mirror of
https://github.com/postgres/postgres.git
synced 2025-04-22 23:02:54 +03:00
of known-equal expressions includes any constant expressions (including Params from outer queries), we actively suppress any 'var = var' clauses that are or could be deduced from the set, generating only the deducible 'var = const' clauses instead. The idea here is to push down the restrictions implied by the equality set to base relations whenever possible. Once we have applied the 'var = const' clauses, the 'var = var' clauses are redundant, and should be suppressed both to save work at execution and to avoid double-counting restrictivity.
2270 lines
67 KiB
C
2270 lines
67 KiB
C
/*-------------------------------------------------------------------------
|
|
*
|
|
* indxpath.c
|
|
* Routines to determine which indices are usable for scanning a
|
|
* given relation, and create IndexPaths accordingly.
|
|
*
|
|
* Portions Copyright (c) 1996-2002, PostgreSQL Global Development Group
|
|
* Portions Copyright (c) 1994, Regents of the University of California
|
|
*
|
|
*
|
|
* IDENTIFICATION
|
|
* $Header: /cvsroot/pgsql/src/backend/optimizer/path/indxpath.c,v 1.133 2003/01/24 03:58:34 tgl Exp $
|
|
*
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
#include "postgres.h"
|
|
|
|
#include <math.h>
|
|
|
|
#include "access/heapam.h"
|
|
#include "access/nbtree.h"
|
|
#include "catalog/catname.h"
|
|
#include "catalog/pg_amop.h"
|
|
#include "catalog/pg_namespace.h"
|
|
#include "catalog/pg_operator.h"
|
|
#include "executor/executor.h"
|
|
#include "nodes/makefuncs.h"
|
|
#include "nodes/nodeFuncs.h"
|
|
#include "optimizer/clauses.h"
|
|
#include "optimizer/cost.h"
|
|
#include "optimizer/pathnode.h"
|
|
#include "optimizer/paths.h"
|
|
#include "optimizer/restrictinfo.h"
|
|
#include "optimizer/var.h"
|
|
#include "parser/parse_coerce.h"
|
|
#include "parser/parse_expr.h"
|
|
#include "parser/parse_oper.h"
|
|
#include "rewrite/rewriteManip.h"
|
|
#include "utils/builtins.h"
|
|
#include "utils/fmgroids.h"
|
|
#include "utils/lsyscache.h"
|
|
#include "utils/selfuncs.h"
|
|
#include "utils/syscache.h"
|
|
|
|
|
|
/*
|
|
* DoneMatchingIndexKeys() - MACRO
|
|
*
|
|
* Formerly this looked at indexkeys, but that's the wrong thing for a
|
|
* functional index.
|
|
*/
|
|
#define DoneMatchingIndexKeys(indexkeys, classes) \
|
|
(classes[0] == InvalidOid)
|
|
|
|
#define is_indexable_operator(clause,opclass,indexkey_on_left) \
|
|
(indexable_operator(clause,opclass,indexkey_on_left) != InvalidOid)
|
|
|
|
|
|
static void match_index_orclauses(RelOptInfo *rel, IndexOptInfo *index,
|
|
List *restrictinfo_list);
|
|
static List *match_index_orclause(RelOptInfo *rel, IndexOptInfo *index,
|
|
List *or_clauses,
|
|
List *other_matching_indices);
|
|
static bool match_or_subclause_to_indexkey(RelOptInfo *rel,
|
|
IndexOptInfo *index,
|
|
Expr *clause);
|
|
static List *group_clauses_by_indexkey(RelOptInfo *rel, IndexOptInfo *index);
|
|
static List *group_clauses_by_indexkey_for_join(RelOptInfo *rel,
|
|
IndexOptInfo *index,
|
|
Relids outer_relids,
|
|
bool isouterjoin);
|
|
static bool match_clause_to_indexkey(RelOptInfo *rel, IndexOptInfo *index,
|
|
int indexkey, Oid opclass, Expr *clause);
|
|
static bool match_join_clause_to_indexkey(RelOptInfo *rel, IndexOptInfo *index,
|
|
int indexkey, Oid opclass, Expr *clause);
|
|
static Oid indexable_operator(Expr *clause, Oid opclass,
|
|
bool indexkey_on_left);
|
|
static bool pred_test(List *predicate_list, List *restrictinfo_list,
|
|
List *joininfo_list, int relvarno);
|
|
static bool pred_test_restrict_list(Expr *predicate, List *restrictinfo_list);
|
|
static bool pred_test_recurse_clause(Expr *predicate, Node *clause);
|
|
static bool pred_test_recurse_pred(Expr *predicate, Node *clause);
|
|
static bool pred_test_simple_clause(Expr *predicate, Node *clause);
|
|
static Relids indexable_outerrelids(RelOptInfo *rel, IndexOptInfo *index);
|
|
static Path *make_innerjoin_index_path(Query *root,
|
|
RelOptInfo *rel, IndexOptInfo *index,
|
|
List *clausegroup);
|
|
static bool match_index_to_operand(int indexkey, Node *operand,
|
|
RelOptInfo *rel, IndexOptInfo *index);
|
|
static bool function_index_operand(Expr *funcOpnd, RelOptInfo *rel,
|
|
IndexOptInfo *index);
|
|
static bool match_special_index_operator(Expr *clause, Oid opclass,
|
|
bool indexkey_on_left);
|
|
static List *prefix_quals(Node *leftop, Oid expr_op,
|
|
Const *prefix, Pattern_Prefix_Status pstatus);
|
|
static List *network_prefix_quals(Node *leftop, Oid expr_op, Datum rightop);
|
|
static Oid find_operator(const char *opname, Oid datatype);
|
|
static Datum string_to_datum(const char *str, Oid datatype);
|
|
static Const *string_to_const(const char *str, Oid datatype);
|
|
|
|
|
|
/*
|
|
* create_index_paths()
|
|
* Generate all interesting index paths for the given relation.
|
|
* Candidate paths are added to the rel's pathlist (using add_path).
|
|
*
|
|
* To be considered for an index scan, an index must match one or more
|
|
* restriction clauses or join clauses from the query's qual condition,
|
|
* or match the query's ORDER BY condition.
|
|
*
|
|
* There are two basic kinds of index scans. A "plain" index scan uses
|
|
* only restriction clauses (possibly none at all) in its indexqual,
|
|
* so it can be applied in any context. An "innerjoin" index scan uses
|
|
* join clauses (plus restriction clauses, if available) in its indexqual.
|
|
* Therefore it can only be used as the inner relation of a nestloop
|
|
* join against an outer rel that includes all the other rels mentioned
|
|
* in its join clauses. In that context, values for the other rels'
|
|
* attributes are available and fixed during any one scan of the indexpath.
|
|
*
|
|
* An IndexPath is generated and submitted to add_path() for each plain index
|
|
* scan this routine deems potentially interesting for the current query.
|
|
*
|
|
* We also determine the set of other relids that participate in join
|
|
* clauses that could be used with each index. The actually best innerjoin
|
|
* path will be generated for each outer relation later on, but knowing the
|
|
* set of potential otherrels allows us to identify equivalent outer relations
|
|
* and avoid repeated computation.
|
|
*
|
|
* 'rel' is the relation for which we want to generate index paths
|
|
*/
|
|
void
|
|
create_index_paths(Query *root, RelOptInfo *rel)
|
|
{
|
|
List *restrictinfo_list = rel->baserestrictinfo;
|
|
List *joininfo_list = rel->joininfo;
|
|
Relids all_join_outerrelids = NIL;
|
|
List *ilist;
|
|
|
|
foreach(ilist, rel->indexlist)
|
|
{
|
|
IndexOptInfo *index = (IndexOptInfo *) lfirst(ilist);
|
|
List *restrictclauses;
|
|
List *index_pathkeys;
|
|
List *useful_pathkeys;
|
|
bool index_is_ordered;
|
|
Relids join_outerrelids;
|
|
|
|
/*
|
|
* If this is a partial index, we can only use it if it passes the
|
|
* predicate test.
|
|
*/
|
|
if (index->indpred != NIL)
|
|
if (!pred_test(index->indpred, restrictinfo_list, joininfo_list,
|
|
lfirsti(rel->relids)))
|
|
continue;
|
|
|
|
/*
|
|
* 1. Try matching the index against subclauses of restriction
|
|
* 'or' clauses (ie, 'or' clauses that reference only this
|
|
* relation). The restrictinfo nodes for the 'or' clauses are
|
|
* marked with lists of the matching indices. No paths are
|
|
* actually created now; that will be done in orindxpath.c after
|
|
* all indexes for the rel have been examined. (We need to do it
|
|
* that way because we can potentially use a different index for
|
|
* each subclause of an 'or', so we can't build a path for an 'or'
|
|
* clause until all indexes have been matched against it.)
|
|
*
|
|
* We don't even think about special handling of 'or' clauses that
|
|
* involve more than one relation (ie, are join clauses). Can we
|
|
* do anything useful with those?
|
|
*/
|
|
match_index_orclauses(rel, index, restrictinfo_list);
|
|
|
|
/*
|
|
* 2. Match the index against non-'or' restriction clauses.
|
|
*/
|
|
restrictclauses = group_clauses_by_indexkey(rel, index);
|
|
|
|
/*
|
|
* 3. Compute pathkeys describing index's ordering, if any, then
|
|
* see how many of them are actually useful for this query.
|
|
*/
|
|
index_pathkeys = build_index_pathkeys(root, rel, index,
|
|
ForwardScanDirection);
|
|
index_is_ordered = (index_pathkeys != NIL);
|
|
useful_pathkeys = truncate_useless_pathkeys(root, rel,
|
|
index_pathkeys);
|
|
|
|
/*
|
|
* 4. Generate an indexscan path if there are relevant restriction
|
|
* clauses OR the index ordering is potentially useful for later
|
|
* merging or final output ordering.
|
|
*
|
|
* If there is a predicate, consider it anyway since the index
|
|
* predicate has already been found to match the query. The
|
|
* selectivity of the predicate might alone make the index useful.
|
|
*/
|
|
if (restrictclauses != NIL ||
|
|
useful_pathkeys != NIL ||
|
|
index->indpred != NIL)
|
|
add_path(rel, (Path *)
|
|
create_index_path(root, rel, index,
|
|
restrictclauses,
|
|
useful_pathkeys,
|
|
index_is_ordered ?
|
|
ForwardScanDirection :
|
|
NoMovementScanDirection));
|
|
|
|
/*
|
|
* 5. If the index is ordered, a backwards scan might be
|
|
* interesting. Currently this is only possible for a DESC query
|
|
* result ordering.
|
|
*/
|
|
if (index_is_ordered)
|
|
{
|
|
index_pathkeys = build_index_pathkeys(root, rel, index,
|
|
BackwardScanDirection);
|
|
useful_pathkeys = truncate_useless_pathkeys(root, rel,
|
|
index_pathkeys);
|
|
if (useful_pathkeys != NIL)
|
|
add_path(rel, (Path *)
|
|
create_index_path(root, rel, index,
|
|
restrictclauses,
|
|
useful_pathkeys,
|
|
BackwardScanDirection));
|
|
}
|
|
|
|
/*
|
|
* 6. Examine join clauses to see which ones are potentially
|
|
* usable with this index, and generate a list of all other relids
|
|
* that participate in such join clauses. We'll use this list later
|
|
* to recognize outer rels that are equivalent for joining purposes.
