1
0
mirror of https://github.com/postgres/postgres.git synced 2025-09-03 15:22:11 +03:00
Files
postgres/src/backend/utils/adt/ip.c
1998-10-04 15:31:09 +00:00

284 lines
5.9 KiB
C

/*
* PostgreSQL type definitions for IP addresses. This
* is for IP V4 CIDR notation, but prepared for V6: just
* add the necessary bits where the comments indicate.
*
* $Id: ip.c,v 1.2 1998/10/04 15:31:06 momjian Exp $
*/
#include <sys/types.h>
#include <sys/socket.h>
#include <stdio.h>
#include <errno.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <postgres.h>
#include <utils/palloc.h>
#include <utils/mac.h>
/*
* Access macros. Add IPV6 support.
*/
#define ip_addrsize(ipaddrptr) \
(((ipaddr_struct *)VARDATA(ipaddrptr))->family == AF_INET ? 4 : -1)
#define ip_family(ipaddrptr) \
(((ipaddr_struct *)VARDATA(ipaddrptr))->family)
#define ip_bits(ipaddrptr) \
(((ipaddr_struct *)VARDATA(ipaddrptr))->bits)
#define ip_v4addr(ipaddrptr) \
(((ipaddr_struct *)VARDATA(ipaddrptr))->addr.ipv4_addr)
/*
* IP address reader.
*/
ipaddr *
ipaddr_in(char *src)
{
int bits;
ipaddr *dst;
dst = palloc(VARHDRSZ + sizeof(ipaddr_struct));
if (dst == NULL)
{
elog(ERROR, "unable to allocate memory in ipaddr_in()");
return (NULL);
}
/* First, try for an IP V4 address: */
ip_family(dst) = AF_INET;
bits = inet_net_pton(ip_family(dst), src, &ip_v4addr(dst), ip_addrsize(dst));
if ((bits < 0) || (bits > 32))
{
/* Go for an IPV6 address here, before faulting out: */
elog(ERROR, "could not parse \"%s\"", src);
pfree(dst);
return (NULL);
}
VARSIZE(dst) = VARHDRSZ
+ ((char *) &ip_v4addr(dst) - (char *) VARDATA(dst))
+ ip_addrsize(dst);
ip_bits(dst) = bits;
return (dst);
}
/*
* IP address output function.
*/
char *
ipaddr_out(ipaddr *src)
{
char *dst,
tmp[sizeof("255.255.255.255/32")];
if (ip_family(src) == AF_INET)
{
/* It's an IP V4 address: */
if (inet_net_ntop(AF_INET, &ip_v4addr(src), ip_bits(src),
tmp, sizeof(tmp)) < 0)
{
elog(ERROR, "unable to print address (%s)", strerror(errno));
return (NULL);
}
}
else
{
/* Go for an IPV6 address here, before faulting out: */
elog(ERROR, "unknown address family (%d)", ip_family(src));
return (NULL);
}
dst = palloc(strlen(tmp) + 1);
if (dst == NULL)
{
elog(ERROR, "unable to allocate memory in ipaddr_out()");
return (NULL);
}
strcpy(dst, tmp);
return (dst);
}
/*
* Boolean tests for magnitude. Add V4/V6 testing!
