1
0
mirror of https://github.com/postgres/postgres.git synced 2025-11-21 00:42:43 +03:00
Files
postgres/src/interfaces/libpq/fe-auth-scram.c
Tom Lane 5cbfce562f Initial pgindent and pgperltidy run for v13.
Includes some manual cleanup of places that pgindent messed up,
most of which weren't per project style anyway.

Notably, it seems some people didn't absorb the style rules of
commit c9d297751, because there were a bunch of new occurrences
of function calls with a newline just after the left paren, all
with faulty expectations about how the rest of the call would get
indented.
2020-05-14 13:06:50 -04:00

861 lines
21 KiB
C

/*-------------------------------------------------------------------------
*
* fe-auth-scram.c
* The front-end (client) implementation of SCRAM authentication.
*
* Portions Copyright (c) 1996-2020, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
* src/interfaces/libpq/fe-auth-scram.c
*
*-------------------------------------------------------------------------
*/
#include "postgres_fe.h"
#include "common/base64.h"
#include "common/saslprep.h"
#include "common/scram-common.h"
#include "fe-auth.h"
/*
* Status of exchange messages used for SCRAM authentication via the
* SASL protocol.
*/
typedef enum
{
FE_SCRAM_INIT,
FE_SCRAM_NONCE_SENT,
FE_SCRAM_PROOF_SENT,
FE_SCRAM_FINISHED
} fe_scram_state_enum;
typedef struct
{
fe_scram_state_enum state;
/* These are supplied by the user */
PGconn *conn;
char *password;
char *sasl_mechanism;
/* We construct these */
uint8 SaltedPassword[SCRAM_KEY_LEN];
char *client_nonce;
char *client_first_message_bare;
char *client_final_message_without_proof;
/* These come from the server-first message */
char *server_first_message;
char *salt;
int saltlen;
int iterations;
char *nonce;
/* These come from the server-final message */
char *server_final_message;
char ServerSignature[SCRAM_KEY_LEN];
} fe_scram_state;
static bool read_server_first_message(fe_scram_state *state, char *input);
static bool read_server_final_message(fe_scram_state *state, char *input);
static char *build_client_first_message(fe_scram_state *state);
static char *build_client_final_message(fe_scram_state *state);
static bool verify_server_signature(fe_scram_state *state);
static void calculate_client_proof(fe_scram_state *state,
const char *client_final_message_without_proof,
uint8 *result);
/*
* Initialize SCRAM exchange status.
*/
void *
pg_fe_scram_init(PGconn *conn,
const char *password,
const char *sasl_mechanism)
{
fe_scram_state *state;
char *prep_password;
pg_saslprep_rc rc;
Assert(sasl_mechanism != NULL);
state = (fe_scram_state *) malloc(sizeof(fe_scram_state));
if (!state)
return NULL;
memset(state, 0, sizeof(fe_scram_state));
state->conn = conn;
state->state = FE_SCRAM_INIT;
state->sasl_mechanism = strdup(sasl_mechanism);
if (!state->sasl_mechanism)
{
free(state);
return NULL;
}
/* Normalize the password with SASLprep, if possible */
rc = pg_saslprep(password, &prep_password);
if (rc == SASLPREP_OOM)
{
free(state->sasl_mechanism);
free(state);
return NULL;
}
if (rc != SASLPREP_SUCCESS)
{
prep_password = strdup(password);
if (!prep_password)
{
free(state->sasl_mechanism);
free(state);
return NULL;
}
}
state->password = prep_password;
return state;
}
/*
* Return true if channel binding was employed and the SCRAM exchange
* completed. This should be used after a successful exchange to determine
* whether the server authenticated itself to the client.
*
* Note that the caller must also ensure that the exchange was actually
* successful.