|
|
* We compute both per-index and overall-for-relation lists.
|
|
*/
|
|
join_outerrelids = indexable_outerrelids(rel, index);
|
|
index->outer_relids = join_outerrelids;
|
|
all_join_outerrelids = set_unioni(all_join_outerrelids,
|
|
join_outerrelids);
|
|
}
|
|
|
|
rel->index_outer_relids = all_join_outerrelids;
|
|
}
|
|
|
|
|
|
/****************************************************************************
|
|
* ---- ROUTINES TO PROCESS 'OR' CLAUSES ----
|
|
****************************************************************************/
|
|
|
|
|
|
/*
|
|
* match_index_orclauses
|
|
* Attempt to match an index against subclauses within 'or' clauses.
|
|
* Each subclause that does match is marked with the index's node.
|
|
*
|
|
* Essentially, this adds 'index' to the list of subclause indices in
|
|
* the RestrictInfo field of each of the 'or' clauses where it matches.
|
|
* NOTE: we can use storage in the RestrictInfo for this purpose because
|
|
* this processing is only done on single-relation restriction clauses.
|
|
* Therefore, we will never have indexes for more than one relation
|
|
* mentioned in the same RestrictInfo node's list.
|
|
*
|
|
* 'rel' is the node of the relation on which the index is defined.
|
|
* 'index' is the index node.
|
|
* 'restrictinfo_list' is the list of available restriction clauses.
|
|
*/
|
|
static void
|
|
match_index_orclauses(RelOptInfo *rel,
|
|
IndexOptInfo *index,
|
|
List *restrictinfo_list)
|
|
{
|
|
List *i;
|
|
|
|
foreach(i, restrictinfo_list)
|
|
{
|
|
RestrictInfo *restrictinfo = (RestrictInfo *) lfirst(i);
|
|
|
|
if (restriction_is_or_clause(restrictinfo))
|
|
{
|
|
/*
|
|
* Add this index to the subclause index list for each
|
|
* subclause that it matches.
|
|
*/
|
|
restrictinfo->subclauseindices =
|
|
match_index_orclause(rel, index,
|
|
((BoolExpr *) restrictinfo->clause)->args,
|
|
restrictinfo->subclauseindices);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* match_index_orclause
|
|
* Attempts to match an index against the subclauses of an 'or' clause.
|
|
*
|
|
* A match means that:
|
|
* (1) the operator within the subclause can be used with the
|
|
* index's specified operator class, and
|
|
* (2) one operand of the subclause matches the index key.
|
|
*
|
|
* If a subclause is an 'and' clause, then it matches if any of its
|
|
* subclauses is an opclause that matches.
|
|
*
|
|
* 'or_clauses' is the list of subclauses within the 'or' clause
|
|
* 'other_matching_indices' is the list of information on other indices
|
|
* that have already been matched to subclauses within this
|
|
* particular 'or' clause (i.e., a list previously generated by
|
|
* this routine), or NIL if this routine has not previously been
|
|
* run for this 'or' clause.
|
|
*
|
|
* Returns a list of the form ((a b c) (d e f) nil (g h) ...) where
|
|
* a,b,c are nodes of indices that match the first subclause in
|
|
* 'or-clauses', d,e,f match the second subclause, no indices
|
|
* match the third, g,h match the fourth, etc.
|
|
*/
|
|
static List *
|
|
match_index_orclause(RelOptInfo *rel,
|
|
IndexOptInfo *index,
|
|
List *or_clauses,
|
|
List *other_matching_indices)
|
|
{
|
|
List *matching_indices;
|
|
List *index_list;
|
|
List *clist;
|
|
|
|
/*
|
|
* first time through, we create list of same length as OR clause,
|
|
* containing an empty sublist for each subclause.
|
|
*/
|
|
if (!other_matching_indices)
|
|
{
|
|
matching_indices = NIL;
|
|
foreach(clist, or_clauses)
|
|
matching_indices = lcons(NIL, matching_indices);
|
|
}
|
|
else
|
|
matching_indices = other_matching_indices;
|
|
|
|
index_list = matching_indices;
|
|
|
|
foreach(clist, or_clauses)
|
|
{
|
|
Expr *clause = lfirst(clist);
|
|
|
|
if (match_or_subclause_to_indexkey(rel, index, clause))
|
|
{
|
|
/* OK to add this index to sublist for this subclause */
|
|
lfirst(matching_indices) = lcons(index,
|
|
lfirst(matching_indices));
|
|
}
|
|
|
|
matching_indices = lnext(matching_indices);
|
|
}
|
|
|
|
return index_list;
|
|
}
|
|
|
|
/*
|
|
* See if a subclause of an OR clause matches an index.
|
|
*
|
|
* We accept the subclause if it is an operator clause that matches the
|
|
* index, or if it is an AND clause any of whose members is an opclause
|
|
* that matches the index.
|
|
*
|
|
* For multi-key indexes, we only look for matches to the first key;
|
|
* without such a match the index is useless. If the clause is an AND
|
|
* then we may be able to extract additional subclauses to use with the
|
|
* later indexkeys, but we need not worry about that until
|
|
* extract_or_indexqual_conditions() is called (if it ever is).
|
|
*/
|
|
static bool
|
|
match_or_subclause_to_indexkey(RelOptInfo *rel,
|
|
IndexOptInfo *index,
|
|
Expr *clause)
|
|
{
|
|
int indexkey = index->indexkeys[0];
|
|
Oid opclass = index->classlist[0];
|
|
|
|
if (and_clause((Node *) clause))
|
|
{
|
|
List *item;
|
|
|
|
foreach(item, ((BoolExpr *) clause)->args)
|
|
{
|
|
if (match_clause_to_indexkey(rel, index, indexkey, opclass,
|
|
lfirst(item)))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
else
|
|
return match_clause_to_indexkey(rel, index, indexkey, opclass,
|
|
clause);
|
|
}
|
|
|
|
/*----------
|
|
* Given an OR subclause that has previously been determined to match
|
|
* the specified index, extract a list of specific opclauses that can be
|
|
* used as indexquals.
|
|
*
|
|
* In the simplest case this just means making a one-element list of the
|
|
* given opclause. However, if the OR subclause is an AND, we have to
|
|
* scan it to find the opclause(s) that match the index. (There should
|
|
* be at least one, if match_or_subclause_to_indexkey succeeded, but there
|
|
* could be more.)
|
|
*
|
|
* Also, we can look at other restriction clauses of the rel to discover
|
|
* additional candidate indexquals: for example, consider
|
|
* ... where (a = 11 or a = 12) and b = 42;
|
|
* If we are dealing with an index on (a,b) then we can include the clause
|
|
* b = 42 in the indexqual list generated for each of the OR subclauses.
|
|
* Essentially, we are making an index-specific transformation from CNF to
|
|
* DNF. (NOTE: when we do this, we end up with a slightly inefficient plan
|
|
* because create_indexscan_plan is not very bright about figuring out which
|
|
* restriction clauses are implied by the generated indexqual condition.
|
|
* Currently we'll end up rechecking both the OR clause and the transferred
|
|
* restriction clause as qpquals. FIXME someday.)
|
|
*
|
|
* Also, we apply expand_indexqual_conditions() to convert any special
|
|
* matching opclauses to indexable operators.
|
|
*
|
|
* The passed-in clause is not changed.
|
|
*----------
|
|
*/
|
|
List *
|
|
extract_or_indexqual_conditions(RelOptInfo *rel,
|
|
IndexOptInfo *index,
|
|
Expr *orsubclause)
|
|
{
|
|
List *quals = NIL;
|
|
int *indexkeys = index->indexkeys;
|
|
Oid *classes = index->classlist;
|
|
|
|
/*
|
|
* Extract relevant indexclauses in indexkey order. This is
|
|
* essentially just like group_clauses_by_indexkey() except that the
|
|
* input and output are lists of bare clauses, not of RestrictInfo
|
|
* nodes.
|
|
*/
|
|
do
|
|
{
|
|
int curIndxKey = indexkeys[0];
|
|
Oid curClass = classes[0];
|
|
List *clausegroup = NIL;
|
|
List *item;
|
|
|
|
if (and_clause((Node *) orsubclause))
|
|
{
|
|
foreach(item, ((BoolExpr *) orsubclause)->args)
|
|
{
|
|
Expr *subsubclause = (Expr *) lfirst(item);
|
|
|
|
if (match_clause_to_indexkey(rel, index,
|
|
curIndxKey, curClass,
|
|
subsubclause))
|
|
clausegroup = lappend(clausegroup, subsubclause);
|
|
}
|
|
}
|
|
else if (match_clause_to_indexkey(rel, index,
|
|
curIndxKey, curClass,
|
|
orsubclause))
|
|
clausegroup = makeList1(orsubclause);
|
|
|
|
/*
|
|
* If we found no clauses for this indexkey in the OR subclause
|
|
* itself, try looking in the rel's top-level restriction list.
|
|
*/
|
|
if (clausegroup == NIL)
|
|
{
|
|
foreach(item, rel->baserestrictinfo)
|
|
{
|
|
RestrictInfo *rinfo = (RestrictInfo *) lfirst(item);
|
|
|
|
if (match_clause_to_indexkey(rel, index,
|
|
curIndxKey, curClass,
|
|
rinfo->clause))
|
|
clausegroup = lappend(clausegroup, rinfo->clause);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If still no clauses match this key, we're done; we don't want
|
|
* to look at keys to its right.
|
|
*/
|
|
if (clausegroup == NIL)
|
|
break;
|
|
|
|
quals = nconc(quals, clausegroup);
|
|
|
|
indexkeys++;
|
|
classes++;
|
|
|
|
} while (!DoneMatchingIndexKeys(indexkeys, classes));
|
|
|
|
if (quals == NIL)
|
|
elog(ERROR, "extract_or_indexqual_conditions: no matching clause");
|
|
|
|
return expand_indexqual_conditions(quals);
|
|
}
|
|
|
|
|
|
/****************************************************************************
|
|
* ---- ROUTINES TO CHECK RESTRICTIONS ----
|
|
****************************************************************************/
|
|
|
|
|
|
/*
|
|
* group_clauses_by_indexkey
|
|
* Generates a list of restriction clauses that can be used with an index.
|
|
*
|
|
* 'rel' is the node of the relation itself.
|
|
* 'index' is a index on 'rel'.
|
|
*
|
|
* Returns a list of all the RestrictInfo nodes for clauses that can be
|
|
* used with this index.
|
|
*
|
|
* The list is ordered by index key. (This is not depended on by any part
|
|
* of the planner, so far as I can tell; but some parts of the executor
|
|
* do assume that the indxqual list ultimately delivered to the executor
|
|
* is so ordered. One such place is _bt_orderkeys() in the btree support.
