mirror of
https://github.com/postgres/postgres.git
synced 2025-05-01 01:04:50 +03:00
check_agglevels_and_constraints() asserted that if we find an aggregate function in an EXPR_KIND_FROM_SUBSELECT expression, the expression must be in a LATERAL subquery. Alexander Lakhin found a case where that's not so: because of the odd scoping rules for NEW/OLD within a rule, a reference to NEW/OLD could cause an aggregate to be considered top-level even though it's in an unmarked sub-select. The error message that would be thrown seems sufficiently on-point, so just remove the Assert. (Hence, this is not a bug for production builds.) This Assert was added by me in commit eaccfded9 (9.3 era). It looks like I put it in to cross-check that the new logic for detecting misplaced aggregates (using agglevelsup) caught the same cases that a previous check on p_lateral_active did. So there might have been some related misbehavior before eaccfded9 ... but that's very ancient history by now, so I didn't dig any deeper. Per bug #18608 from Alexander Lakhin. Back-patch to all supported branches. Discussion: https://postgr.es/m/18608-48de0717508ee429@postgresql.org
2183 lines
62 KiB
C
2183 lines
62 KiB
C
/*-------------------------------------------------------------------------
|
|
*
|
|
* parse_agg.c
|
|
* handle aggregates and window functions in parser
|
|
*
|
|
* Portions Copyright (c) 1996-2023, PostgreSQL Global Development Group
|
|
* Portions Copyright (c) 1994, Regents of the University of California
|
|
*
|
|
*
|
|
* IDENTIFICATION
|
|
* src/backend/parser/parse_agg.c
|
|
*
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
#include "postgres.h"
|
|
|
|
#include "access/htup_details.h"
|
|
#include "catalog/pg_aggregate.h"
|
|
#include "catalog/pg_constraint.h"
|
|
#include "catalog/pg_type.h"
|
|
#include "nodes/makefuncs.h"
|
|
#include "nodes/nodeFuncs.h"
|
|
#include "optimizer/optimizer.h"
|
|
#include "parser/parse_agg.h"
|
|
#include "parser/parse_clause.h"
|
|
#include "parser/parse_coerce.h"
|
|
#include "parser/parse_expr.h"
|
|
#include "parser/parsetree.h"
|
|
#include "rewrite/rewriteManip.h"
|
|
#include "utils/builtins.h"
|
|
#include "utils/lsyscache.h"
|
|
#include "utils/syscache.h"
|
|
|
|
typedef struct
|
|
{
|
|
ParseState *pstate;
|
|
int min_varlevel;
|
|
int min_agglevel;
|
|
int sublevels_up;
|
|
} check_agg_arguments_context;
|
|
|
|
typedef struct
|
|
{
|
|
ParseState *pstate;
|
|
Query *qry;
|
|
bool hasJoinRTEs;
|
|
List *groupClauses;
|
|
List *groupClauseCommonVars;
|
|
bool have_non_var_grouping;
|
|
List **func_grouped_rels;
|
|
int sublevels_up;
|
|
bool in_agg_direct_args;
|
|
} check_ungrouped_columns_context;
|
|
|
|
static int check_agg_arguments(ParseState *pstate,
|
|
List *directargs,
|
|
List *args,
|
|
Expr *filter);
|
|
static bool check_agg_arguments_walker(Node *node,
|
|
check_agg_arguments_context *context);
|
|
static void check_ungrouped_columns(Node *node, ParseState *pstate, Query *qry,
|
|
List *groupClauses, List *groupClauseCommonVars,
|
|
bool have_non_var_grouping,
|
|
List **func_grouped_rels);
|
|
static bool check_ungrouped_columns_walker(Node *node,
|
|
check_ungrouped_columns_context *context);
|
|
static void finalize_grouping_exprs(Node *node, ParseState *pstate, Query *qry,
|
|
List *groupClauses, bool hasJoinRTEs,
|
|
bool have_non_var_grouping);
|
|
static bool finalize_grouping_exprs_walker(Node *node,
|
|
check_ungrouped_columns_context *context);
|
|
static void check_agglevels_and_constraints(ParseState *pstate, Node *expr);
|
|
static List *expand_groupingset_node(GroupingSet *gs);
|
|
static Node *make_agg_arg(Oid argtype, Oid argcollation);
|
|
|
|
|
|
/*
|
|
* transformAggregateCall -
|
|
* Finish initial transformation of an aggregate call
|
|
*
|
|
* parse_func.c has recognized the function as an aggregate, and has set up
|
|
* all the fields of the Aggref except aggargtypes, aggdirectargs, args,
|
|
* aggorder, aggdistinct and agglevelsup. The passed-in args list has been
|
|
* through standard expression transformation and type coercion to match the
|
|
* agg's declared arg types, while the passed-in aggorder list hasn't been
|
|
* transformed at all.
|
|
*
|
|
* Here we separate the args list into direct and aggregated args, storing the
|
|
* former in agg->aggdirectargs and the latter in agg->args. The regular
|
|
* args, but not the direct args, are converted into a targetlist by inserting
|
|
* TargetEntry nodes. We then transform the aggorder and agg_distinct
|
|
* specifications to produce lists of SortGroupClause nodes for agg->aggorder
|
|
* and agg->aggdistinct. (For a regular aggregate, this might result in
|
|
* adding resjunk expressions to the targetlist; but for ordered-set
|
|
* aggregates the aggorder list will always be one-to-one with the aggregated
|
|
* args.)
|
|
*
|
|
* We must also determine which query level the aggregate actually belongs to,
|
|
* set agglevelsup accordingly, and mark p_hasAggs true in the corresponding
|
|
* pstate level.
|
|
*/
|
|
void
|
|
transformAggregateCall(ParseState *pstate, Aggref *agg,
|
|
List *args, List *aggorder, bool agg_distinct)
|
|
{
|
|
List *argtypes = NIL;
|
|
List *tlist = NIL;
|
|
List *torder = NIL;
|
|
List *tdistinct = NIL;
|
|
AttrNumber attno = 1;
|
|
int save_next_resno;
|
|
ListCell *lc;
|
|
|
|
if (AGGKIND_IS_ORDERED_SET(agg->aggkind))
|
|
{
|
|
/*
|
|
* For an ordered-set agg, the args list includes direct args and
|
|
* aggregated args; we must split them apart.
|
|
*/
|
|
int numDirectArgs = list_length(args) - list_length(aggorder);
|
|
List *aargs;
|
|
ListCell *lc2;
|
|
|
|
Assert(numDirectArgs >= 0);
|
|
|
|
aargs = list_copy_tail(args, numDirectArgs);
|
|
agg->aggdirectargs = list_truncate(args, numDirectArgs);
|
|
|
|
/*
|
|
* Build a tlist from the aggregated args, and make a sortlist entry
|
|
* for each one. Note that the expressions in the SortBy nodes are
|
|
* ignored (they are the raw versions of the transformed args); we are
|
|
* just looking at the sort information in the SortBy nodes.
|
|
*/
|
|
forboth(lc, aargs, lc2, aggorder)
|
|
{
|
|
Expr *arg = (Expr *) lfirst(lc);
|
|
SortBy *sortby = (SortBy *) lfirst(lc2);
|
|
TargetEntry *tle;
|
|
|
|
/* We don't bother to assign column names to the entries */
|
|
tle = makeTargetEntry(arg, attno++, NULL, false);
|
|
tlist = lappend(tlist, tle);
|
|
|
|
torder = addTargetToSortList(pstate, tle,
|
|
torder, tlist, sortby);
|
|
}
|
|
|
|
/* Never any DISTINCT in an ordered-set agg */
|
|
Assert(!agg_distinct);
|
|
}
|
|
else
|
|
{
|
|
/* Regular aggregate, so it has no direct args */
|
|
agg->aggdirectargs = NIL;
|
|
|
|
/*
|
|
* Transform the plain list of Exprs into a targetlist.
|
|
*/
|
|
foreach(lc, args)
|
|
{
|
|
Expr *arg = (Expr *) lfirst(lc);
|
|
TargetEntry *tle;
|
|
|
|
/* We don't bother to assign column names to the entries */
|
|
tle = makeTargetEntry(arg, attno++, NULL, false);
|
|
tlist = lappend(tlist, tle);
|
|
}
|
|
|
|
/*
|
|
* If we have an ORDER BY, transform it. This will add columns to the
|
|
* tlist if they appear in ORDER BY but weren't already in the arg
|
|
* list. They will be marked resjunk = true so we can tell them apart
|
|
* from regular aggregate arguments later.
|
|
*
|
|
* We need to mess with p_next_resno since it will be used to number
|
|
* any new targetlist entries.
|
|
*/
|
|
save_next_resno = pstate->p_next_resno;
|
|
pstate->p_next_resno = attno;
|
|
|
|
torder = transformSortClause(pstate,
|
|
aggorder,
|
|
&tlist,
|
|
EXPR_KIND_ORDER_BY,
|
|
true /* force SQL99 rules */ );
|
|
|
|
/*
|
|
* If we have DISTINCT, transform that to produce a distinctList.
|
|
*/
|
|
if (agg_distinct)
|
|
{
|
|
tdistinct = transformDistinctClause(pstate, &tlist, torder, true);
|
|
|
|
/*
|
|
* Remove this check if executor support for hashed distinct for
|
|
* aggregates is ever added.
|
|
*/
|
|
foreach(lc, tdistinct)
|
|
{
|
|
SortGroupClause *sortcl = (SortGroupClause *) lfirst(lc);
|
|
|
|
if (!OidIsValid(sortcl->sortop))
|
|
{
|
|
Node *expr = get_sortgroupclause_expr(sortcl, tlist);
|
|
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_UNDEFINED_FUNCTION),
|
|
errmsg("could not identify an ordering operator for type %s",
|
|
format_type_be(exprType(expr))),
|
|
errdetail("Aggregates with DISTINCT must be able to sort their inputs."),
|
|
parser_errposition(pstate, exprLocation(expr))));
|
|
}
|
|
}
|
|
}
|
|
|
|
pstate->p_next_resno = save_next_resno;
|
|
}
|
|
|
|
/* Update the Aggref with the transformation results */
|
|
agg->args = tlist;
|
|
agg->aggorder = torder;
|
|
agg->aggdistinct = tdistinct;
|
|
|
|
/*
|
|
* Now build the aggargtypes list with the type OIDs of the direct and
|
|
* aggregated args, ignoring any resjunk entries that might have been
|
|
* added by ORDER BY/DISTINCT processing. We can't do this earlier
|
|
* because said processing can modify some args' data types, in particular
|
|
* by resolving previously-unresolved "unknown" literals.