*/
bool
pg_fe_scram_channel_bound(void *opaq)
{
fe_scram_state *state = (fe_scram_state *) opaq;
/* no SCRAM exchange done */
if (state == NULL)
return false;
/* SCRAM exchange not completed */
if (state->state != FE_SCRAM_FINISHED)
return false;
/* channel binding mechanism not used */
if (strcmp(state->sasl_mechanism, SCRAM_SHA_256_PLUS_NAME) != 0)
return false;
/* all clear! */
return true;
}
/*
* Free SCRAM exchange status
*/
void
pg_fe_scram_free(void *opaq)
{
fe_scram_state *state = (fe_scram_state *) opaq;
if (state->password)
free(state->password);
if (state->sasl_mechanism)
free(state->sasl_mechanism);
/* client messages */
if (state->client_nonce)
free(state->client_nonce);
if (state->client_first_message_bare)
free(state->client_first_message_bare);
if (state->client_final_message_without_proof)
free(state->client_final_message_without_proof);
/* first message from server */
if (state->server_first_message)
free(state->server_first_message);
if (state->salt)
free(state->salt);
if (state->nonce)
free(state->nonce);
/* final message from server */
if (state->server_final_message)
free(state->server_final_message);
free(state);
}
/*
* Exchange a SCRAM message with backend.
*/
void
pg_fe_scram_exchange(void *opaq, char *input, int inputlen,
char **output, int *outputlen,
bool *done, bool *success)
{
fe_scram_state *state = (fe_scram_state *) opaq;
PGconn *conn = state->conn;
*done = false;
*success = false;
*output = NULL;
*outputlen = 0;
/*
* Check that the input length agrees with the string length of the input.
* We can ignore inputlen after this.
*/
if (state->state != FE_SCRAM_INIT)
{
if (inputlen == 0)
{
printfPQExpBuffer(&conn->errorMessage,
libpq_gettext("malformed SCRAM message (empty message)\n"));
goto error;
}
if (inputlen != strlen(input))
{
printfPQExpBuffer(&conn->errorMessage,
libpq_gettext("malformed SCRAM message (length mismatch)\n"));
goto error;
}
}
switch (state->state)
{
case FE_SCRAM_INIT:
/* Begin the SCRAM handshake, by sending client nonce */
*output = build_client_first_message(state);
if (*output == NULL)
goto error;
*outputlen = strlen(*output);
*done = false;
state->state = FE_SCRAM_NONCE_SENT;
break;
case FE_SCRAM_NONCE_SENT:
/* Receive salt and server nonce, send response. */
if (!read_server_first_message(state, input))
goto error;
*output = build_client_final_message(state);
if (*output == NULL)
goto error;
*outputlen = strlen(*output);
*done = false;
state->state = FE_SCRAM_PROOF_SENT;
break;
case FE_SCRAM_PROOF_SENT:
/* Receive server signature */
if (!read_server_final_message(state, input))
goto error;
/*
* Verify server signature, to make sure we're talking to the
* genuine server.
*/
if (verify_server_signature(state))
*success = true;
else
{
*success = false;
printfPQExpBuffer(&conn->errorMessage,
libpq_gettext("incorrect server signature\n"));
}
*done = true;
state->state = FE_SCRAM_FINISHED;
break;
default:
/* shouldn't happen */
printfPQExpBuffer(&conn->errorMessage,
libpq_gettext("invalid SCRAM exchange state\n"));
goto error;
}
return;
error:
*done = true;
*success = false;
}
/*
* Read value for an attribute part of a SCRAM message.
*/
static char *
read_attr_value(char **input, char attr, PQExpBuffer errorMessage)
{
char *begin = *input;
char *end;
if (*begin != attr)
{
printfPQExpBuffer(errorMessage,
libpq_gettext("malformed SCRAM message (attribute \"%c\" expected)\n"),
attr);
return NULL;
}
begin++;
if (*begin != '=')
{
printfPQExpBuffer(errorMessage,
libpq_gettext("malformed SCRAM message (expected character \"=\" for attribute \"%c\")\n"),
attr);
return NULL;
}
begin++;
end = begin;
while (*end && *end != ',')
end++;
if (*end)
{
*end = '\0';
*input = end + 1;
}
else
*input = end;
return begin;
}
/*
* Build the first exchange message sent by the client.