|
|
* Perhaps that ought to be fixed someday --- tgl 7/00)
|
|
*
|
|
* Note that in a multi-key index, we stop if we find a key that cannot be
|
|
* used with any clause. For example, given an index on (A,B,C), we might
|
|
* return (C1 C2 C3 C4) if we find that clauses C1 and C2 use column A,
|
|
* clauses C3 and C4 use column B, and no clauses use column C. But if
|
|
* no clauses match B we will return (C1 C2), whether or not there are
|
|
* clauses matching column C, because the executor couldn't use them anyway.
|
|
*/
|
|
static List *
|
|
group_clauses_by_indexkey(RelOptInfo *rel, IndexOptInfo *index)
|
|
{
|
|
List *clausegroup_list = NIL;
|
|
List *restrictinfo_list = rel->baserestrictinfo;
|
|
int *indexkeys = index->indexkeys;
|
|
Oid *classes = index->classlist;
|
|
|
|
if (restrictinfo_list == NIL)
|
|
return NIL;
|
|
|
|
do
|
|
{
|
|
int curIndxKey = indexkeys[0];
|
|
Oid curClass = classes[0];
|
|
List *clausegroup = NIL;
|
|
List *i;
|
|
|
|
foreach(i, restrictinfo_list)
|
|
{
|
|
RestrictInfo *rinfo = (RestrictInfo *) lfirst(i);
|
|
|
|
if (match_clause_to_indexkey(rel,
|
|
index,
|
|
curIndxKey,
|
|
curClass,
|
|
rinfo->clause))
|
|
clausegroup = lappend(clausegroup, rinfo);
|
|
}
|
|
|
|
/*
|
|
* If no clauses match this key, we're done; we don't want to look
|
|
* at keys to its right.
|
|
*/
|
|
if (clausegroup == NIL)
|
|
break;
|
|
|
|
clausegroup_list = nconc(clausegroup_list, clausegroup);
|
|
|
|
indexkeys++;
|
|
classes++;
|
|
|
|
} while (!DoneMatchingIndexKeys(indexkeys, classes));
|
|
|
|
/* clausegroup_list holds all matched clauses ordered by indexkeys */
|
|
return clausegroup_list;
|
|
}
|
|
|
|
/*
|
|
* group_clauses_by_indexkey_for_join
|
|
* Generates a list of clauses that can be used with an index
|
|
* to scan the inner side of a nestloop join.
|
|
*
|
|
* This is much like group_clauses_by_indexkey(), but we consider both
|
|
* join and restriction clauses. Any joinclause that uses only otherrels
|
|
* in the specified outer_relids is fair game. But there must be at least
|
|
* one such joinclause in the final list, otherwise we return NIL indicating
|
|
* that this index isn't interesting as an inner indexscan. (A scan using
|
|
* only restriction clauses shouldn't be created here, because a regular Path
|
|
* will already have been generated for it.)
|
|
*/
|
|
static List *
|
|
group_clauses_by_indexkey_for_join(RelOptInfo *rel, IndexOptInfo *index,
|
|
Relids outer_relids, bool isouterjoin)
|
|
{
|
|
List *clausegroup_list = NIL;
|
|
bool jfound = false;
|
|
int *indexkeys = index->indexkeys;
|
|
Oid *classes = index->classlist;
|
|
|
|
do
|
|
{
|
|
int curIndxKey = indexkeys[0];
|
|
Oid curClass = classes[0];
|
|
List *clausegroup = NIL;
|
|
List *i;
|
|
|
|
/* Look for joinclauses that are usable with given outer_relids */
|
|
foreach(i, rel->joininfo)
|
|
{
|
|
JoinInfo *joininfo = (JoinInfo *) lfirst(i);
|
|
List *j;
|
|
|
|
if (!is_subseti(joininfo->unjoined_relids, outer_relids))
|
|
continue;
|
|
|
|
foreach(j, joininfo->jinfo_restrictinfo)
|
|
{
|
|
RestrictInfo *rinfo = (RestrictInfo *) lfirst(j);
|
|
|
|
/* Can't use pushed-down clauses in outer join */
|
|
if (isouterjoin && rinfo->ispusheddown)
|
|
continue;
|
|
|
|
if (match_join_clause_to_indexkey(rel,
|
|
index,
|
|
curIndxKey,
|
|
curClass,
|
|
rinfo->clause))
|
|
{
|
|
clausegroup = lappend(clausegroup, rinfo);
|
|
jfound = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* We can also use plain restriction clauses for the rel */
|
|
foreach(i, rel->baserestrictinfo)
|
|
{
|
|
RestrictInfo *rinfo = (RestrictInfo *) lfirst(i);
|
|
|
|
/* Can't use pushed-down clauses in outer join */
|
|
if (isouterjoin && rinfo->ispusheddown)
|
|
continue;
|
|
|
|
if (match_clause_to_indexkey(rel,
|
|
index,
|
|
curIndxKey,
|
|
curClass,
|
|
rinfo->clause))
|
|
clausegroup = lappend(clausegroup, rinfo);
|
|
}
|
|
|
|
/*
|
|
* If no clauses match this key, we're done; we don't want to look
|
|
* at keys to its right.
|
|
*/
|
|
if (clausegroup == NIL)
|
|
break;
|
|
|
|
clausegroup_list = nconc(clausegroup_list, clausegroup);
|
|
|
|
indexkeys++;
|
|
classes++;
|
|
|
|
} while (!DoneMatchingIndexKeys(indexkeys, classes));
|
|
|
|
/*
|
|
* if no join clause was matched then forget it, per comments above.
|
|
*/
|
|
if (!jfound)
|
|
{
|
|
freeList(clausegroup_list);
|
|
return NIL;
|
|
}
|
|
|
|
/* clausegroup_list holds all matched clauses ordered by indexkeys */
|
|
return clausegroup_list;
|
|
}
|
|
|
|
|
|
/*
|
|
* match_clause_to_indexkey()
|
|
* Determines whether a restriction clause matches a key of an index.
|
|
*
|
|
* To match, the clause:
|
|
*
|
|
* (1) must be in the form (indexkey op const) or (const op indexkey);
|
|
* and
|
|
* (2) must contain an operator which is in the same class as the index
|
|
* operator for this key, or is a "special" operator as recognized
|
|
* by match_special_index_operator().
|
|
*
|
|
* Presently, the executor can only deal with indexquals that have the
|
|
* indexkey on the left, so we can only use clauses that have the indexkey
|
|
* on the right if we can commute the clause to put the key on the left.
|
|
* We do not actually do the commuting here, but we check whether a
|
|
* suitable commutator operator is available.
|
|
*
|
|
* 'rel' is the relation of interest.
|
|
* 'index' is an index on 'rel'.
|
|
* 'indexkey' is a key of 'index'.
|
|
* 'opclass' is the corresponding operator class.
|
|
* 'clause' is the clause to be tested.
|
|
*
|
|
* Returns true if the clause can be used with this index key.
|
|
*
|
|
* NOTE: returns false if clause is an OR or AND clause; it is the
|
|
* responsibility of higher-level routines to cope with those.
|
|
*/
|
|
static bool
|
|
match_clause_to_indexkey(RelOptInfo *rel,
|
|
IndexOptInfo *index,
|
|
int indexkey,
|
|
Oid opclass,
|
|
Expr *clause)
|
|
{
|
|
Node *leftop,
|
|
*rightop;
|
|
|
|
/* Clause must be a binary opclause. */
|
|
if (!is_opclause(clause))
|
|
return false;
|
|
leftop = get_leftop(clause);
|
|
rightop = get_rightop(clause);
|
|
if (!leftop || !rightop)
|
|
return false;
|
|
|
|
/*
|
|
* Check for clauses of the form:
|
|
* (indexkey operator constant) or (constant operator indexkey).
|
|
* Anything that is a "pseudo constant" expression will do.
|
|
*/
|
|
if (match_index_to_operand(indexkey, leftop, rel, index) &&
|
|
is_pseudo_constant_clause(rightop))
|
|
{
|
|
if (is_indexable_operator(clause, opclass, true))
|
|
return true;
|
|
|
|
/*
|
|
* If we didn't find a member of the index's opclass, see
|
|
* whether it is a "special" indexable operator.
|
|
*/
|
|
if (match_special_index_operator(clause, opclass, true))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
if (match_index_to_operand(indexkey, rightop, rel, index) &&
|
|
is_pseudo_constant_clause(leftop))
|
|
{
|
|
if (is_indexable_operator(clause, opclass, false))
|
|
return true;
|
|
|
|
/*
|
|
* If we didn't find a member of the index's opclass, see
|
|
* whether it is a "special" indexable operator.
|
|
*/
|
|
if (match_special_index_operator(clause, opclass, false))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* match_join_clause_to_indexkey()
|
|
* Determines whether a join clause matches a key of an index.
|
|
*
|
|
* To match, the clause:
|
|
*
|
|
* (1) must be in the form (indexkey op others) or (others op indexkey),
|
|
* where others is an expression involving only vars of the other
|
|
* relation(s); and
|
|
* (2) must contain an operator which is in the same class as the index
|
|
* operator for this key, or is a "special" operator as recognized
|
|
* by match_special_index_operator().
|
|
*
|
|
* As above, we must be able to commute the clause to put the indexkey
|
|
* on the left.
|
|
*
|
|
* Note that we already know that the clause as a whole uses vars from
|
|
* the interesting set of relations. But we need to defend against
|
|
* expressions like (a.f1 OP (b.f2 OP a.f3)); that's not processable by
|
|
* an indexscan nestloop join, whereas (a.f1 OP (b.f2 OP c.f3)) is.
|
|
*
|
|
* 'rel' is the relation of interest.
|
|
* 'index' is an index on 'rel'.
|
|
* 'indexkey' is a key of 'index'.
|
|
* 'opclass' is the corresponding operator class.
|
|
* 'clause' is the clause to be tested.
|
|
*
|
|
* Returns true if the clause can be used with this index key.
|
|
*
|
|
* NOTE: returns false if clause is an OR or AND clause; it is the
|
|
* responsibility of higher-level routines to cope with those.
|
|
*/
|
|
static bool
|
|
match_join_clause_to_indexkey(RelOptInfo *rel,
|
|
IndexOptInfo *index,
|
|
int indexkey,
|
|
Oid opclass,
|
|
Expr *clause)
|
|
{
|
|
Node *leftop,
|
|
*rightop;
|
|
|
|
/* Clause must be a binary opclause. */
|
|
if (!is_opclause(clause))
|
|
return false;
|
|
leftop = get_leftop(clause);
|
|
rightop = get_rightop(clause);
|
|
if (!leftop || !rightop)
|
|
return false;
|
|
|
|
/*
|
|
* Check for an indexqual that could be handled by a nestloop
|
|
* join. We need the index key to be compared against an
|
|
* expression that uses none of the indexed relation's vars and
|
|
* contains no volatile functions.