|
|
*/
|
|
foreach(lc, agg->aggdirectargs)
|
|
{
|
|
Expr *arg = (Expr *) lfirst(lc);
|
|
|
|
argtypes = lappend_oid(argtypes, exprType((Node *) arg));
|
|
}
|
|
foreach(lc, tlist)
|
|
{
|
|
TargetEntry *tle = (TargetEntry *) lfirst(lc);
|
|
|
|
if (tle->resjunk)
|
|
continue; /* ignore junk */
|
|
argtypes = lappend_oid(argtypes, exprType((Node *) tle->expr));
|
|
}
|
|
agg->aggargtypes = argtypes;
|
|
|
|
check_agglevels_and_constraints(pstate, (Node *) agg);
|
|
}
|
|
|
|
/*
|
|
* transformGroupingFunc
|
|
* Transform a GROUPING expression
|
|
*
|
|
* GROUPING() behaves very like an aggregate. Processing of levels and nesting
|
|
* is done as for aggregates. We set p_hasAggs for these expressions too.
|
|
*/
|
|
Node *
|
|
transformGroupingFunc(ParseState *pstate, GroupingFunc *p)
|
|
{
|
|
ListCell *lc;
|
|
List *args = p->args;
|
|
List *result_list = NIL;
|
|
GroupingFunc *result = makeNode(GroupingFunc);
|
|
|
|
if (list_length(args) > 31)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_TOO_MANY_ARGUMENTS),
|
|
errmsg("GROUPING must have fewer than 32 arguments"),
|
|
parser_errposition(pstate, p->location)));
|
|
|
|
foreach(lc, args)
|
|
{
|
|
Node *current_result;
|
|
|
|
current_result = transformExpr(pstate, (Node *) lfirst(lc), pstate->p_expr_kind);
|
|
|
|
/* acceptability of expressions is checked later */
|
|
|
|
result_list = lappend(result_list, current_result);
|
|
}
|
|
|
|
result->args = result_list;
|
|
result->location = p->location;
|
|
|
|
check_agglevels_and_constraints(pstate, (Node *) result);
|
|
|
|
return (Node *) result;
|
|
}
|
|
|
|
/*
|
|
* Aggregate functions and grouping operations (which are combined in the spec
|
|
* as <set function specification>) are very similar with regard to level and
|
|
* nesting restrictions (though we allow a lot more things than the spec does).
|
|
* Centralise those restrictions here.
|
|
*/
|
|
static void
|
|
check_agglevels_and_constraints(ParseState *pstate, Node *expr)
|
|
{
|
|
List *directargs = NIL;
|
|
List *args = NIL;
|
|
Expr *filter = NULL;
|
|
int min_varlevel;
|
|
int location = -1;
|
|
Index *p_levelsup;
|
|
const char *err;
|
|
bool errkind;
|
|
bool isAgg = IsA(expr, Aggref);
|
|
|
|
if (isAgg)
|
|
{
|
|
Aggref *agg = (Aggref *) expr;
|
|
|
|
directargs = agg->aggdirectargs;
|
|
args = agg->args;
|
|
filter = agg->aggfilter;
|
|
location = agg->location;
|
|
p_levelsup = &agg->agglevelsup;
|
|
}
|
|
else
|
|
{
|
|
GroupingFunc *grp = (GroupingFunc *) expr;
|
|
|
|
args = grp->args;
|
|
location = grp->location;
|
|
p_levelsup = &grp->agglevelsup;
|
|
}
|
|
|
|
/*
|
|
* Check the arguments to compute the aggregate's level and detect
|
|
* improper nesting.
|
|
*/
|
|
min_varlevel = check_agg_arguments(pstate,
|
|
directargs,
|
|
args,
|
|
filter);
|
|
|
|
*p_levelsup = min_varlevel;
|
|
|
|
/* Mark the correct pstate level as having aggregates */
|
|
while (min_varlevel-- > 0)
|
|
pstate = pstate->parentParseState;
|
|
pstate->p_hasAggs = true;
|
|
|
|
/*
|
|
* Check to see if the aggregate function is in an invalid place within
|
|
* its aggregation query.
|
|
*
|
|
* For brevity we support two schemes for reporting an error here: set
|
|
* "err" to a custom message, or set "errkind" true if the error context
|
|
* is sufficiently identified by what ParseExprKindName will return, *and*
|
|
* what it will return is just a SQL keyword. (Otherwise, use a custom
|
|
* message to avoid creating translation problems.)
|
|
*/
|
|
err = NULL;
|
|
errkind = false;
|
|
switch (pstate->p_expr_kind)
|
|
{
|
|
case EXPR_KIND_NONE:
|
|
Assert(false); /* can't happen */
|
|
break;
|
|
case EXPR_KIND_OTHER:
|
|
|
|
/*
|
|
* Accept aggregate/grouping here; caller must throw error if
|
|
* wanted
|
|
*/
|
|
break;
|
|
case EXPR_KIND_JOIN_ON:
|
|
case EXPR_KIND_JOIN_USING:
|
|
if (isAgg)
|
|
err = _("aggregate functions are not allowed in JOIN conditions");
|
|
else
|
|
err = _("grouping operations are not allowed in JOIN conditions");
|
|
|
|
break;
|
|
case EXPR_KIND_FROM_SUBSELECT:
|
|
|
|
/*
|
|
* Aggregate/grouping scope rules make it worth being explicit
|
|
* here
|
|
*/
|
|
if (isAgg)
|
|
err = _("aggregate functions are not allowed in FROM clause of their own query level");
|
|
else
|
|
err = _("grouping operations are not allowed in FROM clause of their own query level");
|
|
|
|
break;
|
|
case EXPR_KIND_FROM_FUNCTION:
|
|
if (isAgg)
|
|
err = _("aggregate functions are not allowed in functions in FROM");
|
|
else
|
|
err = _("grouping operations are not allowed in functions in FROM");
|
|
|
|
break;
|
|
case EXPR_KIND_WHERE:
|
|
errkind = true;
|
|
break;
|
|
case EXPR_KIND_POLICY:
|
|
if (isAgg)
|
|
err = _("aggregate functions are not allowed in policy expressions");
|
|
else
|
|
err = _("grouping operations are not allowed in policy expressions");
|
|
|
|
break;
|
|
case EXPR_KIND_HAVING:
|
|
/* okay */
|
|
break;
|
|
case EXPR_KIND_FILTER:
|
|
errkind = true;
|
|
break;
|
|
case EXPR_KIND_WINDOW_PARTITION:
|
|
/* okay */
|
|
break;
|
|
case EXPR_KIND_WINDOW_ORDER:
|
|
/* okay */
|
|
break;
|
|
case EXPR_KIND_WINDOW_FRAME_RANGE:
|
|
if (isAgg)
|
|
err = _("aggregate functions are not allowed in window RANGE");
|
|
else
|
|
err = _("grouping operations are not allowed in window RANGE");
|
|
|
|
break;
|
|
case EXPR_KIND_WINDOW_FRAME_ROWS:
|
|
if (isAgg)
|
|
err = _("aggregate functions are not allowed in window ROWS");
|
|
else
|
|
err = _("grouping operations are not allowed in window ROWS");
|
|
|
|
break;
|
|
case EXPR_KIND_WINDOW_FRAME_GROUPS:
|
|
if (isAgg)
|
|
err = _("aggregate functions are not allowed in window GROUPS");
|
|
else
|
|
err = _("grouping operations are not allowed in window GROUPS");
|
|
|
|
break;
|
|
case EXPR_KIND_SELECT_TARGET:
|
|
/* okay */
|
|
break;
|
|
case EXPR_KIND_INSERT_TARGET:
|
|
case EXPR_KIND_UPDATE_SOURCE:
|
|
case EXPR_KIND_UPDATE_TARGET:
|
|
errkind = true;
|
|
break;
|
|
case EXPR_KIND_MERGE_WHEN:
|
|
if (isAgg)
|
|
err = _("aggregate functions are not allowed in MERGE WHEN conditions");
|
|
else
|
|
err = _("grouping operations are not allowed in MERGE WHEN conditions");
|
|
|
|
break;
|
|
case EXPR_KIND_GROUP_BY:
|
|
errkind = true;
|
|
break;
|
|
case EXPR_KIND_ORDER_BY:
|
|
/* okay */
|
|
break;
|
|
case EXPR_KIND_DISTINCT_ON:
|
|
/* okay */
|
|
break;
|
|
case EXPR_KIND_LIMIT:
|
|
case EXPR_KIND_OFFSET:
|
|
errkind = true;
|
|
break;
|
|
case EXPR_KIND_RETURNING:
|
|
errkind = true;
|
|
break;
|
|
case EXPR_KIND_VALUES:
|
|
case EXPR_KIND_VALUES_SINGLE:
|
|
errkind = true;
|
|
break;
|
|
case EXPR_KIND_CHECK_CONSTRAINT:
|
|
case EXPR_KIND_DOMAIN_CHECK:
|
|
if (isAgg)
|
|
err = _("aggregate functions are not allowed in check constraints");
|
|
else
|
|
err = _("grouping operations are not allowed in check constraints");
|
|
|
|
break;
|
|
case EXPR_KIND_COLUMN_DEFAULT:
|
|
case EXPR_KIND_FUNCTION_DEFAULT:
|
|
|
|
if (isAgg)
|
|
err = _("aggregate functions are not allowed in DEFAULT expressions");
|
|
else
|
|
err = _("grouping operations are not allowed in DEFAULT expressions");
|
|
|
|
break;
|
|
case EXPR_KIND_INDEX_EXPRESSION:
|
|
if (isAgg)
|
|
err = _("aggregate functions are not allowed in index expressions");
|
|
else
|
|
err = _("grouping operations are not allowed in index expressions");
|
|
|
|
break;
|
|
case EXPR_KIND_INDEX_PREDICATE:
|
|
if (isAgg)
|
|
err = _("aggregate functions are not allowed in index predicates");
|
|
else
|
|
err = _("grouping operations are not allowed in index predicates");
|
|
|
|
break;
|
|
case EXPR_KIND_STATS_EXPRESSION:
|
|
if (isAgg)
|
|
err = _("aggregate functions are not allowed in statistics expressions");
|
|
else
|
|
err = _("grouping operations are not allowed in statistics expressions");
|
|
|
|
break;
|
|
case EXPR_KIND_ALTER_COL_TRANSFORM:
|
|
if (isAgg)
|
|
err = _("aggregate functions are not allowed in transform expressions");
|
|
else
|
|
err = _("grouping operations are not allowed in transform expressions");
|
|
|
|
break;
|
|
case EXPR_KIND_EXECUTE_PARAMETER:
|
|
if (isAgg)
|
|
err = _("aggregate functions are not allowed in EXECUTE parameters");
|
|
else
|
|
err = _("grouping operations are not allowed in EXECUTE parameters");
|
|
|
|
break;
|
|
case EXPR_KIND_TRIGGER_WHEN:
|
|
if (isAgg)
|
|
err = _("aggregate functions are not allowed in trigger WHEN conditions");
|
|
else
|
|
err = _("grouping operations are not allowed in trigger WHEN conditions");
|
|
|
|
break;
|
|
case EXPR_KIND_PARTITION_BOUND:
|
|
if (isAgg)
|
|
err = _("aggregate functions are not allowed in partition bound");
|
|
else
|
|
err = _("grouping operations are not allowed in partition bound");
|
|
|
|
break;
|
|
case EXPR_KIND_PARTITION_EXPRESSION:
|
|
if (isAgg)
|
|
err = _("aggregate functions are not allowed in partition key expressions");
|
|
else
|
|
err = _("grouping operations are not allowed in partition key expressions");
|
|
|
|
break;
|
|
case EXPR_KIND_GENERATED_COLUMN:
|
|
|
|
if (isAgg)
|
|
err = _("aggregate functions are not allowed in column generation expressions");
|
|
else
|
|
err = _("grouping operations are not allowed in column generation expressions");
|
|
|
|
break;
|
|
|
|
case EXPR_KIND_CALL_ARGUMENT:
|
|
if (isAgg)
|
|
err = _("aggregate functions are not allowed in CALL arguments");
|
|
else
|
|
err = _("grouping operations are not allowed in CALL arguments");
|
|
|
|
break;
|
|
|
|
case EXPR_KIND_COPY_WHERE:
|
|
if (isAgg)
|
|
err = _("aggregate functions are not allowed in COPY FROM WHERE conditions");
|
|
else
|
|
err = _("grouping operations are not allowed in COPY FROM WHERE conditions");
|
|
|
|
break;
|
|
|
|
case EXPR_KIND_CYCLE_MARK:
|
|
errkind = true;
|
|
break;
|
|
|
|
/*
|
|
* There is intentionally no default: case here, so that the
|
|
* compiler will warn if we add a new ParseExprKind without
|
|
* extending this switch. If we do see an unrecognized value at
|
|
* runtime, the behavior will be the same as for EXPR_KIND_OTHER,
|
|
* which is sane anyway.