*/
bool
ipaddr_lt(ipaddr *a1, ipaddr *a2)
{
if ((ip_family(a1) == AF_INET) && (ip_family(a2) == AF_INET))
{
int order = v4bitncmp(ip_v4addr(a1), ip_v4addr(a2), ip_bits(a2));
return ((order < 0) || ((order == 0) && (ip_bits(a1) < ip_bits(a2))));
}
else
{
/* Go for an IPV6 address here, before faulting out: */
elog(ERROR, "cannot compare address families %d and %d",
ip_family(a1), ip_family(a2));
return (FALSE);
}
}
bool
ipaddr_le(ipaddr *a1, ipaddr *a2)
{
return (ipaddr_lt(a1, a2) || ipaddr_eq(a1, a2));
}
bool
ipaddr_eq(ipaddr *a1, ipaddr *a2)
{
if ((ip_family(a1) == AF_INET) && (ip_family(a2) == AF_INET))
{
return ((ip_bits(a1) == ip_bits(a2))
&& (v4bitncmp(ip_v4addr(a1), ip_v4addr(a2), ip_bits(a1)) == 0));
}
else
{
/* Go for an IPV6 address here, before faulting out: */
elog(ERROR, "cannot compare address families %d and %d",
ip_family(a1), ip_family(a2));
return (FALSE);
}
}
bool
ipaddr_ge(ipaddr *a1, ipaddr *a2)
{
return (ipaddr_gt(a1, a2) || ipaddr_eq(a1, a2));
}
bool
ipaddr_gt(ipaddr *a1, ipaddr *a2)
{
if ((ip_family(a1) == AF_INET) && (ip_family(a2) == AF_INET))
{
int order = v4bitncmp(ip_v4addr(a1), ip_v4addr(a2), ip_bits(a2));
return ((order > 0) || ((order == 0) && (ip_bits(a1) > ip_bits(a2))));
}
else
{
/* Go for an IPV6 address here, before faulting out: */
elog(ERROR, "cannot compare address families %d and %d",
ip_family(a1), ip_family(a2));
return (FALSE);
}
}
bool
ipaddr_ne(ipaddr *a1, ipaddr *a2)
{
return (!ipaddr_eq(a1, a2));
}
bool
ipaddr_sub(ipaddr *a1, ipaddr *a2)
{
if ((ip_family(a1) == AF_INET) && (ip_family(a2) == AF_INET))
{
return ((ip_bits(a1) > ip_bits(a2))
&& (v4bitncmp(ip_v4addr(a1), ip_v4addr(a2), ip_bits(a2)) == 0));
}
else
{
/* Go for an IPV6 address here, before faulting out: */
elog(ERROR, "cannot compare address families %d and %d",
ip_family(a1), ip_family(a2));
return (FALSE);
}
}
bool
ipaddr_subeq(ipaddr *a1, ipaddr *a2)
{
if ((ip_family(a1) == AF_INET) && (ip_family(a2) == AF_INET))
{
return ((ip_bits(a1) >= ip_bits(a2))
&& (v4bitncmp(ip_v4addr(a1), ip_v4addr(a2), ip_bits(a2)) == 0));
}
else
{
/* Go for an IPV6 address here, before faulting out: */
elog(ERROR, "cannot compare address families %d and %d",
ip_family(a1), ip_family(a2));
return (FALSE);
}
}
bool
ipaddr_sup(ipaddr *a1, ipaddr *a2)
{
if ((ip_family(a1) == AF_INET) && (ip_family(a2) == AF_INET))
{
return ((ip_bits(a1) < ip_bits(a2))
&& (v4bitncmp(ip_v4addr(a1), ip_v4addr(a2), ip_bits(a1)) == 0));
}
else
{
/* Go for an IPV6 address here, before faulting out: */
elog(ERROR, "cannot compare address families %d and %d",
ip_family(a1), ip_family(a2));
return (FALSE);
}
}
bool
ipaddr_supeq(ipaddr *a1, ipaddr *a2)
{
if ((ip_family(a1) == AF_INET) && (ip_family(a2) == AF_INET))
{
return ((ip_bits(a1) <= ip_bits(a2))
&& (v4bitncmp(ip_v4addr(a1), ip_v4addr(a2), ip_bits(a1)) == 0));
}
else
{
/* Go for an IPV6 address here, before faulting out: */
elog(ERROR, "cannot compare address families %d and %d",
ip_family(a1), ip_family(a2));
return (FALSE);
}
}
/*
* Comparison function for sorting. Add V4/V6 testing!
*/
int4
ipaddr_cmp(ipaddr *a1, ipaddr *a2)
{
if (ntohl(ip_v4addr(a1)) < ntohl(ip_v4addr(a2)))
return (-1);
else if (ntohl(ip_v4addr(a1)) > ntohl(ip_v4addr(a2)))
return (1);
return 0;
}
/*
* Bitwise comparison for V4 addresses. Add V6 implementation!
*/
int
v4bitncmp(unsigned int a1, unsigned int a2, int bits)
{
unsigned long mask = 0;
int i;
for (i = 0; i < bits; i++)
mask = (mask >> 1) | 0x80000000;
a1 = ntohl(a1);
a2 = ntohl(a2);
if ((a1 & mask) < (a2 & mask))
return (-1);
else if ((a1 & mask) > (a2 & mask))
return (1);
return (0);
}