|
|
*/
|
|
if (match_index_to_operand(indexkey, leftop, rel, index))
|
|
{
|
|
List *othervarnos = pull_varnos(rightop);
|
|
bool isIndexable;
|
|
|
|
isIndexable =
|
|
!intMember(lfirsti(rel->relids), othervarnos) &&
|
|
!contain_volatile_functions(rightop) &&
|
|
is_indexable_operator(clause, opclass, true);
|
|
freeList(othervarnos);
|
|
return isIndexable;
|
|
}
|
|
|
|
if (match_index_to_operand(indexkey, rightop, rel, index))
|
|
{
|
|
List *othervarnos = pull_varnos(leftop);
|
|
bool isIndexable;
|
|
|
|
isIndexable =
|
|
!intMember(lfirsti(rel->relids), othervarnos) &&
|
|
!contain_volatile_functions(leftop) &&
|
|
is_indexable_operator(clause, opclass, false);
|
|
freeList(othervarnos);
|
|
return isIndexable;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* indexable_operator
|
|
* Does a binary opclause contain an operator matching the index opclass?
|
|
*
|
|
* If the indexkey is on the right, what we actually want to know
|
|
* is whether the operator has a commutator operator that matches
|
|
* the index's opclass.
|
|
*
|
|
* Returns the OID of the matching operator, or InvalidOid if no match.
|
|
* (Formerly, this routine might return a binary-compatible operator
|
|
* rather than the original one, but that kluge is history.)
|
|
*/
|
|
static Oid
|
|
indexable_operator(Expr *clause, Oid opclass, bool indexkey_on_left)
|
|
{
|
|
Oid expr_op = ((OpExpr *) clause)->opno;
|
|
Oid commuted_op;
|
|
|
|
/* Get the commuted operator if necessary */
|
|
if (indexkey_on_left)
|
|
commuted_op = expr_op;
|
|
else
|
|
commuted_op = get_commutator(expr_op);
|
|
if (commuted_op == InvalidOid)
|
|
return InvalidOid;
|
|
|
|
/* OK if the (commuted) operator is a member of the index's opclass */
|
|
if (op_in_opclass(commuted_op, opclass))
|
|
return expr_op;
|
|
|
|
return InvalidOid;
|
|
}
|
|
|
|
/****************************************************************************
|
|
* ---- ROUTINES TO DO PARTIAL INDEX PREDICATE TESTS ----
|
|
****************************************************************************/
|
|
|
|
/*
|
|
* pred_test
|
|
* Does the "predicate inclusion test" for partial indexes.
|
|
*
|
|
* Recursively checks whether the clauses in restrictinfo_list imply
|
|
* that the given predicate is true.
|
|
*
|
|
* This routine (together with the routines it calls) iterates over
|
|
* ANDs in the predicate first, then reduces the qualification
|
|
* clauses down to their constituent terms, and iterates over ORs
|
|
* in the predicate last. This order is important to make the test
|
|
* succeed whenever possible (assuming the predicate has been converted
|
|
* to CNF format). --Nels, Jan '93
|
|
*/
|
|
static bool
|
|
pred_test(List *predicate_list, List *restrictinfo_list, List *joininfo_list,
|
|
int relvarno)
|
|
{
|
|
List *pred;
|
|
|
|
/*
|
|
* Note: if Postgres tried to optimize queries by forming equivalence
|
|
* classes over equi-joined attributes (i.e., if it recognized that a
|
|
* qualification such as "where a.b=c.d and a.b=5" could make use of
|
|
* an index on c.d), then we could use that equivalence class info
|
|
* here with joininfo_list to do more complete tests for the usability
|
|
* of a partial index. For now, the test only uses restriction
|
|
* clauses (those in restrictinfo_list). --Nels, Dec '92
|
|
*
|
|
* XXX as of 7.1, equivalence class info *is* available. Consider
|
|
* improving this code as foreseen by Nels.
|
|
*/
|
|
|
|
if (predicate_list == NIL)
|
|
return true; /* no predicate: the index is usable */
|
|
if (restrictinfo_list == NIL)
|
|
return false; /* no restriction clauses: the test must
|
|
* fail */
|
|
|
|
/*
|
|
* The predicate as stored in the index definition will use varno 1
|
|
* for its Vars referencing the indexed relation. If the indexed
|
|
* relation isn't varno 1 in the query, we must adjust the predicate
|
|
* to make the Vars match, else equal() won't work.
|
|
*/
|
|
if (relvarno != 1)
|
|
{
|
|
predicate_list = copyObject(predicate_list);
|
|
ChangeVarNodes((Node *) predicate_list, 1, relvarno, 0);
|
|
}
|
|
|
|
foreach(pred, predicate_list)
|
|
{
|
|
/*
|
|
* if any clause is not implied, the whole predicate is not
|
|
* implied. Note we assume that any sub-ANDs have been flattened
|
|
* when the predicate was fed through canonicalize_qual().
|
|
*/
|
|
if (!pred_test_restrict_list(lfirst(pred), restrictinfo_list))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
/*
|
|
* pred_test_restrict_list
|
|
* Does the "predicate inclusion test" for one conjunct of a predicate
|
|
* expression.
|
|
*/
|
|
static bool
|
|
pred_test_restrict_list(Expr *predicate, List *restrictinfo_list)
|
|
{
|
|
List *item;
|
|
|
|
foreach(item, restrictinfo_list)
|
|
{
|
|
RestrictInfo *restrictinfo = (RestrictInfo *) lfirst(item);
|
|
|
|
/* if any clause implies the predicate, return true */
|
|
if (pred_test_recurse_clause(predicate,
|
|
(Node *) restrictinfo->clause))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
/*
|
|
* pred_test_recurse_clause
|
|
* Does the "predicate inclusion test" for a general restriction-clause
|
|
* expression. Here we recursively deal with the possibility that the
|
|
* restriction clause is itself an AND or OR structure.
|
|
*/
|
|
static bool
|
|
pred_test_recurse_clause(Expr *predicate, Node *clause)
|
|
{
|
|
List *items,
|
|
*item;
|
|
|
|
Assert(clause != NULL);
|
|
if (or_clause(clause))
|
|
{
|
|
items = ((BoolExpr *) clause)->args;
|
|
foreach(item, items)
|
|
{
|
|
/* if any OR item doesn't imply the predicate, clause doesn't */
|
|
if (!pred_test_recurse_clause(predicate, lfirst(item)))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
else if (and_clause(clause))
|
|
{
|
|
items = ((BoolExpr *) clause)->args;
|
|
foreach(item, items)
|
|
{
|
|
/*
|
|
* if any AND item implies the predicate, the whole clause
|
|
* does
|
|
*/
|
|
if (pred_test_recurse_clause(predicate, lfirst(item)))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
else
|
|
return pred_test_recurse_pred(predicate, clause);
|
|
}
|
|
|
|
|
|
/*
|
|
* pred_test_recurse_pred
|
|
* Does the "predicate inclusion test" for one conjunct of a predicate
|
|
* expression for a simple restriction clause. Here we recursively deal
|
|
* with the possibility that the predicate conjunct is itself an AND or
|
|
* OR structure.
|
|
*/
|
|
static bool
|
|
pred_test_recurse_pred(Expr *predicate, Node *clause)
|
|
{
|
|
List *items,
|
|
*item;
|
|
|
|
Assert(predicate != NULL);
|
|
if (or_clause((Node *) predicate))
|
|
{
|
|
items = ((BoolExpr *) predicate)->args;
|
|
foreach(item, items)
|
|
{
|
|
/* if any item is implied, the whole predicate is implied */
|
|
if (pred_test_recurse_pred(lfirst(item), clause))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
else if (and_clause((Node *) predicate))
|
|
{
|
|
items = ((BoolExpr *) predicate)->args;
|
|
foreach(item, items)
|
|
{
|
|
/*
|
|
* if any item is not implied, the whole predicate is not
|
|
* implied
|
|
*/
|
|
if (!pred_test_recurse_pred(lfirst(item), clause))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
else
|
|
return pred_test_simple_clause(predicate, clause);
|
|
}
|
|
|
|
|
|
/*
|
|
* Define an "operator implication table" for btree operators ("strategies").
|
|
* The "strategy numbers" are: (1) < (2) <= (3) = (4) >= (5) >
|
|
*
|
|
* The interpretation of:
|
|
*
|
|
* test_op = BT_implic_table[given_op-1][target_op-1]
|
|
*
|
|
* where test_op, given_op and target_op are strategy numbers (from 1 to 5)
|
|
* of btree operators, is as follows:
|
|
*
|
|
* If you know, for some ATTR, that "ATTR given_op CONST1" is true, and you
|
|
* want to determine whether "ATTR target_op CONST2" must also be true, then
|
|
* you can use "CONST1 test_op CONST2" as a test. If this test returns true,
|
|
* then the target expression must be true; if the test returns false, then
|
|
* the target expression may be false.
|
|
*
|
|
* An entry where test_op==0 means the implication cannot be determined, i.e.,
|
|
* this test should always be considered false.
|
|
*/
|
|
|
|
static const StrategyNumber
|
|
BT_implic_table[BTMaxStrategyNumber][BTMaxStrategyNumber] = {
|
|
{2, 2, 0, 0, 0},
|
|
{1, 2, 0, 0, 0},
|
|
{1, 2, 3, 4, 5},
|
|
{0, 0, 0, 4, 5},
|
|
{0, 0, 0, 4, 4}
|
|
};
|
|
|
|
|
|
/*
|
|
* pred_test_simple_clause
|
|
* Does the "predicate inclusion test" for a "simple clause" predicate
|
|
* and a "simple clause" restriction.
|
|
*
|
|
* We have two strategies for determining whether one simple clause
|
|
* implies another. A simple and general way is to see if they are
|
|
* equal(); this works for any kind of expression. (Actually, there
|
|
* is an implied assumption that the functions in the expression are
|
|
* immutable, ie dependent only on their input arguments --- but this
|
|
* was checked for the predicate by CheckPredicate().)
|
|
*
|
|
* Our other way works only for (binary boolean) operators that are
|
|
* in some btree operator class. We use the above operator implication
|
|
* table to be able to derive implications between nonidentical clauses.
|
|
*
|
|
* Eventually, rtree operators could also be handled by defining an
|
|
* appropriate "RT_implic_table" array.
|
|
*/
|
|
static bool
|
|
pred_test_simple_clause(Expr *predicate, Node *clause)
|
|
{
|
|
Var *pred_var,
|
|
*clause_var;
|
|
Const *pred_const,
|
|
*clause_const;
|
|
Oid pred_op,
|
|
clause_op,
|
|
test_op;
|
|
Oid opclass_id = InvalidOid;
|
|
StrategyNumber pred_strategy = 0,
|
|
clause_strategy,
|
|
test_strategy;
|
|
Expr *test_expr;
|
|
ExprState *test_exprstate;
|
|
Datum test_result;
|
|
bool isNull;
|
|
Relation relation;
|
|
HeapScanDesc scan;
|
|
HeapTuple tuple;
|
|
ScanKeyData entry[1];
|
|
Form_pg_amop aform;
|
|
EState *estate;
|
|
MemoryContext oldcontext;
|
|
|
|
/* First try the equal() test */
|
|
if (equal((Node *) predicate, clause))
|
|
return true;
|
|
|
|
/*
|
|
* Can't do anything more unless they are both binary opclauses with a
|
|
* Var on the left and a Const on the right.