|
|
*/
|
|
}
|
|
|
|
if (err)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_GROUPING_ERROR),
|
|
errmsg_internal("%s", err),
|
|
parser_errposition(pstate, location)));
|
|
|
|
if (errkind)
|
|
{
|
|
if (isAgg)
|
|
/* translator: %s is name of a SQL construct, eg GROUP BY */
|
|
err = _("aggregate functions are not allowed in %s");
|
|
else
|
|
/* translator: %s is name of a SQL construct, eg GROUP BY */
|
|
err = _("grouping operations are not allowed in %s");
|
|
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_GROUPING_ERROR),
|
|
errmsg_internal(err,
|
|
ParseExprKindName(pstate->p_expr_kind)),
|
|
parser_errposition(pstate, location)));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* check_agg_arguments
|
|
* Scan the arguments of an aggregate function to determine the
|
|
* aggregate's semantic level (zero is the current select's level,
|
|
* one is its parent, etc).
|
|
*
|
|
* The aggregate's level is the same as the level of the lowest-level variable
|
|
* or aggregate in its aggregated arguments (including any ORDER BY columns)
|
|
* or filter expression; or if it contains no variables at all, we presume it
|
|
* to be local.
|
|
*
|
|
* Vars/Aggs in direct arguments are *not* counted towards determining the
|
|
* agg's level, as those arguments aren't evaluated per-row but only
|
|
* per-group, and so in some sense aren't really agg arguments. However,
|
|
* this can mean that we decide an agg is upper-level even when its direct
|
|
* args contain lower-level Vars/Aggs, and that case has to be disallowed.
|
|
* (This is a little strange, but the SQL standard seems pretty definite that
|
|
* direct args are not to be considered when setting the agg's level.)
|
|
*
|
|
* We also take this opportunity to detect any aggregates or window functions
|
|
* nested within the arguments. We can throw error immediately if we find
|
|
* a window function. Aggregates are a bit trickier because it's only an
|
|
* error if the inner aggregate is of the same semantic level as the outer,
|
|
* which we can't know until we finish scanning the arguments.
|
|
*/
|
|
static int
|
|
check_agg_arguments(ParseState *pstate,
|
|
List *directargs,
|
|
List *args,
|
|
Expr *filter)
|
|
{
|
|
int agglevel;
|
|
check_agg_arguments_context context;
|
|
|
|
context.pstate = pstate;
|
|
context.min_varlevel = -1; /* signifies nothing found yet */
|
|
context.min_agglevel = -1;
|
|
context.sublevels_up = 0;
|
|
|
|
(void) check_agg_arguments_walker((Node *) args, &context);
|
|
(void) check_agg_arguments_walker((Node *) filter, &context);
|
|
|
|
/*
|
|
* If we found no vars nor aggs at all, it's a level-zero aggregate;
|
|
* otherwise, its level is the minimum of vars or aggs.
|
|
*/
|
|
if (context.min_varlevel < 0)
|
|
{
|
|
if (context.min_agglevel < 0)
|
|
agglevel = 0;
|
|
else
|
|
agglevel = context.min_agglevel;
|
|
}
|
|
else if (context.min_agglevel < 0)
|
|
agglevel = context.min_varlevel;
|
|
else
|
|
agglevel = Min(context.min_varlevel, context.min_agglevel);
|
|
|
|
/*
|
|
* If there's a nested aggregate of the same semantic level, complain.
|
|
*/
|
|
if (agglevel == context.min_agglevel)
|
|
{
|
|
int aggloc;
|
|
|
|
aggloc = locate_agg_of_level((Node *) args, agglevel);
|
|
if (aggloc < 0)
|
|
aggloc = locate_agg_of_level((Node *) filter, agglevel);
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_GROUPING_ERROR),
|
|
errmsg("aggregate function calls cannot be nested"),
|
|
parser_errposition(pstate, aggloc)));
|
|
}
|
|
|
|
/*
|
|
* Now check for vars/aggs in the direct arguments, and throw error if
|
|
* needed. Note that we allow a Var of the agg's semantic level, but not
|
|
* an Agg of that level. In principle such Aggs could probably be
|
|
* supported, but it would create an ordering dependency among the
|
|
* aggregates at execution time. Since the case appears neither to be
|
|
* required by spec nor particularly useful, we just treat it as a
|
|
* nested-aggregate situation.
|
|
*/
|
|
if (directargs)
|
|
{
|
|
context.min_varlevel = -1;
|
|
context.min_agglevel = -1;
|
|
(void) check_agg_arguments_walker((Node *) directargs, &context);
|
|
if (context.min_varlevel >= 0 && context.min_varlevel < agglevel)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_GROUPING_ERROR),
|
|
errmsg("outer-level aggregate cannot contain a lower-level variable in its direct arguments"),
|
|
parser_errposition(pstate,
|
|
locate_var_of_level((Node *) directargs,
|
|
context.min_varlevel))));
|
|
if (context.min_agglevel >= 0 && context.min_agglevel <= agglevel)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_GROUPING_ERROR),
|
|
errmsg("aggregate function calls cannot be nested"),
|
|
parser_errposition(pstate,
|
|
locate_agg_of_level((Node *) directargs,
|
|
context.min_agglevel))));
|
|
}
|
|
return agglevel;
|
|
}
|
|
|
|
static bool
|
|
check_agg_arguments_walker(Node *node,
|
|
check_agg_arguments_context *context)
|
|
{
|
|
if (node == NULL)
|
|
return false;
|
|
if (IsA(node, Var))
|
|
{
|
|
int varlevelsup = ((Var *) node)->varlevelsup;
|
|
|
|
/* convert levelsup to frame of reference of original query */
|
|
varlevelsup -= context->sublevels_up;
|
|
/* ignore local vars of subqueries */
|
|
if (varlevelsup >= 0)
|
|
{
|
|
if (context->min_varlevel < 0 ||
|
|
context->min_varlevel > varlevelsup)
|
|
context->min_varlevel = varlevelsup;
|
|
}
|
|
return false;
|
|
}
|
|
if (IsA(node, Aggref))
|
|
{
|
|
int agglevelsup = ((Aggref *) node)->agglevelsup;
|
|
|
|
/* convert levelsup to frame of reference of original query */
|
|
agglevelsup -= context->sublevels_up;
|
|
/* ignore local aggs of subqueries */
|
|
if (agglevelsup >= 0)
|
|
{
|
|
if (context->min_agglevel < 0 ||
|
|
context->min_agglevel > agglevelsup)
|
|
context->min_agglevel = agglevelsup;
|
|
}
|
|
/* Continue and descend into subtree */
|
|
}
|
|
if (IsA(node, GroupingFunc))
|
|
{
|
|
int agglevelsup = ((GroupingFunc *) node)->agglevelsup;
|
|
|
|
/* convert levelsup to frame of reference of original query */
|
|
agglevelsup -= context->sublevels_up;
|
|
/* ignore local aggs of subqueries */
|
|
if (agglevelsup >= 0)
|
|
{
|
|
if (context->min_agglevel < 0 ||
|
|
context->min_agglevel > agglevelsup)
|
|
context->min_agglevel = agglevelsup;
|
|
}
|
|
/* Continue and descend into subtree */
|
|
}
|
|
|
|
/*
|
|
* SRFs and window functions can be rejected immediately, unless we are
|
|
* within a sub-select within the aggregate's arguments; in that case
|
|
* they're OK.