*/
static char *
build_client_first_message(fe_scram_state *state)
{
PGconn *conn = state->conn;
char raw_nonce[SCRAM_RAW_NONCE_LEN + 1];
char *result;
int channel_info_len;
int encoded_len;
PQExpBufferData buf;
/*
* Generate a "raw" nonce. This is converted to ASCII-printable form by
* base64-encoding it.
*/
if (!pg_strong_random(raw_nonce, SCRAM_RAW_NONCE_LEN))
{
printfPQExpBuffer(&conn->errorMessage,
libpq_gettext("could not generate nonce\n"));
return NULL;
}
encoded_len = pg_b64_enc_len(SCRAM_RAW_NONCE_LEN);
/* don't forget the zero-terminator */
state->client_nonce = malloc(encoded_len + 1);
if (state->client_nonce == NULL)
{
printfPQExpBuffer(&conn->errorMessage,
libpq_gettext("out of memory\n"));
return NULL;
}
encoded_len = pg_b64_encode(raw_nonce, SCRAM_RAW_NONCE_LEN,
state->client_nonce, encoded_len);
if (encoded_len < 0)
{
printfPQExpBuffer(&conn->errorMessage,
libpq_gettext("could not encode nonce\n"));
return NULL;
}
state->client_nonce[encoded_len] = '\0';
/*
* Generate message. The username is left empty as the backend uses the
* value provided by the startup packet. Also, as this username is not
* prepared with SASLprep, the message parsing would fail if it includes
* '=' or ',' characters.
*/
initPQExpBuffer(&buf);
/*
* First build the gs2-header with channel binding information.
*/
if (strcmp(state->sasl_mechanism, SCRAM_SHA_256_PLUS_NAME) == 0)
{
Assert(conn->ssl_in_use);
appendPQExpBufferStr(&buf, "p=tls-server-end-point");
}
#ifdef HAVE_PGTLS_GET_PEER_CERTIFICATE_HASH
else if (conn->channel_binding[0] != 'd' && /* disable */
conn->ssl_in_use)
{
/*
* Client supports channel binding, but thinks the server does not.
*/
appendPQExpBufferChar(&buf, 'y');
}
#endif
else
{
/*
* Client does not support channel binding, or has disabled it.
*/
appendPQExpBufferChar(&buf, 'n');
}
if (PQExpBufferDataBroken(buf))
goto oom_error;
channel_info_len = buf.len;
appendPQExpBuffer(&buf, ",,n=,r=%s", state->client_nonce);
if (PQExpBufferDataBroken(buf))
goto oom_error;
/*
* The first message content needs to be saved without channel binding
* information.
*/
state->client_first_message_bare = strdup(buf.data + channel_info_len + 2);
if (!state->client_first_message_bare)
goto oom_error;
result = strdup(buf.data);
if (result == NULL)
goto oom_error;
termPQExpBuffer(&buf);
return result;
oom_error:
termPQExpBuffer(&buf);
printfPQExpBuffer(&conn->errorMessage,
libpq_gettext("out of memory\n"));
return NULL;
}
/*
* Build the final exchange message sent from the client.
*/
static char *
build_client_final_message(fe_scram_state *state)
{
PQExpBufferData buf;
PGconn *conn = state->conn;
uint8 client_proof[SCRAM_KEY_LEN];
char *result;
int encoded_len;
initPQExpBuffer(&buf);
/*
* Construct client-final-message-without-proof. We need to remember it
* for verifying the server proof in the final step of authentication.
*
* The channel binding flag handling (p/y/n) must be consistent with
* build_client_first_message(), because the server will check that it's
* the same flag both times.