|
|
*/
|
|
if (!is_opclause(predicate))
|
|
return false;
|
|
pred_var = (Var *) get_leftop(predicate);
|
|
pred_const = (Const *) get_rightop(predicate);
|
|
|
|
if (!is_opclause(clause))
|
|
return false;
|
|
clause_var = (Var *) get_leftop((Expr *) clause);
|
|
clause_const = (Const *) get_rightop((Expr *) clause);
|
|
|
|
if (!IsA(clause_var, Var) ||
|
|
clause_const == NULL ||
|
|
!IsA(clause_const, Const) ||
|
|
!IsA(pred_var, Var) ||
|
|
pred_const == NULL ||
|
|
!IsA(pred_const, Const))
|
|
return false;
|
|
|
|
/*
|
|
* The implication can't be determined unless the predicate and the
|
|
* clause refer to the same attribute.
|
|
*/
|
|
if (clause_var->varno != pred_var->varno ||
|
|
clause_var->varattno != pred_var->varattno)
|
|
return false;
|
|
|
|
/* Get the operators for the two clauses we're comparing */
|
|
pred_op = ((OpExpr *) predicate)->opno;
|
|
clause_op = ((OpExpr *) clause)->opno;
|
|
|
|
/*
|
|
* 1. Find a "btree" strategy number for the pred_op
|
|
*
|
|
* The following assumes that any given operator will only be in a single
|
|
* btree operator class. This is true at least for all the
|
|
* pre-defined operator classes. If it isn't true, then whichever
|
|
* operator class happens to be returned first for the given operator
|
|
* will be used to find the associated strategy numbers for the test.
|
|
* --Nels, Jan '93
|
|
*/
|
|
ScanKeyEntryInitialize(&entry[0], 0x0,
|
|
Anum_pg_amop_amopopr,
|
|
F_OIDEQ,
|
|
ObjectIdGetDatum(pred_op));
|
|
|
|
relation = heap_openr(AccessMethodOperatorRelationName, AccessShareLock);
|
|
scan = heap_beginscan(relation, SnapshotNow, 1, entry);
|
|
|
|
while ((tuple = heap_getnext(scan, ForwardScanDirection)) != NULL)
|
|
{
|
|
aform = (Form_pg_amop) GETSTRUCT(tuple);
|
|
if (opclass_is_btree(aform->amopclaid))
|
|
{
|
|
/* Get the predicate operator's btree strategy number (1 to 5) */
|
|
pred_strategy = (StrategyNumber) aform->amopstrategy;
|
|
Assert(pred_strategy >= 1 && pred_strategy <= 5);
|
|
|
|
/*
|
|
* Remember which operator class this strategy number came
|
|
* from
|
|
*/
|
|
opclass_id = aform->amopclaid;
|
|
break;
|
|
}
|
|
}
|
|
|
|
heap_endscan(scan);
|
|
heap_close(relation, AccessShareLock);
|
|
|
|
if (!OidIsValid(opclass_id))
|
|
{
|
|
/* predicate operator isn't btree-indexable */
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* 2. From the same opclass, find a strategy num for the clause_op
|
|
*/
|
|
tuple = SearchSysCache(AMOPOPID,
|
|
ObjectIdGetDatum(opclass_id),
|
|
ObjectIdGetDatum(clause_op),
|
|
0, 0);
|
|
if (!HeapTupleIsValid(tuple))
|
|
{
|
|
/* clause operator isn't btree-indexable, or isn't in this opclass */
|
|
return false;
|
|
}
|
|
aform = (Form_pg_amop) GETSTRUCT(tuple);
|
|
|
|
/* Get the restriction clause operator's strategy number (1 to 5) */
|
|
clause_strategy = (StrategyNumber) aform->amopstrategy;
|
|
Assert(clause_strategy >= 1 && clause_strategy <= 5);
|
|
|
|
ReleaseSysCache(tuple);
|
|
|
|
/*
|
|
* 3. Look up the "test" strategy number in the implication table
|
|
*/
|
|
test_strategy = BT_implic_table[clause_strategy - 1][pred_strategy - 1];
|
|
if (test_strategy == 0)
|
|
{
|
|
return false; /* the implication cannot be determined */
|
|
}
|
|
|
|
/*
|
|
* 4. From the same opclass, find the operator for the test strategy
|
|
*/
|
|
tuple = SearchSysCache(AMOPSTRATEGY,
|
|
ObjectIdGetDatum(opclass_id),
|
|
Int16GetDatum(test_strategy),
|
|
0, 0);
|
|
if (!HeapTupleIsValid(tuple))
|
|
{
|
|
/* this probably shouldn't fail? */
|
|
elog(DEBUG1, "pred_test_simple_clause: unknown test_op");
|
|
return false;
|
|
}
|
|
aform = (Form_pg_amop) GETSTRUCT(tuple);
|
|
|
|
/* Get the test operator */
|
|
test_op = aform->amopopr;
|
|
|
|
ReleaseSysCache(tuple);
|
|
|
|
/*
|
|
* 5. Evaluate the test. For this we need an EState.
|
|
*/
|
|
estate = CreateExecutorState();
|
|
|
|
/* We can use the estate's working context to avoid memory leaks. */
|
|
oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
|
|
|
|
/* Build expression tree */
|
|
test_expr = make_opclause(test_op,
|
|
BOOLOID,
|
|
false,
|
|
(Expr *) clause_const,
|
|
(Expr *) pred_const);
|
|
|
|
/* Prepare it for execution */
|
|
test_exprstate = ExecPrepareExpr(test_expr, estate);
|
|
|
|
/* And execute it. */
|
|
test_result = ExecEvalExprSwitchContext(test_exprstate,
|
|
GetPerTupleExprContext(estate),
|
|
&isNull, NULL);
|
|
|
|
/* Get back to outer memory context */
|
|
MemoryContextSwitchTo(oldcontext);
|
|
|
|
/* Release all the junk we just created */
|
|
FreeExecutorState(estate);
|
|
|
|
if (isNull)
|
|
{
|
|
elog(DEBUG1, "pred_test_simple_clause: null test result");
|
|
return false;
|
|
}
|
|
return DatumGetBool(test_result);
|
|
}
|
|
|
|
|
|
/****************************************************************************
|
|
* ---- ROUTINES TO CHECK JOIN CLAUSES ----
|
|
****************************************************************************/
|
|
|
|
/*
|
|
* indexable_outerrelids
|
|
* Finds all other relids that participate in any indexable join clause
|
|
* for the specified index. Returns a list of relids.
|
|
*
|
|
* 'rel' is the relation for which 'index' is defined
|
|
*/
|
|
static Relids
|
|
indexable_outerrelids(RelOptInfo *rel, IndexOptInfo *index)
|
|
{
|
|
Relids outer_relids = NIL;
|
|
List *i;
|
|
|
|
foreach(i, rel->joininfo)
|
|
{
|
|
JoinInfo *joininfo = (JoinInfo *) lfirst(i);
|
|
bool match_found = false;
|
|
List *j;
|
|
|
|
/*
|
|
* Examine each joinclause in the JoinInfo node's list to see if
|
|
* it matches any key of the index. If so, add the JoinInfo's
|
|
* otherrels to the result. We can skip examining other joinclauses
|
|
* in the same list as soon as we find a match (since by definition
|
|
* they all have the same otherrels).
|
|
*/
|
|
foreach(j, joininfo->jinfo_restrictinfo)
|
|
{
|
|
RestrictInfo *rinfo = (RestrictInfo *) lfirst(j);
|
|
Expr *clause = rinfo->clause;
|
|
int *indexkeys = index->indexkeys;
|
|
Oid *classes = index->classlist;
|
|
|
|
do
|
|
{
|
|
int curIndxKey = indexkeys[0];
|
|
Oid curClass = classes[0];
|
|
|
|
if (match_join_clause_to_indexkey(rel,
|
|
index,
|
|
curIndxKey,
|
|
curClass,
|
|
clause))
|
|
{
|
|
match_found = true;
|
|
break;
|
|
}
|
|
|
|
indexkeys++;
|
|
classes++;
|
|
|
|
} while (!DoneMatchingIndexKeys(indexkeys, classes));
|
|
|
|
if (match_found)
|
|
break;
|
|
}
|
|
|
|
if (match_found)
|
|
{
|
|
outer_relids = set_unioni(outer_relids,
|
|
joininfo->unjoined_relids);
|
|
}
|
|
}
|
|
|
|
return outer_relids;
|
|
}
|
|
|
|
/*
|
|
* best_inner_indexscan
|
|
* Finds the best available inner indexscan for a nestloop join
|
|
* with the given rel on the inside and the given outer_relids outside.
|
|
* May return NULL if there are no possible inner indexscans.
|
|
*
|
|
* We ignore ordering considerations (since a nestloop's inner scan's order
|
|
* is uninteresting). Also, we consider only total cost when deciding which
|
|
* of two possible paths is better --- this assumes that all indexpaths have
|
|
* negligible startup cost. (True today, but someday we might have to think
|
|
* harder.) Therefore, there is only one dimension of comparison and so it's
|
|
* sufficient to return a single "best" path.
|
|
*/
|
|
Path *
|
|
best_inner_indexscan(Query *root, RelOptInfo *rel,
|
|
Relids outer_relids, JoinType jointype)
|
|
{
|
|
Path *cheapest = NULL;
|
|
bool isouterjoin;
|
|
List *ilist;
|
|
List *jlist;
|
|
InnerIndexscanInfo *info;
|
|
MemoryContext oldcontext;
|
|
|
|
/*
|
|
* Nestloop only supports inner, left, and IN joins.
|
|
*/
|
|
switch (jointype)
|
|
{
|
|
case JOIN_INNER:
|
|
case JOIN_IN:
|
|
case JOIN_UNIQUE_OUTER:
|
|
isouterjoin = false;
|
|
break;
|
|
case JOIN_LEFT:
|
|
isouterjoin = true;
|
|
break;
|
|
default:
|
|
return NULL;
|
|
}
|
|
/*
|
|
* If there are no indexable joinclauses for this rel, exit quickly.
|
|
*/
|
|
if (!rel->index_outer_relids)
|
|
return NULL;
|
|
/*
|
|
* Otherwise, we have to do path selection in the memory context of
|
|
* the given rel, so that any created path can be safely attached to
|
|
* the rel's cache of best inner paths. (This is not currently an
|
|
* issue for normal planning, but it is an issue for GEQO planning.)
|
|
*/
|
|
oldcontext = MemoryContextSwitchTo(GetMemoryChunkContext(rel));
|
|
/*
|
|
* Intersect the given outer_relids with index_outer_relids
|
|
* to find the set of outer relids actually relevant for this index.
|
|
* If there are none, again we can fail immediately.
|
|
*/
|
|
outer_relids = set_intersecti(rel->index_outer_relids, outer_relids);
|
|
if (!outer_relids)
|
|
{
|
|
MemoryContextSwitchTo(oldcontext);
|
|
return NULL;
|
|
}
|
|
/*
|
|
* Look to see if we already computed the result for this set of
|
|
* relevant outerrels. (We include the isouterjoin status in the
|
|
* cache lookup key for safety. In practice I suspect this is not
|
|
* necessary because it should always be the same for a given innerrel.)