|
|
*/
|
|
if (context->sublevels_up == 0)
|
|
{
|
|
if ((IsA(node, FuncExpr) && ((FuncExpr *) node)->funcretset) ||
|
|
(IsA(node, OpExpr) && ((OpExpr *) node)->opretset))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("aggregate function calls cannot contain set-returning function calls"),
|
|
errhint("You might be able to move the set-returning function into a LATERAL FROM item."),
|
|
parser_errposition(context->pstate, exprLocation(node))));
|
|
if (IsA(node, WindowFunc))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_GROUPING_ERROR),
|
|
errmsg("aggregate function calls cannot contain window function calls"),
|
|
parser_errposition(context->pstate,
|
|
((WindowFunc *) node)->location)));
|
|
}
|
|
if (IsA(node, Query))
|
|
{
|
|
/* Recurse into subselects */
|
|
bool result;
|
|
|
|
context->sublevels_up++;
|
|
result = query_tree_walker((Query *) node,
|
|
check_agg_arguments_walker,
|
|
(void *) context,
|
|
0);
|
|
context->sublevels_up--;
|
|
return result;
|
|
}
|
|
|
|
return expression_tree_walker(node,
|
|
check_agg_arguments_walker,
|
|
(void *) context);
|
|
}
|
|
|
|
/*
|
|
* transformWindowFuncCall -
|
|
* Finish initial transformation of a window function call
|
|
*
|
|
* parse_func.c has recognized the function as a window function, and has set
|
|
* up all the fields of the WindowFunc except winref. Here we must (1) add
|
|
* the WindowDef to the pstate (if not a duplicate of one already present) and
|
|
* set winref to link to it; and (2) mark p_hasWindowFuncs true in the pstate.
|
|
* Unlike aggregates, only the most closely nested pstate level need be
|
|
* considered --- there are no "outer window functions" per SQL spec.
|
|
*/
|
|
void
|
|
transformWindowFuncCall(ParseState *pstate, WindowFunc *wfunc,
|
|
WindowDef *windef)
|
|
{
|
|
const char *err;
|
|
bool errkind;
|
|
|
|
/*
|
|
* A window function call can't contain another one (but aggs are OK). XXX
|
|
* is this required by spec, or just an unimplemented feature?
|
|
*
|
|
* Note: we don't need to check the filter expression here, because the
|
|
* context checks done below and in transformAggregateCall would have
|
|
* already rejected any window funcs or aggs within the filter.
|
|
*/
|
|
if (pstate->p_hasWindowFuncs &&
|
|
contain_windowfuncs((Node *) wfunc->args))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_WINDOWING_ERROR),
|
|
errmsg("window function calls cannot be nested"),
|
|
parser_errposition(pstate,
|
|
locate_windowfunc((Node *) wfunc->args))));
|
|
|
|
/*
|
|
* Check to see if the window function is in an invalid place within the
|
|
* query.
|
|
*
|
|
* For brevity we support two schemes for reporting an error here: set
|
|
* "err" to a custom message, or set "errkind" true if the error context
|
|
* is sufficiently identified by what ParseExprKindName will return, *and*
|
|
* what it will return is just a SQL keyword. (Otherwise, use a custom
|
|
* message to avoid creating translation problems.)
|
|
*/
|
|
err = NULL;
|
|
errkind = false;
|
|
switch (pstate->p_expr_kind)
|
|
{
|
|
case EXPR_KIND_NONE:
|
|
Assert(false); /* can't happen */
|
|
break;
|
|
case EXPR_KIND_OTHER:
|
|
/* Accept window func here; caller must throw error if wanted */
|
|
break;
|
|
case EXPR_KIND_JOIN_ON:
|
|
case EXPR_KIND_JOIN_USING:
|
|
err = _("window functions are not allowed in JOIN conditions");
|
|
break;
|
|
case EXPR_KIND_FROM_SUBSELECT:
|
|
/* can't get here, but just in case, throw an error */
|
|
errkind = true;
|
|
break;
|
|
case EXPR_KIND_FROM_FUNCTION:
|
|
err = _("window functions are not allowed in functions in FROM");
|
|
break;
|
|
case EXPR_KIND_WHERE:
|
|
errkind = true;
|
|
break;
|
|
case EXPR_KIND_POLICY:
|
|
err = _("window functions are not allowed in policy expressions");
|
|
break;
|
|
case EXPR_KIND_HAVING:
|
|
errkind = true;
|
|
break;
|
|
case EXPR_KIND_FILTER:
|
|
errkind = true;
|
|
break;
|
|
case EXPR_KIND_WINDOW_PARTITION:
|
|
case EXPR_KIND_WINDOW_ORDER:
|
|
case EXPR_KIND_WINDOW_FRAME_RANGE:
|
|
case EXPR_KIND_WINDOW_FRAME_ROWS:
|
|
case EXPR_KIND_WINDOW_FRAME_GROUPS:
|
|
err = _("window functions are not allowed in window definitions");
|
|
break;
|
|
case EXPR_KIND_SELECT_TARGET:
|
|
/* okay */
|
|
break;
|
|
case EXPR_KIND_INSERT_TARGET:
|
|
case EXPR_KIND_UPDATE_SOURCE:
|
|
case EXPR_KIND_UPDATE_TARGET:
|
|
errkind = true;
|
|
break;
|
|
case EXPR_KIND_MERGE_WHEN:
|
|
err = _("window functions are not allowed in MERGE WHEN conditions");
|
|
break;
|
|
case EXPR_KIND_GROUP_BY:
|
|
errkind = true;
|
|
break;
|
|
case EXPR_KIND_ORDER_BY:
|
|
/* okay */
|
|
break;
|
|
case EXPR_KIND_DISTINCT_ON:
|
|
/* okay */
|
|
break;
|
|
case EXPR_KIND_LIMIT:
|
|
case EXPR_KIND_OFFSET:
|
|
errkind = true;
|
|
break;
|
|
case EXPR_KIND_RETURNING:
|
|
errkind = true;
|
|
break;
|
|
case EXPR_KIND_VALUES:
|
|
case EXPR_KIND_VALUES_SINGLE:
|
|
errkind = true;
|
|
break;
|
|
case EXPR_KIND_CHECK_CONSTRAINT:
|
|
case EXPR_KIND_DOMAIN_CHECK:
|
|
err = _("window functions are not allowed in check constraints");
|
|
break;
|
|
case EXPR_KIND_COLUMN_DEFAULT:
|
|
case EXPR_KIND_FUNCTION_DEFAULT:
|
|
err = _("window functions are not allowed in DEFAULT expressions");
|
|
break;
|
|
case EXPR_KIND_INDEX_EXPRESSION:
|
|
err = _("window functions are not allowed in index expressions");
|
|
break;
|
|
case EXPR_KIND_STATS_EXPRESSION:
|
|
err = _("window functions are not allowed in statistics expressions");
|
|
break;
|
|
case EXPR_KIND_INDEX_PREDICATE:
|
|
err = _("window functions are not allowed in index predicates");
|
|
break;
|
|
case EXPR_KIND_ALTER_COL_TRANSFORM:
|
|
err = _("window functions are not allowed in transform expressions");
|
|
break;
|
|
case EXPR_KIND_EXECUTE_PARAMETER:
|
|
err = _("window functions are not allowed in EXECUTE parameters");
|
|
break;
|
|
case EXPR_KIND_TRIGGER_WHEN:
|
|
err = _("window functions are not allowed in trigger WHEN conditions");
|
|
break;
|
|
case EXPR_KIND_PARTITION_BOUND:
|
|
err = _("window functions are not allowed in partition bound");
|
|
break;
|
|
case EXPR_KIND_PARTITION_EXPRESSION:
|
|
err = _("window functions are not allowed in partition key expressions");
|
|
break;
|
|
case EXPR_KIND_CALL_ARGUMENT:
|
|
err = _("window functions are not allowed in CALL arguments");
|
|
break;
|
|
case EXPR_KIND_COPY_WHERE:
|
|
err = _("window functions are not allowed in COPY FROM WHERE conditions");
|
|
break;
|
|
case EXPR_KIND_GENERATED_COLUMN:
|
|
err = _("window functions are not allowed in column generation expressions");
|
|
break;
|
|
case EXPR_KIND_CYCLE_MARK:
|
|
errkind = true;
|
|
break;
|
|
|
|
/*
|
|
* There is intentionally no default: case here, so that the
|
|
* compiler will warn if we add a new ParseExprKind without
|
|
* extending this switch. If we do see an unrecognized value at
|
|
* runtime, the behavior will be the same as for EXPR_KIND_OTHER,
|
|
* which is sane anyway.
|
|
*/
|
|
}
|
|
if (err)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_WINDOWING_ERROR),
|
|
errmsg_internal("%s", err),
|
|
parser_errposition(pstate, wfunc->location)));
|
|
if (errkind)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_WINDOWING_ERROR),
|
|
/* translator: %s is name of a SQL construct, eg GROUP BY */
|
|
errmsg("window functions are not allowed in %s",
|
|
ParseExprKindName(pstate->p_expr_kind)),
|
|
parser_errposition(pstate, wfunc->location)));
|
|
|
|
/*
|
|
* If the OVER clause just specifies a window name, find that WINDOW
|
|
* clause (which had better be present). Otherwise, try to match all the
|
|
* properties of the OVER clause, and make a new entry in the p_windowdefs
|
|
* list if no luck.
|
|
*/
|
|
if (windef->name)
|
|
{
|
|
Index winref = 0;
|
|
ListCell *lc;
|
|
|
|
Assert(windef->refname == NULL &&
|
|
windef->partitionClause == NIL &&
|
|
windef->orderClause == NIL &&
|
|
windef->frameOptions == FRAMEOPTION_DEFAULTS);
|
|
|
|
foreach(lc, pstate->p_windowdefs)
|
|
{
|
|
WindowDef *refwin = (WindowDef *) lfirst(lc);
|
|
|
|
winref++;
|
|
if (refwin->name && strcmp(refwin->name, windef->name) == 0)
|
|
{
|
|
wfunc->winref = winref;
|
|
break;
|
|
}
|
|
}
|
|
if (lc == NULL) /* didn't find it? */
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_UNDEFINED_OBJECT),
|
|
errmsg("window \"%s\" does not exist", windef->name),
|
|
parser_errposition(pstate, windef->location)));
|
|
}
|
|
else
|
|
{
|
|
Index winref = 0;
|
|
ListCell *lc;
|
|
|
|
foreach(lc, pstate->p_windowdefs)
|
|
{
|
|
WindowDef *refwin = (WindowDef *) lfirst(lc);
|
|
|
|
winref++;
|
|
if (refwin->refname && windef->refname &&
|
|
strcmp(refwin->refname, windef->refname) == 0)
|
|
/* matched on refname */ ;
|
|
else if (!refwin->refname && !windef->refname)
|
|
/* matched, no refname */ ;
|
|
else
|
|
continue;
|
|
|
|
/*
|
|
* Also see similar de-duplication code in optimize_window_clauses
|
|
*/
|
|
if (equal(refwin->partitionClause, windef->partitionClause) &&
|
|
equal(refwin->orderClause, windef->orderClause) &&
|
|
refwin->frameOptions == windef->frameOptions &&
|
|
equal(refwin->startOffset, windef->startOffset) &&
|
|
equal(refwin->endOffset, windef->endOffset))
|
|
{
|
|
/* found a duplicate window specification */
|
|
wfunc->winref = winref;
|
|
break;
|
|
}
|
|
}
|
|
if (lc == NULL) /* didn't find it? */
|
|
{
|
|
pstate->p_windowdefs = lappend(pstate->p_windowdefs, windef);
|
|
wfunc->winref = list_length(pstate->p_windowdefs);
|
|
}
|
|
}
|
|
|
|
pstate->p_hasWindowFuncs = true;
|
|
}
|
|
|
|
/*
|
|
* parseCheckAggregates
|
|
* Check for aggregates where they shouldn't be and improper grouping.
