids[i]))
{
char *typnam = TypeNameToString(t);
if (opaqueOK && strcmp(typnam, "opaque") == 0)
argoids[i] = InvalidOid;
else
elog(ERROR, "Type \"%s\" does not exist", typnam);
}
argtypes = lnext(argtypes);
}
funcoid = LookupFuncName(funcname, argcount, argoids);
if (!OidIsValid(funcoid) && caller != NULL)
func_error(caller, funcname, argcount, argoids, NULL);
return funcoid;
}