|
|
*/
|
|
foreach(jlist, rel->index_inner_paths)
|
|
{
|
|
info = (InnerIndexscanInfo *) lfirst(jlist);
|
|
if (sameseti(info->other_relids, outer_relids) &&
|
|
info->isouterjoin == isouterjoin)
|
|
{
|
|
freeList(outer_relids);
|
|
MemoryContextSwitchTo(oldcontext);
|
|
return info->best_innerpath;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* For each index of the rel, find the best path; then choose the
|
|
* best overall. We cache the per-index results as well as the overall
|
|
* result. (This is useful because different indexes may have different
|
|
* relevant outerrel sets, so different overall outerrel sets might still
|
|
* map to the same computation for a given index.)
|
|
*/
|
|
foreach(ilist, rel->indexlist)
|
|
{
|
|
IndexOptInfo *index = (IndexOptInfo *) lfirst(ilist);
|
|
Relids index_outer_relids;
|
|
Path *path = NULL;
|
|
|
|
/* skip quickly if index has no useful join clauses */
|
|
if (!index->outer_relids)
|
|
continue;
|
|
/* identify set of relevant outer relids for this index */
|
|
index_outer_relids = set_intersecti(index->outer_relids, outer_relids);
|
|
if (!index_outer_relids)
|
|
continue;
|
|
/*
|
|
* Look to see if we already computed the result for this index.
|
|
*/
|
|
foreach(jlist, index->inner_paths)
|
|
{
|
|
info = (InnerIndexscanInfo *) lfirst(jlist);
|
|
if (sameseti(info->other_relids, index_outer_relids) &&
|
|
info->isouterjoin == isouterjoin)
|
|
{
|
|
path = info->best_innerpath;
|
|
freeList(index_outer_relids); /* not needed anymore */
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (jlist == NIL) /* failed to find a match? */
|
|
{
|
|
List *clausegroup;
|
|
|
|
/* find useful clauses for this index and outerjoin set */
|
|
clausegroup = group_clauses_by_indexkey_for_join(rel,
|
|
index,
|
|
index_outer_relids,
|
|
isouterjoin);
|
|
if (clausegroup)
|
|
{
|
|
/* remove duplicate and redundant clauses */
|
|
clausegroup = remove_redundant_join_clauses(root,
|
|
clausegroup,
|
|
jointype);
|
|
/* make the path */
|
|
path = make_innerjoin_index_path(root, rel, index,
|
|
clausegroup);
|
|
}
|
|
|
|
/* Cache the result --- whether positive or negative */
|
|
info = makeNode(InnerIndexscanInfo);
|
|
info->other_relids = index_outer_relids;
|
|
info->isouterjoin = isouterjoin;
|
|
info->best_innerpath = path;
|
|
index->inner_paths = lcons(info, index->inner_paths);
|
|
}
|
|
|
|
if (path != NULL &&
|
|
(cheapest == NULL ||
|
|
compare_path_costs(path, cheapest, TOTAL_COST) < 0))
|
|
cheapest = path;
|
|
}
|
|
|
|
/* Cache the result --- whether positive or negative */
|
|
info = makeNode(InnerIndexscanInfo);
|
|
info->other_relids = outer_relids;
|
|
info->isouterjoin = isouterjoin;
|
|
info->best_innerpath = cheapest;
|
|
rel->index_inner_paths = lcons(info, rel->index_inner_paths);
|
|
|
|
MemoryContextSwitchTo(oldcontext);
|
|
|
|
return cheapest;
|
|
}
|
|
|
|
/****************************************************************************
|
|
* ---- PATH CREATION UTILITIES ----
|
|
****************************************************************************/
|
|
|
|
/*
|
|
* make_innerjoin_index_path
|
|
* Create an index path node for a path to be used as an inner
|
|
* relation in a nestloop join.
|
|
*
|
|
* 'rel' is the relation for which 'index' is defined
|
|
* 'clausegroup' is a list of restrictinfo nodes that can use 'index'
|
|
*/
|
|
static Path *
|
|
make_innerjoin_index_path(Query *root,
|
|
RelOptInfo *rel, IndexOptInfo *index,
|
|
List *clausegroup)
|
|
{
|
|
IndexPath *pathnode = makeNode(IndexPath);
|
|
List *indexquals;
|
|
|
|
/* XXX this code ought to be merged with create_index_path? */
|
|
|
|
pathnode->path.pathtype = T_IndexScan;
|
|
pathnode->path.parent = rel;
|
|
|
|
/*
|
|
* There's no point in marking the path with any pathkeys, since
|
|
* it will only ever be used as the inner path of a nestloop, and
|
|
* so its ordering does not matter.
|
|
*/
|
|
pathnode->path.pathkeys = NIL;
|
|
|
|
/* Extract bare indexqual clauses from restrictinfos */
|
|
indexquals = get_actual_clauses(clausegroup);
|
|
|
|
/* expand special operators to indexquals the executor can handle */
|
|
indexquals = expand_indexqual_conditions(indexquals);
|
|
|
|
/*
|
|
* Note that we are making a pathnode for a single-scan indexscan;
|
|
* therefore, both indexinfo and indexqual should be single-element lists.
|
|
*/
|
|
pathnode->indexinfo = makeList1(index);
|
|
pathnode->indexqual = makeList1(indexquals);
|
|
|
|
/* We don't actually care what order the index scans in ... */
|
|
pathnode->indexscandir = NoMovementScanDirection;
|
|
|
|
/*
|
|
* We must compute the estimated number of output rows for the
|
|
* indexscan. This is less than rel->rows because of the
|
|
* additional selectivity of the join clauses. Since clausegroup
|
|
* may contain both restriction and join clauses, we have to do a
|
|
* set union to get the full set of clauses that must be
|
|
* considered to compute the correct selectivity. (We can't just
|
|
* nconc the two lists; then we might have some restriction
|
|
* clauses appearing twice, which'd mislead
|
|
* restrictlist_selectivity into double-counting their
|
|
* selectivity. However, since RestrictInfo nodes aren't copied when
|
|
* linking them into different lists, it should be sufficient to use
|
|
* pointer comparison to remove duplicates.)
|
|
*/
|
|
pathnode->rows = rel->tuples *
|
|
restrictlist_selectivity(root,
|
|
set_ptrUnion(rel->baserestrictinfo,
|
|
clausegroup),
|
|
lfirsti(rel->relids));
|
|
/* Like costsize.c, force estimate to be at least one row */
|
|
if (pathnode->rows < 1.0)
|
|
pathnode->rows = 1.0;
|
|
|
|
cost_index(&pathnode->path, root, rel, index, indexquals, true);
|
|
|
|
return (Path *) pathnode;
|
|
}
|
|
|
|
/****************************************************************************
|
|
* ---- ROUTINES TO CHECK OPERANDS ----
|
|
****************************************************************************/
|
|
|
|
/*
|
|
* match_index_to_operand()
|
|
* Generalized test for a match between an index's key
|
|
* and the operand on one side of a restriction or join clause.
|
|
* Now check for functional indices as well.
|
|
*/
|
|
static bool
|
|
match_index_to_operand(int indexkey,
|
|
Node *operand,
|
|
RelOptInfo *rel,
|
|
IndexOptInfo *index)
|
|
{
|
|
/*
|
|
* Ignore any RelabelType node above the indexkey. This is needed to
|
|
* be able to apply indexscanning in binary-compatible-operator cases.
|
|
* Note: we can assume there is at most one RelabelType node;
|
|
* eval_const_expressions() will have simplified if more than one.
|
|
*/
|
|
if (operand && IsA(operand, RelabelType))
|
|
operand = (Node *) ((RelabelType *) operand)->arg;
|
|
|
|
if (index->indproc == InvalidOid)
|
|
{
|
|
/*
|
|
* Simple index.
|
|
*/
|
|
if (operand && IsA(operand, Var) &&
|
|
lfirsti(rel->relids) == ((Var *) operand)->varno &&
|
|
indexkey == ((Var *) operand)->varattno)
|
|
return true;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Functional index.
|
|
*/
|
|
return function_index_operand((Expr *) operand, rel, index);
|
|
}
|
|
|
|
static bool
|
|
function_index_operand(Expr *funcOpnd, RelOptInfo *rel, IndexOptInfo *index)
|
|
{
|
|
int relvarno = lfirsti(rel->relids);
|
|
FuncExpr *function;
|
|
List *funcargs;
|
|
int *indexKeys = index->indexkeys;
|
|
List *arg;
|
|
int i;
|
|
|
|
/*
|
|
* sanity check, make sure we know what we're dealing with here.
|
|
*/
|
|
if (funcOpnd == NULL || !IsA(funcOpnd, FuncExpr) ||
|
|
indexKeys == NULL)
|
|
return false;
|
|
|
|
function = (FuncExpr *) funcOpnd;
|
|
funcargs = function->args;
|
|
|
|
if (function->funcid != index->indproc)
|
|
return false;
|
|
|
|
/*----------
|
|
* Check that the arguments correspond to the same arguments used to
|
|
* create the functional index. To do this we must check that
|
|
* 1. they refer to the right relation.
|
|
* 2. the args have the right attr. numbers in the right order.
|
|
* We must ignore RelabelType nodes above the argument Vars in order
|
|
* to recognize binary-compatible-function cases correctly.
|
|
*----------
|
|
*/
|
|
i = 0;
|
|
foreach(arg, funcargs)
|
|
{
|
|
Var *var = (Var *) lfirst(arg);
|
|
|
|
if (var && IsA(var, RelabelType))
|
|
var = (Var *) ((RelabelType *) var)->arg;
|
|
if (var == NULL || !IsA(var, Var))
|
|
return false;
|
|
if (indexKeys[i] == 0)
|
|
return false;
|
|
if (var->varno != relvarno || var->varattno != indexKeys[i])
|
|
return false;
|
|
|
|
i++;
|
|
}
|
|
|
|
if (indexKeys[i] != 0)
|
|
return false; /* not enough arguments */
|
|
|
|
return true;
|
|
}
|
|
|
|
/****************************************************************************
|
|
* ---- ROUTINES FOR "SPECIAL" INDEXABLE OPERATORS ----
|
|
****************************************************************************/
|
|
|
|
/*----------
|
|
* These routines handle special optimization of operators that can be
|
|
* used with index scans even though they are not known to the executor's
|
|
* indexscan machinery. The key idea is that these operators allow us
|
|
* to derive approximate indexscan qual clauses, such that any tuples
|
|
* that pass the operator clause itself must also satisfy the simpler
|
|
* indexscan condition(s). Then we can use the indexscan machinery
|
|
* to avoid scanning as much of the table as we'd otherwise have to,
|
|
* while applying the original operator as a qpqual condition to ensure
|
|
* we deliver only the tuples we want. (In essence, we're using a regular
|
|
* index as if it were a lossy index.)