|
|
* This function should be called after the target list and qualifications
|
|
* are finalized.
|
|
*
|
|
* Misplaced aggregates are now mostly detected in transformAggregateCall,
|
|
* but it seems more robust to check for aggregates in recursive queries
|
|
* only after everything is finalized. In any case it's hard to detect
|
|
* improper grouping on-the-fly, so we have to make another pass over the
|
|
* query for that.
|
|
*/
|
|
void
|
|
parseCheckAggregates(ParseState *pstate, Query *qry)
|
|
{
|
|
List *gset_common = NIL;
|
|
List *groupClauses = NIL;
|
|
List *groupClauseCommonVars = NIL;
|
|
bool have_non_var_grouping;
|
|
List *func_grouped_rels = NIL;
|
|
ListCell *l;
|
|
bool hasJoinRTEs;
|
|
bool hasSelfRefRTEs;
|
|
Node *clause;
|
|
|
|
/* This should only be called if we found aggregates or grouping */
|
|
Assert(pstate->p_hasAggs || qry->groupClause || qry->havingQual || qry->groupingSets);
|
|
|
|
/*
|
|
* If we have grouping sets, expand them and find the intersection of all
|
|
* sets.
|
|
*/
|
|
if (qry->groupingSets)
|
|
{
|
|
/*
|
|
* The limit of 4096 is arbitrary and exists simply to avoid resource
|
|
* issues from pathological constructs.
|
|
*/
|
|
List *gsets = expand_grouping_sets(qry->groupingSets, qry->groupDistinct, 4096);
|
|
|
|
if (!gsets)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_STATEMENT_TOO_COMPLEX),
|
|
errmsg("too many grouping sets present (maximum 4096)"),
|
|
parser_errposition(pstate,
|
|
qry->groupClause
|
|
? exprLocation((Node *) qry->groupClause)
|
|
: exprLocation((Node *) qry->groupingSets))));
|
|
|
|
/*
|
|
* The intersection will often be empty, so help things along by
|
|
* seeding the intersect with the smallest set.
|
|
*/
|
|
gset_common = linitial(gsets);
|
|
|
|
if (gset_common)
|
|
{
|
|
for_each_from(l, gsets, 1)
|
|
{
|
|
gset_common = list_intersection_int(gset_common, lfirst(l));
|
|
if (!gset_common)
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If there was only one grouping set in the expansion, AND if the
|
|
* groupClause is non-empty (meaning that the grouping set is not
|
|
* empty either), then we can ditch the grouping set and pretend we
|
|
* just had a normal GROUP BY.
|
|
*/
|
|
if (list_length(gsets) == 1 && qry->groupClause)
|
|
qry->groupingSets = NIL;
|
|
}
|
|
|
|
/*
|
|
* Scan the range table to see if there are JOIN or self-reference CTE
|
|
* entries. We'll need this info below.
|
|
*/
|
|
hasJoinRTEs = hasSelfRefRTEs = false;
|
|
foreach(l, pstate->p_rtable)
|
|
{
|
|
RangeTblEntry *rte = (RangeTblEntry *) lfirst(l);
|
|
|
|
if (rte->rtekind == RTE_JOIN)
|
|
hasJoinRTEs = true;
|
|
else if (rte->rtekind == RTE_CTE && rte->self_reference)
|
|
hasSelfRefRTEs = true;
|
|
}
|
|
|
|
/*
|
|
* Build a list of the acceptable GROUP BY expressions for use by
|
|
* check_ungrouped_columns().
|
|
*
|
|
* We get the TLE, not just the expr, because GROUPING wants to know the
|
|
* sortgroupref.
|
|
*/
|
|
foreach(l, qry->groupClause)
|
|
{
|
|
SortGroupClause *grpcl = (SortGroupClause *) lfirst(l);
|
|
TargetEntry *expr;
|
|
|
|
expr = get_sortgroupclause_tle(grpcl, qry->targetList);
|
|
if (expr == NULL)
|
|
continue; /* probably cannot happen */
|
|
|
|
groupClauses = lappend(groupClauses, expr);
|
|
}
|
|
|
|
/*
|
|
* If there are join alias vars involved, we have to flatten them to the
|
|
* underlying vars, so that aliased and unaliased vars will be correctly
|
|
* taken as equal. We can skip the expense of doing this if no rangetable
|
|
* entries are RTE_JOIN kind.
|
|
*/
|
|
if (hasJoinRTEs)
|
|
groupClauses = (List *) flatten_join_alias_vars(NULL, qry,
|
|
(Node *) groupClauses);
|
|
|
|
/*
|
|
* Detect whether any of the grouping expressions aren't simple Vars; if
|
|
* they're all Vars then we don't have to work so hard in the recursive
|
|
* scans. (Note we have to flatten aliases before this.)
|
|
*
|
|
* Track Vars that are included in all grouping sets separately in
|
|
* groupClauseCommonVars, since these are the only ones we can use to
|
|
* check for functional dependencies.
|
|
*/
|
|
have_non_var_grouping = false;
|
|
foreach(l, groupClauses)
|
|
{
|
|
TargetEntry *tle = lfirst(l);
|
|
|
|
if (!IsA(tle->expr, Var))
|
|
{
|
|
have_non_var_grouping = true;
|
|
}
|
|
else if (!qry->groupingSets ||
|
|
list_member_int(gset_common, tle->ressortgroupref))
|
|
{
|
|
groupClauseCommonVars = lappend(groupClauseCommonVars, tle->expr);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check the targetlist and HAVING clause for ungrouped variables.
|
|
*
|
|
* Note: because we check resjunk tlist elements as well as regular ones,
|
|
* this will also find ungrouped variables that came from ORDER BY and
|
|
* WINDOW clauses. For that matter, it's also going to examine the
|
|
* grouping expressions themselves --- but they'll all pass the test ...
|
|
*
|
|
* We also finalize GROUPING expressions, but for that we need to traverse
|
|
* the original (unflattened) clause in order to modify nodes.
|
|
*/
|
|
clause = (Node *) qry->targetList;
|
|
finalize_grouping_exprs(clause, pstate, qry,
|
|
groupClauses, hasJoinRTEs,
|
|
have_non_var_grouping);
|
|
if (hasJoinRTEs)
|
|
clause = flatten_join_alias_vars(NULL, qry, clause);
|
|
check_ungrouped_columns(clause, pstate, qry,
|
|
groupClauses, groupClauseCommonVars,
|
|
have_non_var_grouping,
|
|
&func_grouped_rels);
|
|
|
|
clause = (Node *) qry->havingQual;
|
|
finalize_grouping_exprs(clause, pstate, qry,
|
|
groupClauses, hasJoinRTEs,
|
|
have_non_var_grouping);
|
|
if (hasJoinRTEs)
|
|
clause = flatten_join_alias_vars(NULL, qry, clause);
|
|
check_ungrouped_columns(clause, pstate, qry,
|
|
groupClauses, groupClauseCommonVars,
|
|
have_non_var_grouping,
|
|
&func_grouped_rels);
|
|
|
|
/*
|
|
* Per spec, aggregates can't appear in a recursive term.
|
|
*/
|
|
if (pstate->p_hasAggs && hasSelfRefRTEs)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_RECURSION),
|
|
errmsg("aggregate functions are not allowed in a recursive query's recursive term"),
|
|
parser_errposition(pstate,
|
|
locate_agg_of_level((Node *) qry, 0))));
|
|
}
|
|
|
|
/*
|
|
* check_ungrouped_columns -
|
|
* Scan the given expression tree for ungrouped variables (variables
|
|
* that are not listed in the groupClauses list and are not within
|
|
* the arguments of aggregate functions). Emit a suitable error message
|
|
* if any are found.
|
|
*
|
|
* NOTE: we assume that the given clause has been transformed suitably for
|
|
* parser output. This means we can use expression_tree_walker.
|
|
*
|
|
* NOTE: we recognize grouping expressions in the main query, but only
|
|
* grouping Vars in subqueries. For example, this will be rejected,
|
|
* although it could be allowed:
|
|
* SELECT
|
|
* (SELECT x FROM bar where y = (foo.a + foo.b))
|
|
* FROM foo
|
|
* GROUP BY a + b;
|
|
* The difficulty is the need to account for different sublevels_up.
|
|
* This appears to require a whole custom version of equal(), which is
|
|
* way more pain than the feature seems worth.