*/
if (strcmp(state->sasl_mechanism, SCRAM_SHA_256_PLUS_NAME) == 0)
{
#ifdef HAVE_PGTLS_GET_PEER_CERTIFICATE_HASH
char *cbind_data = NULL;
size_t cbind_data_len = 0;
size_t cbind_header_len;
char *cbind_input;
size_t cbind_input_len;
int encoded_cbind_len;
/* Fetch hash data of server's SSL certificate */
cbind_data =
pgtls_get_peer_certificate_hash(state->conn,
&cbind_data_len);
if (cbind_data == NULL)
{
/* error message is already set on error */
termPQExpBuffer(&buf);
return NULL;
}
appendPQExpBufferStr(&buf, "c=");
/* p=type,, */
cbind_header_len = strlen("p=tls-server-end-point,,");
cbind_input_len = cbind_header_len + cbind_data_len;
cbind_input = malloc(cbind_input_len);
if (!cbind_input)
{
free(cbind_data);
goto oom_error;
}
memcpy(cbind_input, "p=tls-server-end-point,,", cbind_header_len);
memcpy(cbind_input + cbind_header_len, cbind_data, cbind_data_len);
encoded_cbind_len = pg_b64_enc_len(cbind_input_len);
if (!enlargePQExpBuffer(&buf, encoded_cbind_len))
{
free(cbind_data);
free(cbind_input);
goto oom_error;
}
encoded_cbind_len = pg_b64_encode(cbind_input, cbind_input_len,
buf.data + buf.len,
encoded_cbind_len);
if (encoded_cbind_len < 0)
{
free(cbind_data);
free(cbind_input);
termPQExpBuffer(&buf);
printfPQExpBuffer(&conn->errorMessage,
"could not encode cbind data for channel binding\n");
return NULL;
}
buf.len += encoded_cbind_len;
buf.data[buf.len] = '\0';
free(cbind_data);
free(cbind_input);
#else
/*
* Chose channel binding, but the SSL library doesn't support it.
* Shouldn't happen.
*/
termPQExpBuffer(&buf);
printfPQExpBuffer(&conn->errorMessage,
"channel binding not supported by this build\n");
return NULL;
#endif /* HAVE_PGTLS_GET_PEER_CERTIFICATE_HASH */
}
#ifdef HAVE_PGTLS_GET_PEER_CERTIFICATE_HASH
else if (conn->channel_binding[0] != 'd' && /* disable */
conn->ssl_in_use)
appendPQExpBufferStr(&buf, "c=eSws"); /* base64 of "y,," */
#endif
else
appendPQExpBufferStr(&buf, "c=biws"); /* base64 of "n,," */
if (PQExpBufferDataBroken(buf))
goto oom_error;
appendPQExpBuffer(&buf, ",r=%s", state->nonce);
if (PQExpBufferDataBroken(buf))
goto oom_error;
state->client_final_message_without_proof = strdup(buf.data);
if (state->client_final_message_without_proof == NULL)
goto oom_error;
/* Append proof to it, to form client-final-message. */
calculate_client_proof(state,
state->client_final_message_without_proof,
client_proof);
appendPQExpBufferStr(&buf, ",p=");
encoded_len = pg_b64_enc_len(SCRAM_KEY_LEN);
if (!enlargePQExpBuffer(&buf, encoded_len))
goto oom_error;
encoded_len = pg_b64_encode((char *) client_proof,
SCRAM_KEY_LEN,
buf.data + buf.len,
encoded_len);
if (encoded_len < 0)
{
termPQExpBuffer(&buf);
printfPQExpBuffer(&conn->errorMessage,
libpq_gettext("could not encode client proof\n"));
return NULL;
}
buf.len += encoded_len;
buf.data[buf.len] = '\0';
result = strdup(buf.data);
if (result == NULL)
goto oom_error;
termPQExpBuffer(&buf);
return result;
oom_error:
termPQExpBuffer(&buf);
printfPQExpBuffer(&conn->errorMessage,
libpq_gettext("out of memory\n"));
return NULL;
}
/*
* Read the first exchange message coming from the server.