|
|
*
|
|
* An example of what we're doing is
|
|
* textfield LIKE 'abc%'
|
|
* from which we can generate the indexscanable conditions
|
|
* textfield >= 'abc' AND textfield < 'abd'
|
|
* which allow efficient scanning of an index on textfield.
|
|
* (In reality, character set and collation issues make the transformation
|
|
* from LIKE to indexscan limits rather harder than one might think ...
|
|
* but that's the basic idea.)
|
|
*
|
|
* Two routines are provided here, match_special_index_operator() and
|
|
* expand_indexqual_conditions(). match_special_index_operator() is
|
|
* just an auxiliary function for match_clause_to_indexkey(); after
|
|
* the latter fails to recognize a restriction opclause's operator
|
|
* as a member of an index's opclass, it asks match_special_index_operator()
|
|
* whether the clause should be considered an indexqual anyway.
|
|
* expand_indexqual_conditions() converts a list of "raw" indexqual
|
|
* conditions (with implicit AND semantics across list elements) into
|
|
* a list that the executor can actually handle. For operators that
|
|
* are members of the index's opclass this transformation is a no-op,
|
|
* but operators recognized by match_special_index_operator() must be
|
|
* converted into one or more "regular" indexqual conditions.
|
|
*----------
|
|
*/
|
|
|
|
/*
|
|
* match_special_index_operator
|
|
* Recognize restriction clauses that can be used to generate
|
|
* additional indexscanable qualifications.
|
|
*
|
|
* The given clause is already known to be a binary opclause having
|
|
* the form (indexkey OP pseudoconst) or (pseudoconst OP indexkey),
|
|
* but the OP proved not to be one of the index's opclass operators.
|
|
* Return 'true' if we can do something with it anyway.
|
|
*/
|
|
static bool
|
|
match_special_index_operator(Expr *clause, Oid opclass,
|
|
bool indexkey_on_left)
|
|
{
|
|
bool isIndexable = false;
|
|
Node *leftop,
|
|
*rightop;
|
|
Oid expr_op;
|
|
Const *patt = NULL;
|
|
Const *prefix = NULL;
|
|
Const *rest = NULL;
|
|
|
|
/*
|
|
* Currently, all known special operators require the indexkey on the
|
|
* left, but this test could be pushed into the switch statement if
|
|
* some are added that do not...
|
|
*/
|
|
if (!indexkey_on_left)
|
|
return false;
|
|
|
|
/* we know these will succeed */
|
|
leftop = get_leftop(clause);
|
|
rightop = get_rightop(clause);
|
|
expr_op = ((OpExpr *) clause)->opno;
|
|
|
|
/* again, required for all current special ops: */
|
|
if (!IsA(rightop, Const) ||
|
|
((Const *) rightop)->constisnull)
|
|
return false;
|
|
patt = (Const *) rightop;
|
|
|
|
switch (expr_op)
|
|
{
|
|
case OID_TEXT_LIKE_OP:
|
|
case OID_BPCHAR_LIKE_OP:
|
|
case OID_VARCHAR_LIKE_OP:
|
|
case OID_NAME_LIKE_OP:
|
|
/* the right-hand const is type text for all of these */
|
|
if (locale_is_like_safe())
|
|
isIndexable = pattern_fixed_prefix(patt, Pattern_Type_Like,
|
|
&prefix, &rest) != Pattern_Prefix_None;
|
|
break;
|
|
|
|
case OID_BYTEA_LIKE_OP:
|
|
isIndexable = pattern_fixed_prefix(patt, Pattern_Type_Like,
|
|
&prefix, &rest) != Pattern_Prefix_None;
|
|
break;
|
|
|
|
case OID_TEXT_ICLIKE_OP:
|
|
case OID_BPCHAR_ICLIKE_OP:
|
|
case OID_VARCHAR_ICLIKE_OP:
|
|
case OID_NAME_ICLIKE_OP:
|
|
/* the right-hand const is type text for all of these */
|
|
if (locale_is_like_safe())
|
|
isIndexable = pattern_fixed_prefix(patt, Pattern_Type_Like_IC,
|
|
&prefix, &rest) != Pattern_Prefix_None;
|
|
break;
|
|
|
|
case OID_TEXT_REGEXEQ_OP:
|
|
case OID_BPCHAR_REGEXEQ_OP:
|
|
case OID_VARCHAR_REGEXEQ_OP:
|
|
case OID_NAME_REGEXEQ_OP:
|
|
/* the right-hand const is type text for all of these */
|
|
if (locale_is_like_safe())
|
|
isIndexable = pattern_fixed_prefix(patt, Pattern_Type_Regex,
|
|
&prefix, &rest) != Pattern_Prefix_None;
|
|
break;
|
|
|
|
case OID_TEXT_ICREGEXEQ_OP:
|
|
case OID_BPCHAR_ICREGEXEQ_OP:
|
|
case OID_VARCHAR_ICREGEXEQ_OP:
|
|
case OID_NAME_ICREGEXEQ_OP:
|
|
/* the right-hand const is type text for all of these */
|
|
if (locale_is_like_safe())
|
|
isIndexable = pattern_fixed_prefix(patt, Pattern_Type_Regex_IC,
|
|
&prefix, &rest) != Pattern_Prefix_None;
|
|
break;
|
|
|
|
case OID_INET_SUB_OP:
|
|
case OID_INET_SUBEQ_OP:
|
|
case OID_CIDR_SUB_OP:
|
|
case OID_CIDR_SUBEQ_OP:
|
|
isIndexable = true;
|
|
break;
|
|
}
|
|
|
|
if (prefix)
|
|
{
|
|
pfree(DatumGetPointer(prefix->constvalue));
|
|
pfree(prefix);
|
|
}
|
|
|
|
/* done if the expression doesn't look indexable */
|
|
if (!isIndexable)
|
|
return false;
|
|
|
|
/*
|
|
* Must also check that index's opclass supports the operators we will
|
|
* want to apply. (A hash index, for example, will not support ">=".)
|
|
* We cheat a little by not checking for availability of "=" ... any
|
|
* index type should support "=", methinks.
|
|
*/
|
|
switch (expr_op)
|
|
{
|
|
case OID_TEXT_LIKE_OP:
|
|
case OID_TEXT_ICLIKE_OP:
|
|
case OID_TEXT_REGEXEQ_OP:
|
|
case OID_TEXT_ICREGEXEQ_OP:
|
|
if (!op_in_opclass(find_operator(">=", TEXTOID), opclass) ||
|
|
!op_in_opclass(find_operator("<", TEXTOID), opclass))
|
|
isIndexable = false;
|
|
break;
|
|
|
|
case OID_BYTEA_LIKE_OP:
|
|
if (!op_in_opclass(find_operator(">=", BYTEAOID), opclass) ||
|
|
!op_in_opclass(find_operator("<", BYTEAOID), opclass))
|
|
isIndexable = false;
|
|
break;
|
|
|
|
case OID_BPCHAR_LIKE_OP:
|
|
case OID_BPCHAR_ICLIKE_OP:
|
|
case OID_BPCHAR_REGEXEQ_OP:
|
|
case OID_BPCHAR_ICREGEXEQ_OP:
|
|
if (!op_in_opclass(find_operator(">=", BPCHAROID), opclass) ||
|
|
!op_in_opclass(find_operator("<", BPCHAROID), opclass))
|
|
isIndexable = false;
|
|
break;
|
|
|
|
case OID_VARCHAR_LIKE_OP:
|
|
case OID_VARCHAR_ICLIKE_OP:
|
|
case OID_VARCHAR_REGEXEQ_OP:
|
|
case OID_VARCHAR_ICREGEXEQ_OP:
|
|
if (!op_in_opclass(find_operator(">=", VARCHAROID), opclass) ||
|
|
!op_in_opclass(find_operator("<", VARCHAROID), opclass))
|
|
isIndexable = false;
|
|
break;
|
|
|
|
case OID_NAME_LIKE_OP:
|
|
case OID_NAME_ICLIKE_OP:
|
|
case OID_NAME_REGEXEQ_OP:
|
|
case OID_NAME_ICREGEXEQ_OP:
|
|
if (!op_in_opclass(find_operator(">=", NAMEOID), opclass) ||
|
|
!op_in_opclass(find_operator("<", NAMEOID), opclass))
|
|
isIndexable = false;
|
|
break;
|
|
|
|
case OID_INET_SUB_OP:
|
|
case OID_INET_SUBEQ_OP:
|
|
/* for SUB we actually need ">" not ">=", but this should do */
|
|
if (!op_in_opclass(find_operator(">=", INETOID), opclass) ||
|
|
!op_in_opclass(find_operator("<=", INETOID), opclass))
|
|
isIndexable = false;
|
|
break;
|
|
|
|
case OID_CIDR_SUB_OP:
|
|
case OID_CIDR_SUBEQ_OP:
|
|
/* for SUB we actually need ">" not ">=", but this should do */
|
|
if (!op_in_opclass(find_operator(">=", CIDROID), opclass) ||
|
|
!op_in_opclass(find_operator("<=", CIDROID), opclass))
|
|
isIndexable = false;
|
|
break;
|
|
}
|
|
|
|
return isIndexable;
|
|
}
|
|
|
|
/*
|
|
* expand_indexqual_conditions
|
|
* Given a list of (implicitly ANDed) indexqual clauses,
|
|
* expand any "special" index operators into clauses that the indexscan
|
|
* machinery will know what to do with. Clauses that were not
|
|
* recognized by match_special_index_operator() must be passed through
|
|
* unchanged.
|
|
*/
|
|
List *
|
|
expand_indexqual_conditions(List *indexquals)
|
|
{
|
|
List *resultquals = NIL;
|
|
List *q;
|
|
|
|
foreach(q, indexquals)
|
|
{
|
|
Expr *clause = (Expr *) lfirst(q);
|
|
|
|
/* we know these will succeed */
|
|
Node *leftop = get_leftop(clause);
|
|
Node *rightop = get_rightop(clause);
|
|
Oid expr_op = ((OpExpr *) clause)->opno;
|
|
Const *patt = (Const *) rightop;
|
|
Const *prefix = NULL;
|
|
Const *rest = NULL;
|
|
Pattern_Prefix_Status pstatus;
|
|
|
|
switch (expr_op)
|
|
{
|
|
/*
|
|
* LIKE and regex operators are not members of any index
|
|
* opclass, so if we find one in an indexqual list we can
|
|
* assume that it was accepted by
|
|
* match_special_index_operator().