|
|
*/
|
|
static void
|
|
check_ungrouped_columns(Node *node, ParseState *pstate, Query *qry,
|
|
List *groupClauses, List *groupClauseCommonVars,
|
|
bool have_non_var_grouping,
|
|
List **func_grouped_rels)
|
|
{
|
|
check_ungrouped_columns_context context;
|
|
|
|
context.pstate = pstate;
|
|
context.qry = qry;
|
|
context.hasJoinRTEs = false; /* assume caller flattened join Vars */
|
|
context.groupClauses = groupClauses;
|
|
context.groupClauseCommonVars = groupClauseCommonVars;
|
|
context.have_non_var_grouping = have_non_var_grouping;
|
|
context.func_grouped_rels = func_grouped_rels;
|
|
context.sublevels_up = 0;
|
|
context.in_agg_direct_args = false;
|
|
check_ungrouped_columns_walker(node, &context);
|
|
}
|
|
|
|
static bool
|
|
check_ungrouped_columns_walker(Node *node,
|
|
check_ungrouped_columns_context *context)
|
|
{
|
|
ListCell *gl;
|
|
|
|
if (node == NULL)
|
|
return false;
|
|
if (IsA(node, Const) ||
|
|
IsA(node, Param))
|
|
return false; /* constants are always acceptable */
|
|
|
|
if (IsA(node, Aggref))
|
|
{
|
|
Aggref *agg = (Aggref *) node;
|
|
|
|
if ((int) agg->agglevelsup == context->sublevels_up)
|
|
{
|
|
/*
|
|
* If we find an aggregate call of the original level, do not
|
|
* recurse into its normal arguments, ORDER BY arguments, or
|
|
* filter; ungrouped vars there are not an error. But we should
|
|
* check direct arguments as though they weren't in an aggregate.
|
|
* We set a special flag in the context to help produce a useful
|
|
* error message for ungrouped vars in direct arguments.
|
|
*/
|
|
bool result;
|
|
|
|
Assert(!context->in_agg_direct_args);
|
|
context->in_agg_direct_args = true;
|
|
result = check_ungrouped_columns_walker((Node *) agg->aggdirectargs,
|
|
context);
|
|
context->in_agg_direct_args = false;
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* We can skip recursing into aggregates of higher levels altogether,
|
|
* since they could not possibly contain Vars of concern to us (see
|
|
* transformAggregateCall). We do need to look at aggregates of lower
|
|
* levels, however.
|
|
*/
|
|
if ((int) agg->agglevelsup > context->sublevels_up)
|
|
return false;
|
|
}
|
|
|
|
if (IsA(node, GroupingFunc))
|
|
{
|
|
GroupingFunc *grp = (GroupingFunc *) node;
|
|
|
|
/* handled GroupingFunc separately, no need to recheck at this level */
|
|
|
|
if ((int) grp->agglevelsup >= context->sublevels_up)
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* If we have any GROUP BY items that are not simple Vars, check to see if
|
|
* subexpression as a whole matches any GROUP BY item. We need to do this
|
|
* at every recursion level so that we recognize GROUPed-BY expressions
|
|
* before reaching variables within them. But this only works at the outer
|
|
* query level, as noted above.
|
|
*/
|
|
if (context->have_non_var_grouping && context->sublevels_up == 0)
|
|
{
|
|
foreach(gl, context->groupClauses)
|
|
{
|
|
TargetEntry *tle = lfirst(gl);
|
|
|
|
if (equal(node, tle->expr))
|
|
return false; /* acceptable, do not descend more */
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If we have an ungrouped Var of the original query level, we have a
|
|
* failure. Vars below the original query level are not a problem, and
|
|
* neither are Vars from above it. (If such Vars are ungrouped as far as
|
|
* their own query level is concerned, that's someone else's problem...)
|
|
*/
|
|
if (IsA(node, Var))
|
|
{
|
|
Var *var = (Var *) node;
|
|
RangeTblEntry *rte;
|
|
char *attname;
|
|
|
|
if (var->varlevelsup != context->sublevels_up)
|
|
return false; /* it's not local to my query, ignore */
|
|
|
|
/*
|
|
* Check for a match, if we didn't do it above.
|
|
*/
|
|
if (!context->have_non_var_grouping || context->sublevels_up != 0)
|
|
{
|
|
foreach(gl, context->groupClauses)
|
|
{
|
|
Var *gvar = (Var *) ((TargetEntry *) lfirst(gl))->expr;
|
|
|
|
if (IsA(gvar, Var) &&
|
|
gvar->varno == var->varno &&
|
|
gvar->varattno == var->varattno &&
|
|
gvar->varlevelsup == 0)
|
|
return false; /* acceptable, we're okay */
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check whether the Var is known functionally dependent on the GROUP
|
|
* BY columns. If so, we can allow the Var to be used, because the
|
|
* grouping is really a no-op for this table. However, this deduction
|
|
* depends on one or more constraints of the table, so we have to add
|
|
* those constraints to the query's constraintDeps list, because it's
|
|
* not semantically valid anymore if the constraint(s) get dropped.
|
|
* (Therefore, this check must be the last-ditch effort before raising
|
|
* error: we don't want to add dependencies unnecessarily.)
|
|
*
|
|
* Because this is a pretty expensive check, and will have the same
|
|
* outcome for all columns of a table, we remember which RTEs we've
|
|
* already proven functional dependency for in the func_grouped_rels
|
|
* list. This test also prevents us from adding duplicate entries to
|
|
* the constraintDeps list.
|
|
*/
|
|
if (list_member_int(*context->func_grouped_rels, var->varno))
|
|
return false; /* previously proven acceptable */
|
|
|
|
Assert(var->varno > 0 &&
|
|
(int) var->varno <= list_length(context->pstate->p_rtable));
|
|
rte = rt_fetch(var->varno, context->pstate->p_rtable);
|
|
if (rte->rtekind == RTE_RELATION)
|
|
{
|
|
if (check_functional_grouping(rte->relid,
|
|
var->varno,
|
|
0,
|
|
context->groupClauseCommonVars,
|
|
&context->qry->constraintDeps))
|
|
{
|
|
*context->func_grouped_rels =
|
|
lappend_int(*context->func_grouped_rels, var->varno);
|
|
return false; /* acceptable */
|
|
}
|
|
}
|
|
|
|
/* Found an ungrouped local variable; generate error message */
|
|
attname = get_rte_attribute_name(rte, var->varattno);
|
|
if (context->sublevels_up == 0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_GROUPING_ERROR),
|
|
errmsg("column \"%s.%s\" must appear in the GROUP BY clause or be used in an aggregate function",
|
|
rte->eref->aliasname, attname),
|
|
context->in_agg_direct_args ?
|
|
errdetail("Direct arguments of an ordered-set aggregate must use only grouped columns.") : 0,
|
|
parser_errposition(context->pstate, var->location)));
|
|
else
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_GROUPING_ERROR),
|
|
errmsg("subquery uses ungrouped column \"%s.%s\" from outer query",
|
|
rte->eref->aliasname, attname),
|
|
parser_errposition(context->pstate, var->location)));
|
|
}
|
|
|
|
if (IsA(node, Query))
|
|
{
|
|
/* Recurse into subselects */
|
|
bool result;
|
|
|
|
context->sublevels_up++;
|
|
result = query_tree_walker((Query *) node,
|
|
check_ungrouped_columns_walker,
|
|
(void *) context,
|
|
0);
|
|
context->sublevels_up--;
|
|
return result;
|
|
}
|
|
return expression_tree_walker(node, check_ungrouped_columns_walker,
|
|
(void *) context);
|
|
}
|
|
|
|
/*
|
|
* finalize_grouping_exprs -
|
|
* Scan the given expression tree for GROUPING() and related calls,
|
|
* and validate and process their arguments.
|
|
*
|
|
* This is split out from check_ungrouped_columns above because it needs
|
|
* to modify the nodes (which it does in-place, not via a mutator) while
|
|
* check_ungrouped_columns may see only a copy of the original thanks to
|
|
* flattening of join alias vars. So here, we flatten each individual
|
|
* GROUPING argument as we see it before comparing it.
|
|
*/
|
|
static void
|
|
finalize_grouping_exprs(Node *node, ParseState *pstate, Query *qry,
|
|
List *groupClauses, bool hasJoinRTEs,
|
|
bool have_non_var_grouping)
|
|
{
|
|
check_ungrouped_columns_context context;
|
|
|
|
context.pstate = pstate;
|
|
context.qry = qry;
|
|
context.hasJoinRTEs = hasJoinRTEs;
|
|
context.groupClauses = groupClauses;
|
|
context.groupClauseCommonVars = NIL;
|
|
context.have_non_var_grouping = have_non_var_grouping;
|
|
context.func_grouped_rels = NULL;
|
|
context.sublevels_up = 0;
|
|
context.in_agg_direct_args = false;
|
|
finalize_grouping_exprs_walker(node, &context);
|
|
}
|
|
|
|
static bool
|
|
finalize_grouping_exprs_walker(Node *node,
|
|
check_ungrouped_columns_context *context)
|
|
{
|
|
ListCell *gl;
|
|
|
|
if (node == NULL)
|
|
return false;
|
|
if (IsA(node, Const) ||
|
|
IsA(node, Param))
|
|
return false; /* constants are always acceptable */
|
|
|
|
if (IsA(node, Aggref))
|
|
{
|
|
Aggref *agg = (Aggref *) node;
|
|
|
|
if ((int) agg->agglevelsup == context->sublevels_up)
|
|
{
|
|
/*
|
|
* If we find an aggregate call of the original level, do not
|
|
* recurse into its normal arguments, ORDER BY arguments, or
|
|
* filter; GROUPING exprs of this level are not allowed there. But
|
|
* check direct arguments as though they weren't in an aggregate.
|
|
*/
|
|
bool result;
|
|
|
|
Assert(!context->in_agg_direct_args);
|
|
context->in_agg_direct_args = true;
|
|
result = finalize_grouping_exprs_walker((Node *) agg->aggdirectargs,
|
|
context);
|
|
context->in_agg_direct_args = false;
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* We can skip recursing into aggregates of higher levels altogether,
|
|
* since they could not possibly contain exprs of concern to us (see
|
|
* transformAggregateCall). We do need to look at aggregates of lower
|
|
* levels, however.
|
|
*/
|
|
if ((int) agg->agglevelsup > context->sublevels_up)
|
|
return false;
|
|
}
|
|
|
|
if (IsA(node, GroupingFunc))
|
|
{
|
|
GroupingFunc *grp = (GroupingFunc *) node;
|
|
|
|
/*
|
|
* We only need to check GroupingFunc nodes at the exact level to
|
|
* which they belong, since they cannot mix levels in arguments.
|
|
*/
|
|
|
|
if ((int) grp->agglevelsup == context->sublevels_up)
|
|
{
|
|
ListCell *lc;
|
|
List *ref_list = NIL;
|
|
|
|
foreach(lc, grp->args)
|
|
{
|
|
Node *expr = lfirst(lc);
|
|
Index ref = 0;
|
|
|
|
if (context->hasJoinRTEs)
|
|
expr = flatten_join_alias_vars(NULL, context->qry, expr);
|
|
|
|
/*
|
|
* Each expression must match a grouping entry at the current
|
|
* query level. Unlike the general expression case, we don't
|
|
* allow functional dependencies or outer references.
|
|
*/
|
|
|
|
if (IsA(expr, Var))
|
|
{
|
|
Var *var = (Var *) expr;
|
|
|
|
if (var->varlevelsup == context->sublevels_up)
|
|
{
|
|
foreach(gl, context->groupClauses)
|
|
{
|
|
TargetEntry *tle = lfirst(gl);
|
|
Var *gvar = (Var *) tle->expr;
|
|
|
|
if (IsA(gvar, Var) &&
|
|
gvar->varno == var->varno &&
|
|
gvar->varattno == var->varattno &&
|
|
gvar->varlevelsup == 0)
|
|
{
|
|
ref = tle->ressortgroupref;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else if (context->have_non_var_grouping &&
|
|
context->sublevels_up == 0)
|
|
{
|
|
foreach(gl, context->groupClauses)
|
|
{
|
|
TargetEntry *tle = lfirst(gl);
|
|
|
|
if (equal(expr, tle->expr))
|
|
{
|
|
ref = tle->ressortgroupref;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (ref == 0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_GROUPING_ERROR),
|
|
errmsg("arguments to GROUPING must be grouping expressions of the associated query level"),
|
|
parser_errposition(context->pstate,
|
|
exprLocation(expr))));
|
|
|
|
ref_list = lappend_int(ref_list, ref);
|
|
}
|
|
|
|
grp->refs = ref_list;
|
|
}
|
|
|
|
if ((int) grp->agglevelsup > context->sublevels_up)
|
|
return false;
|
|
}
|
|
|
|
if (IsA(node, Query))
|
|
{
|
|
/* Recurse into subselects */
|
|
bool result;
|
|
|
|
context->sublevels_up++;
|
|
result = query_tree_walker((Query *) node,
|
|
finalize_grouping_exprs_walker,
|
|
(void *) context,
|
|
0);
|
|
context->sublevels_up--;
|
|
return result;
|
|
}
|
|
return expression_tree_walker(node, finalize_grouping_exprs_walker,
|
|
(void *) context);
|
|
}
|
|
|
|
|
|
/*
|
|
* Given a GroupingSet node, expand it and return a list of lists.
|
|
*
|
|
* For EMPTY nodes, return a list of one empty list.
|
|
*
|
|
* For SIMPLE nodes, return a list of one list, which is the node content.
|
|
*
|
|
* For CUBE and ROLLUP nodes, return a list of the expansions.
|
|
*
|
|
* For SET nodes, recursively expand contained CUBE and ROLLUP.
|
|
*/
|
|
static List *
|
|
expand_groupingset_node(GroupingSet *gs)
|
|
{
|
|
List *result = NIL;
|
|
|
|
switch (gs->kind)
|
|
{
|
|
case GROUPING_SET_EMPTY:
|
|
result = list_make1(NIL);
|
|
break;
|
|
|
|
case GROUPING_SET_SIMPLE:
|
|
result = list_make1(gs->content);
|
|
break;
|
|
|
|
case GROUPING_SET_ROLLUP:
|
|
{
|
|
List *rollup_val = gs->content;
|
|
ListCell *lc;
|
|
int curgroup_size = list_length(gs->content);
|
|
|
|
while (curgroup_size > 0)
|
|
{
|
|
List *current_result = NIL;
|
|
int i = curgroup_size;
|
|
|
|
foreach(lc, rollup_val)
|
|
{
|
|
GroupingSet *gs_current = (GroupingSet *) lfirst(lc);
|
|
|
|
Assert(gs_current->kind == GROUPING_SET_SIMPLE);
|
|
|
|
current_result = list_concat(current_result,
|
|
gs_current->content);
|
|
|
|
/* If we are done with making the current group, break */
|
|
if (--i == 0)
|
|
break;
|
|
}
|
|
|
|
result = lappend(result, current_result);
|
|
--curgroup_size;
|
|
}
|
|
|
|
result = lappend(result, NIL);
|
|
}
|
|
break;
|
|
|
|
case GROUPING_SET_CUBE:
|
|
{
|
|
List *cube_list = gs->content;
|
|
int number_bits = list_length(cube_list);
|
|
uint32 num_sets;
|
|
uint32 i;
|
|
|
|
/* parser should cap this much lower */
|
|
Assert(number_bits < 31);
|
|
|
|
num_sets = (1U << number_bits);
|
|
|
|
for (i = 0; i < num_sets; i++)
|
|
{
|
|
List *current_result = NIL;
|
|
ListCell *lc;
|
|
uint32 mask = 1U;
|
|
|
|
foreach(lc, cube_list)
|
|
{
|
|
GroupingSet *gs_current = (GroupingSet *) lfirst(lc);
|
|
|
|
Assert(gs_current->kind == GROUPING_SET_SIMPLE);
|
|
|
|
if (mask & i)
|
|
current_result = list_concat(current_result,
|
|
gs_current->content);
|
|
|
|
mask <<= 1;
|
|
}
|
|
|
|
result = lappend(result, current_result);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case GROUPING_SET_SETS:
|
|
{
|
|
ListCell *lc;
|
|
|
|
foreach(lc, gs->content)
|
|
{
|
|
List *current_result = expand_groupingset_node(lfirst(lc));
|
|
|
|
result = list_concat(result, current_result);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/* list_sort comparator to sort sub-lists by length */
|
|
static int
|
|
cmp_list_len_asc(const ListCell *a, const ListCell *b)
|
|
{
|
|
int la = list_length((const List *) lfirst(a));
|
|
int lb = list_length((const List *) lfirst(b));
|
|
|
|
return (la > lb) ? 1 : (la == lb) ? 0 : -1;
|
|
}
|
|
|
|
/* list_sort comparator to sort sub-lists by length and contents */
|
|
static int
|
|
cmp_list_len_contents_asc(const ListCell *a, const ListCell *b)
|
|
{
|
|
int res = cmp_list_len_asc(a, b);
|
|
|
|
if (res == 0)
|
|
{
|
|
List *la = (List *) lfirst(a);
|
|
List *lb = (List *) lfirst(b);
|
|
ListCell *lca;
|
|
ListCell *lcb;
|
|
|
|
forboth(lca, la, lcb, lb)
|
|
{
|
|
int va = lfirst_int(lca);
|
|
int vb = lfirst_int(lcb);
|
|
|
|
if (va > vb)
|
|
return 1;
|
|
if (va < vb)
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
/*
|
|
* Expand a groupingSets clause to a flat list of grouping sets.
|
|
* The returned list is sorted by length, shortest sets first.
|
|
*
|
|
* This is mainly for the planner, but we use it here too to do
|
|
* some consistency checks.
|
|
*/
|
|
List *
|
|
expand_grouping_sets(List *groupingSets, bool groupDistinct, int limit)
|
|
{
|
|
List *expanded_groups = NIL;
|
|
List *result = NIL;
|
|
double numsets = 1;
|
|
ListCell *lc;
|
|
|
|
if (groupingSets == NIL)
|
|
return NIL;
|
|
|
|
foreach(lc, groupingSets)
|
|
{
|
|
List *current_result = NIL;
|
|
GroupingSet *gs = lfirst(lc);
|
|
|
|
current_result = expand_groupingset_node(gs);
|
|
|
|
Assert(current_result != NIL);
|
|
|
|
numsets *= list_length(current_result);
|
|
|
|
if (limit >= 0 && numsets > limit)
|
|
return NIL;
|
|
|
|
expanded_groups = lappend(expanded_groups, current_result);
|
|
}
|
|
|
|
/*
|
|
* Do cartesian product between sublists of expanded_groups. While at it,
|
|
* remove any duplicate elements from individual grouping sets (we must
|
|
* NOT change the number of sets though)
|
|
*/
|
|
|
|
foreach(lc, (List *) linitial(expanded_groups))
|
|
{
|
|
result = lappend(result, list_union_int(NIL, (List *) lfirst(lc)));
|
|
}
|
|
|
|
for_each_from(lc, expanded_groups, 1)
|
|
{
|
|
List *p = lfirst(lc);
|
|
List *new_result = NIL;
|
|
ListCell *lc2;
|
|
|
|
foreach(lc2, result)
|
|
{
|
|
List *q = lfirst(lc2);
|
|
ListCell *lc3;
|
|
|
|
foreach(lc3, p)
|
|
{
|
|
new_result = lappend(new_result,
|
|
list_union_int(q, (List *) lfirst(lc3)));
|
|
}
|
|
}
|
|
result = new_result;
|
|
}
|
|
|
|
/* Now sort the lists by length and deduplicate if necessary */
|
|
if (!groupDistinct || list_length(result) < 2)
|
|
list_sort(result, cmp_list_len_asc);
|
|
else
|
|
{
|
|
ListCell *cell;
|
|
List *prev;
|
|
|
|
/* Sort each groupset individually */
|
|
foreach(cell, result)
|
|
list_sort(lfirst(cell), list_int_cmp);
|
|
|
|
/* Now sort the list of groupsets by length and contents */
|
|
list_sort(result, cmp_list_len_contents_asc);
|
|
|
|
/* Finally, remove duplicates */
|
|
prev = linitial(result);
|
|
for_each_from(cell, result, 1)
|
|
{
|
|
if (equal(lfirst(cell), prev))
|
|
result = foreach_delete_current(result, cell);
|
|
else
|
|
prev = lfirst(cell);
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* get_aggregate_argtypes
|
|
* Identify the specific datatypes passed to an aggregate call.
|
|
*
|
|
* Given an Aggref, extract the actual datatypes of the input arguments.
|
|
* The input datatypes are reported in a way that matches up with the
|
|
* aggregate's declaration, ie, any ORDER BY columns attached to a plain
|
|
* aggregate are ignored, but we report both direct and aggregated args of
|
|
* an ordered-set aggregate.
|
|
*
|
|
* Datatypes are returned into inputTypes[], which must reference an array
|
|
* of length FUNC_MAX_ARGS.
|
|
*
|
|
* The function result is the number of actual arguments.
|
|
*/
|
|
int
|
|
get_aggregate_argtypes(Aggref *aggref, Oid *inputTypes)
|
|
{
|
|
int numArguments = 0;
|
|
ListCell *lc;
|
|
|
|
Assert(list_length(aggref->aggargtypes) <= FUNC_MAX_ARGS);
|
|
|
|
foreach(lc, aggref->aggargtypes)
|
|
{
|
|
inputTypes[numArguments++] = lfirst_oid(lc);
|
|
}
|
|
|
|
return numArguments;
|
|
}
|
|
|
|
/*
|
|
* resolve_aggregate_transtype
|
|
* Identify the transition state value's datatype for an aggregate call.