|
|
*/
|
|
case OID_TEXT_LIKE_OP:
|
|
case OID_BPCHAR_LIKE_OP:
|
|
case OID_VARCHAR_LIKE_OP:
|
|
case OID_NAME_LIKE_OP:
|
|
case OID_BYTEA_LIKE_OP:
|
|
pstatus = pattern_fixed_prefix(patt, Pattern_Type_Like,
|
|
&prefix, &rest);
|
|
resultquals = nconc(resultquals,
|
|
prefix_quals(leftop, expr_op,
|
|
prefix, pstatus));
|
|
break;
|
|
|
|
case OID_TEXT_ICLIKE_OP:
|
|
case OID_BPCHAR_ICLIKE_OP:
|
|
case OID_VARCHAR_ICLIKE_OP:
|
|
case OID_NAME_ICLIKE_OP:
|
|
/* the right-hand const is type text for all of these */
|
|
pstatus = pattern_fixed_prefix(patt, Pattern_Type_Like_IC,
|
|
&prefix, &rest);
|
|
resultquals = nconc(resultquals,
|
|
prefix_quals(leftop, expr_op,
|
|
prefix, pstatus));
|
|
break;
|
|
|
|
case OID_TEXT_REGEXEQ_OP:
|
|
case OID_BPCHAR_REGEXEQ_OP:
|
|
case OID_VARCHAR_REGEXEQ_OP:
|
|
case OID_NAME_REGEXEQ_OP:
|
|
/* the right-hand const is type text for all of these */
|
|
pstatus = pattern_fixed_prefix(patt, Pattern_Type_Regex,
|
|
&prefix, &rest);
|
|
resultquals = nconc(resultquals,
|
|
prefix_quals(leftop, expr_op,
|
|
prefix, pstatus));
|
|
break;
|
|
|
|
case OID_TEXT_ICREGEXEQ_OP:
|
|
case OID_BPCHAR_ICREGEXEQ_OP:
|
|
case OID_VARCHAR_ICREGEXEQ_OP:
|
|
case OID_NAME_ICREGEXEQ_OP:
|
|
/* the right-hand const is type text for all of these */
|
|
pstatus = pattern_fixed_prefix(patt, Pattern_Type_Regex_IC,
|
|
&prefix, &rest);
|
|
resultquals = nconc(resultquals,
|
|
prefix_quals(leftop, expr_op,
|
|
prefix, pstatus));
|
|
break;
|
|
|
|
case OID_INET_SUB_OP:
|
|
case OID_INET_SUBEQ_OP:
|
|
case OID_CIDR_SUB_OP:
|
|
case OID_CIDR_SUBEQ_OP:
|
|
resultquals = nconc(resultquals,
|
|
network_prefix_quals(leftop, expr_op,
|
|
patt->constvalue));
|
|
break;
|
|
|
|
default:
|
|
resultquals = lappend(resultquals, clause);
|
|
break;
|
|
}
|
|
}
|
|
|
|
return resultquals;
|
|
}
|
|
|
|
/*
|
|
* Given a fixed prefix that all the "leftop" values must have,
|
|
* generate suitable indexqual condition(s). expr_op is the original
|
|
* LIKE or regex operator; we use it to deduce the appropriate comparison
|
|
* operators.
|
|
*/
|
|
static List *
|
|
prefix_quals(Node *leftop, Oid expr_op,
|
|
Const *prefix_const, Pattern_Prefix_Status pstatus)
|
|
{
|
|
List *result;
|
|
Oid datatype;
|
|
Oid oproid;
|
|
char *prefix;
|
|
Const *con;
|
|
Expr *expr;
|
|
Const *greaterstr = NULL;
|
|
|
|
Assert(pstatus != Pattern_Prefix_None);
|
|
|
|
switch (expr_op)
|
|
{
|
|
case OID_TEXT_LIKE_OP:
|
|
case OID_TEXT_ICLIKE_OP:
|
|
case OID_TEXT_REGEXEQ_OP:
|
|
case OID_TEXT_ICREGEXEQ_OP:
|
|
datatype = TEXTOID;
|
|
break;
|
|
|
|
case OID_BYTEA_LIKE_OP:
|
|
datatype = BYTEAOID;
|
|
break;
|
|
|
|
case OID_BPCHAR_LIKE_OP:
|
|
case OID_BPCHAR_ICLIKE_OP:
|
|
case OID_BPCHAR_REGEXEQ_OP:
|
|
case OID_BPCHAR_ICREGEXEQ_OP:
|
|
datatype = BPCHAROID;
|
|
break;
|
|
|
|
case OID_VARCHAR_LIKE_OP:
|
|
case OID_VARCHAR_ICLIKE_OP:
|
|
case OID_VARCHAR_REGEXEQ_OP:
|
|
case OID_VARCHAR_ICREGEXEQ_OP:
|
|
datatype = VARCHAROID;
|
|
break;
|
|
|
|
case OID_NAME_LIKE_OP:
|
|
case OID_NAME_ICLIKE_OP:
|
|
case OID_NAME_REGEXEQ_OP:
|
|
case OID_NAME_ICREGEXEQ_OP:
|
|
datatype = NAMEOID;
|
|
break;
|
|
|
|
default:
|
|
elog(ERROR, "prefix_quals: unexpected operator %u", expr_op);
|
|
return NIL;
|
|
}
|
|
|
|
if (prefix_const->consttype != BYTEAOID)
|
|
prefix = DatumGetCString(DirectFunctionCall1(textout, prefix_const->constvalue));
|
|
else
|
|
prefix = DatumGetCString(DirectFunctionCall1(byteaout, prefix_const->constvalue));
|
|
|
|
/*
|
|
* If we found an exact-match pattern, generate an "=" indexqual.
|
|
*/
|
|
if (pstatus == Pattern_Prefix_Exact)
|
|
{
|
|
oproid = find_operator("=", datatype);
|
|
if (oproid == InvalidOid)
|
|
elog(ERROR, "prefix_quals: no = operator for type %u", datatype);
|
|
con = string_to_const(prefix, datatype);
|
|
expr = make_opclause(oproid, BOOLOID, false,
|
|
(Expr *) leftop, (Expr *) con);
|
|
result = makeList1(expr);
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Otherwise, we have a nonempty required prefix of the values.
|
|
*
|
|
* We can always say "x >= prefix".
|
|
*/
|
|
oproid = find_operator(">=", datatype);
|
|
if (oproid == InvalidOid)
|
|
elog(ERROR, "prefix_quals: no >= operator for type %u", datatype);
|
|
con = string_to_const(prefix, datatype);
|
|
expr = make_opclause(oproid, BOOLOID, false,
|
|
(Expr *) leftop, (Expr *) con);
|
|
result = makeList1(expr);
|
|
|
|
/*-------
|
|
* If we can create a string larger than the prefix, we can say
|
|
* "x < greaterstr".
|
|
*-------
|
|
*/
|
|
greaterstr = make_greater_string(con);
|
|
if (greaterstr)
|
|
{
|
|
oproid = find_operator("<", datatype);
|
|
if (oproid == InvalidOid)
|
|
elog(ERROR, "prefix_quals: no < operator for type %u", datatype);
|
|
expr = make_opclause(oproid, BOOLOID, false,
|
|
(Expr *) leftop, (Expr *) greaterstr);
|
|
result = lappend(result, expr);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Given a leftop and a rightop, and a inet-class sup/sub operator,
|
|
* generate suitable indexqual condition(s). expr_op is the original
|
|
* operator.
|
|
*/
|
|
static List *
|
|
network_prefix_quals(Node *leftop, Oid expr_op, Datum rightop)
|
|
{
|
|
bool is_eq;
|
|
char *opr1name;
|
|
Datum opr1right;
|
|
Datum opr2right;
|
|
Oid opr1oid;
|
|
Oid opr2oid;
|
|
List *result;
|
|
Oid datatype;
|
|
Expr *expr;
|
|
|
|
switch (expr_op)
|
|
{
|
|
case OID_INET_SUB_OP:
|
|
datatype = INETOID;
|
|
is_eq = false;
|
|
break;
|
|
case OID_INET_SUBEQ_OP:
|
|
datatype = INETOID;
|
|
is_eq = true;
|
|
break;
|
|
case OID_CIDR_SUB_OP:
|
|
datatype = CIDROID;
|
|
is_eq = false;
|
|
break;
|
|
case OID_CIDR_SUBEQ_OP:
|
|
datatype = CIDROID;
|
|
is_eq = true;
|
|
break;
|
|
default:
|
|
elog(ERROR, "network_prefix_quals: unexpected operator %u",
|
|
expr_op);
|
|
return NIL;
|
|
}
|
|
|
|
/*
|
|
* create clause "key >= network_scan_first( rightop )", or ">" if the
|
|
* operator disallows equality.
|
|
*/
|
|
|
|
opr1name = is_eq ? ">=" : ">";
|
|
opr1oid = find_operator(opr1name, datatype);
|
|
if (opr1oid == InvalidOid)
|
|
elog(ERROR, "network_prefix_quals: no %s operator for type %u",
|
|
opr1name, datatype);
|
|
|
|
opr1right = network_scan_first(rightop);
|
|
|
|
expr = make_opclause(opr1oid, BOOLOID, false,
|
|
(Expr *) leftop,
|
|
(Expr *) makeConst(datatype, -1, opr1right,
|
|
false, false));
|
|
result = makeList1(expr);
|
|
|
|
/* create clause "key <= network_scan_last( rightop )" */
|
|
|
|
opr2oid = find_operator("<=", datatype);
|
|
if (opr2oid == InvalidOid)
|
|
elog(ERROR, "network_prefix_quals: no <= operator for type %u",
|
|
datatype);
|
|
|
|
opr2right = network_scan_last(rightop);
|
|
|
|
expr = make_opclause(opr2oid, BOOLOID, false,
|
|
(Expr *) leftop,
|
|
(Expr *) makeConst(datatype, -1, opr2right,
|
|
false, false));
|
|
result = lappend(result, expr);
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Handy subroutines for match_special_index_operator() and friends.
|
|
*/
|
|
|
|
/* See if there is a binary op of the given name for the given datatype */
|
|
/* NB: we assume that only built-in system operators are searched for */
|
|
static Oid
|
|
find_operator(const char *opname, Oid datatype)
|
|
{
|
|
return GetSysCacheOid(OPERNAMENSP,
|
|
PointerGetDatum(opname),
|
|
ObjectIdGetDatum(datatype),
|
|
ObjectIdGetDatum(datatype),
|
|
ObjectIdGetDatum(PG_CATALOG_NAMESPACE));
|
|
}
|
|
|
|
/*
|
|
* Generate a Datum of the appropriate type from a C string.
|
|
* Note that all of the supported types are pass-by-ref, so the
|
|
* returned value should be pfree'd if no longer needed.
|
|
*/
|
|
static Datum
|
|
string_to_datum(const char *str, Oid datatype)
|
|
{
|
|
/*
|
|
* We cheat a little by assuming that textin() will do for bpchar and
|
|
* varchar constants too...
|
|
*/
|
|
if (datatype == NAMEOID)
|
|
return DirectFunctionCall1(namein, CStringGetDatum(str));
|
|
else if (datatype == BYTEAOID)
|
|
return DirectFunctionCall1(byteain, CStringGetDatum(str));
|
|
else
|
|
return DirectFunctionCall1(textin, CStringGetDatum(str));
|
|
}
|
|
|
|
/*
|
|
* Generate a Const node of the appropriate type from a C string.
|
|
*/
|
|
static Const *
|
|
string_to_const(const char *str, Oid datatype)
|
|
{
|
|
Datum conval = string_to_datum(str, datatype);
|
|
|
|
return makeConst(datatype, ((datatype == NAMEOID) ? NAMEDATALEN : -1),
|
|
conval, false, false);
|
|
}
|