|
|
*
|
|
* This function resolves a polymorphic aggregate's state datatype.
|
|
* It must be passed the aggtranstype from the aggregate's catalog entry,
|
|
* as well as the actual argument types extracted by get_aggregate_argtypes.
|
|
* (We could fetch pg_aggregate.aggtranstype internally, but all existing
|
|
* callers already have the value at hand, so we make them pass it.)
|
|
*/
|
|
Oid
|
|
resolve_aggregate_transtype(Oid aggfuncid,
|
|
Oid aggtranstype,
|
|
Oid *inputTypes,
|
|
int numArguments)
|
|
{
|
|
/* resolve actual type of transition state, if polymorphic */
|
|
if (IsPolymorphicType(aggtranstype))
|
|
{
|
|
/* have to fetch the agg's declared input types... */
|
|
Oid *declaredArgTypes;
|
|
int agg_nargs;
|
|
|
|
(void) get_func_signature(aggfuncid, &declaredArgTypes, &agg_nargs);
|
|
|
|
/*
|
|
* VARIADIC ANY aggs could have more actual than declared args, but
|
|
* such extra args can't affect polymorphic type resolution.
|
|
*/
|
|
Assert(agg_nargs <= numArguments);
|
|
|
|
aggtranstype = enforce_generic_type_consistency(inputTypes,
|
|
declaredArgTypes,
|
|
agg_nargs,
|
|
aggtranstype,
|
|
false);
|
|
pfree(declaredArgTypes);
|
|
}
|
|
return aggtranstype;
|
|
}
|
|
|
|
/*
|
|
* agg_args_support_sendreceive
|
|
* Returns true if all non-byval of aggref's arg types have send and
|
|
* receive functions.
|
|
*/
|
|
bool
|
|
agg_args_support_sendreceive(Aggref *aggref)
|
|
{
|
|
ListCell *lc;
|
|
|
|
foreach(lc, aggref->args)
|
|
{
|
|
HeapTuple typeTuple;
|
|
Form_pg_type pt;
|
|
TargetEntry *tle = (TargetEntry *) lfirst(lc);
|
|
Oid type = exprType((Node *) tle->expr);
|
|
|
|
typeTuple = SearchSysCache1(TYPEOID, ObjectIdGetDatum(type));
|
|
if (!HeapTupleIsValid(typeTuple))
|
|
elog(ERROR, "cache lookup failed for type %u", type);
|
|
|
|
pt = (Form_pg_type) GETSTRUCT(typeTuple);
|
|
|
|
if (!pt->typbyval &&
|
|
(!OidIsValid(pt->typsend) || !OidIsValid(pt->typreceive)))
|
|
{
|
|
ReleaseSysCache(typeTuple);
|
|
return false;
|
|
}
|
|
ReleaseSysCache(typeTuple);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Create an expression tree for the transition function of an aggregate.
|
|
* This is needed so that polymorphic functions can be used within an
|
|
* aggregate --- without the expression tree, such functions would not know
|
|
* the datatypes they are supposed to use. (The trees will never actually
|
|
* be executed, however, so we can skimp a bit on correctness.)
|
|
*
|
|
* agg_input_types and agg_state_type identifies the input types of the
|
|
* aggregate. These should be resolved to actual types (ie, none should
|
|
* ever be ANYELEMENT etc).
|
|
* agg_input_collation is the aggregate function's input collation.
|
|
*
|
|
* For an ordered-set aggregate, remember that agg_input_types describes
|
|
* the direct arguments followed by the aggregated arguments.
|
|
*
|
|
* transfn_oid and invtransfn_oid identify the funcs to be called; the
|
|
* latter may be InvalidOid, however if invtransfn_oid is set then
|
|
* transfn_oid must also be set.
|
|
*
|
|
* transfn_oid may also be passed as the aggcombinefn when the *transfnexpr is
|
|
* to be used for a combine aggregate phase. We expect invtransfn_oid to be
|
|
* InvalidOid in this case since there is no such thing as an inverse
|
|
* combinefn.
|
|
*
|
|
* Pointers to the constructed trees are returned into *transfnexpr,
|
|
* *invtransfnexpr. If there is no invtransfn, the respective pointer is set
|
|
* to NULL. Since use of the invtransfn is optional, NULL may be passed for
|
|
* invtransfnexpr.
|
|
*/
|
|
void
|
|
build_aggregate_transfn_expr(Oid *agg_input_types,
|
|
int agg_num_inputs,
|
|
int agg_num_direct_inputs,
|
|
bool agg_variadic,
|
|
Oid agg_state_type,
|
|
Oid agg_input_collation,
|
|
Oid transfn_oid,
|
|
Oid invtransfn_oid,
|
|
Expr **transfnexpr,
|
|
Expr **invtransfnexpr)
|
|
{
|
|
List *args;
|
|
FuncExpr *fexpr;
|
|
int i;
|
|
|
|
/*
|
|
* Build arg list to use in the transfn FuncExpr node.
|
|
*/
|
|
args = list_make1(make_agg_arg(agg_state_type, agg_input_collation));
|
|
|
|
for (i = agg_num_direct_inputs; i < agg_num_inputs; i++)
|
|
{
|
|
args = lappend(args,
|
|
make_agg_arg(agg_input_types[i], agg_input_collation));
|
|
}
|
|
|
|
fexpr = makeFuncExpr(transfn_oid,
|
|
agg_state_type,
|
|
args,
|
|
InvalidOid,
|
|
agg_input_collation,
|
|
COERCE_EXPLICIT_CALL);
|
|
fexpr->funcvariadic = agg_variadic;
|
|
*transfnexpr = (Expr *) fexpr;
|
|
|
|
/*
|
|
* Build invtransfn expression if requested, with same args as transfn
|
|
*/
|
|
if (invtransfnexpr != NULL)
|
|
{
|
|
if (OidIsValid(invtransfn_oid))
|
|
{
|
|
fexpr = makeFuncExpr(invtransfn_oid,
|
|
agg_state_type,
|
|
args,
|
|
InvalidOid,
|
|
agg_input_collation,
|
|
COERCE_EXPLICIT_CALL);
|
|
fexpr->funcvariadic = agg_variadic;
|
|
*invtransfnexpr = (Expr *) fexpr;
|
|
}
|
|
else
|
|
*invtransfnexpr = NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Like build_aggregate_transfn_expr, but creates an expression tree for the
|
|
* serialization function of an aggregate.
|
|
*/
|
|
void
|
|
build_aggregate_serialfn_expr(Oid serialfn_oid,
|
|
Expr **serialfnexpr)
|
|
{
|
|
List *args;
|
|
FuncExpr *fexpr;
|
|
|
|
/* serialfn always takes INTERNAL and returns BYTEA */
|
|
args = list_make1(make_agg_arg(INTERNALOID, InvalidOid));
|
|
|
|
fexpr = makeFuncExpr(serialfn_oid,
|
|
BYTEAOID,
|
|
args,
|
|
InvalidOid,
|
|
InvalidOid,
|
|
COERCE_EXPLICIT_CALL);
|
|
*serialfnexpr = (Expr *) fexpr;
|
|
}
|
|
|
|
/*
|
|
* Like build_aggregate_transfn_expr, but creates an expression tree for the
|
|
* deserialization function of an aggregate.
|
|
*/
|
|
void
|
|
build_aggregate_deserialfn_expr(Oid deserialfn_oid,
|
|
Expr **deserialfnexpr)
|
|
{
|
|
List *args;
|
|
FuncExpr *fexpr;
|
|
|
|
/* deserialfn always takes BYTEA, INTERNAL and returns INTERNAL */
|
|
args = list_make2(make_agg_arg(BYTEAOID, InvalidOid),
|
|
make_agg_arg(INTERNALOID, InvalidOid));
|
|
|
|
fexpr = makeFuncExpr(deserialfn_oid,
|
|
INTERNALOID,
|
|
args,
|
|
InvalidOid,
|
|
InvalidOid,
|
|
COERCE_EXPLICIT_CALL);
|
|
*deserialfnexpr = (Expr *) fexpr;
|
|
}
|
|
|
|
/*
|
|
* Like build_aggregate_transfn_expr, but creates an expression tree for the
|
|
* final function of an aggregate, rather than the transition function.
|
|
*/
|
|
void
|
|
build_aggregate_finalfn_expr(Oid *agg_input_types,
|
|
int num_finalfn_inputs,
|
|
Oid agg_state_type,
|
|
Oid agg_result_type,
|
|
Oid agg_input_collation,
|
|
Oid finalfn_oid,
|
|
Expr **finalfnexpr)
|
|
{
|
|
List *args;
|
|
int i;
|
|
|
|
/*
|
|
* Build expr tree for final function
|
|
*/
|
|
args = list_make1(make_agg_arg(agg_state_type, agg_input_collation));
|
|
|
|
/* finalfn may take additional args, which match agg's input types */
|
|
for (i = 0; i < num_finalfn_inputs - 1; i++)
|
|
{
|
|
args = lappend(args,
|
|
make_agg_arg(agg_input_types[i], agg_input_collation));
|
|
}
|
|
|
|
*finalfnexpr = (Expr *) makeFuncExpr(finalfn_oid,
|
|
agg_result_type,
|
|
args,
|
|
InvalidOid,
|
|
agg_input_collation,
|
|
COERCE_EXPLICIT_CALL);
|
|
/* finalfn is currently never treated as variadic */
|
|
}
|
|
|
|
/*
|
|
* Convenience function to build dummy argument expressions for aggregates.
|
|
*
|
|
* We really only care that an aggregate support function can discover its
|
|
* actual argument types at runtime using get_fn_expr_argtype(), so it's okay
|
|
* to use Param nodes that don't correspond to any real Param.
|
|
*/
|
|
static Node *
|
|
make_agg_arg(Oid argtype, Oid argcollation)
|
|
{
|
|
Param *argp = makeNode(Param);
|
|
|
|
argp->paramkind = PARAM_EXEC;
|
|
argp->paramid = -1;
|
|
argp->paramtype = argtype;
|
|
argp->paramtypmod = -1;
|
|
argp->paramcollid = argcollation;
|
|
argp->location = -1;
|
|
return (Node *) argp;
|
|
}
|