*/
static bool
read_server_first_message(fe_scram_state *state, char *input)
{
PGconn *conn = state->conn;
char *iterations_str;
char *endptr;
char *encoded_salt;
char *nonce;
int decoded_salt_len;
state->server_first_message = strdup(input);
if (state->server_first_message == NULL)
{
printfPQExpBuffer(&conn->errorMessage,
libpq_gettext("out of memory\n"));
return false;
}
/* parse the message */
nonce = read_attr_value(&input, 'r',
&conn->errorMessage);
if (nonce == NULL)
{
/* read_attr_value() has generated an error string */
return false;
}
/* Verify immediately that the server used our part of the nonce */
if (strlen(nonce) < strlen(state->client_nonce) ||
memcmp(nonce, state->client_nonce, strlen(state->client_nonce)) != 0)
{
printfPQExpBuffer(&conn->errorMessage,
libpq_gettext("invalid SCRAM response (nonce mismatch)\n"));
return false;
}
state->nonce = strdup(nonce);
if (state->nonce == NULL)
{
printfPQExpBuffer(&conn->errorMessage,
libpq_gettext("out of memory\n"));
return false;
}
encoded_salt = read_attr_value(&input, 's', &conn->errorMessage);
if (encoded_salt == NULL)
{
/* read_attr_value() has generated an error string */
return false;
}
decoded_salt_len = pg_b64_dec_len(strlen(encoded_salt));
state->salt = malloc(decoded_salt_len);
if (state->salt == NULL)
{
printfPQExpBuffer(&conn->errorMessage,
libpq_gettext("out of memory\n"));
return false;
}
state->saltlen = pg_b64_decode(encoded_salt,
strlen(encoded_salt),
state->salt,
decoded_salt_len);
if (state->saltlen < 0)
{
printfPQExpBuffer(&conn->errorMessage,
libpq_gettext("malformed SCRAM message (invalid salt)\n"));
return false;
}
iterations_str = read_attr_value(&input, 'i', &conn->errorMessage);
if (iterations_str == NULL)
{
/* read_attr_value() has generated an error string */
return false;
}
state->iterations = strtol(iterations_str, &endptr, 10);
if (*endptr != '\0' || state->iterations < 1)
{
printfPQExpBuffer(&conn->errorMessage,
libpq_gettext("malformed SCRAM message (invalid iteration count)\n"));
return false;
}
if (*input != '\0')
printfPQExpBuffer(&conn->errorMessage,
libpq_gettext("malformed SCRAM message (garbage at end of server-first-message)\n"));
return true;
}
/*
* Read the final exchange message coming from the server.
*/
static bool
read_server_final_message(fe_scram_state *state, char *input)
{
PGconn *conn = state->conn;
char *encoded_server_signature;
char *decoded_server_signature;
int server_signature_len;
state->server_final_message = strdup(input);
if (!state->server_final_message)
{
printfPQExpBuffer(&conn->errorMessage,
libpq_gettext("out of memory\n"));
return false;
}
/* Check for error result. */
if (*input == 'e')
{
char *errmsg = read_attr_value(&input, 'e',
&conn->errorMessage);
printfPQExpBuffer(&conn->errorMessage,
libpq_gettext("error received from server in SCRAM exchange: %s\n"),
errmsg);
return false;
}
/* Parse the message. */
encoded_server_signature = read_attr_value(&input, 'v',
&conn->errorMessage);
if (encoded_server_signature == NULL)
{
/* read_attr_value() has generated an error message */
return false;
}
if (*input != '\0')
printfPQExpBuffer(&conn->errorMessage,
libpq_gettext("malformed SCRAM message (garbage at end of server-final-message)\n"));
server_signature_len = pg_b64_dec_len(strlen(encoded_server_signature));
decoded_server_signature = malloc(server_signature_len);
if (!decoded_server_signature)
{
printfPQExpBuffer(&conn->errorMessage,
libpq_gettext("out of memory\n"));
return false;
}
server_signature_len = pg_b64_decode(encoded_server_signature,
strlen(encoded_server_signature),
decoded_server_signature,
server_signature_len);
if (server_signature_len != SCRAM_KEY_LEN)
{
free(decoded_server_signature);
printfPQExpBuffer(&conn->errorMessage,
libpq_gettext("malformed SCRAM message (invalid server signature)\n"));
return false;
}
memcpy(state->ServerSignature, decoded_server_signature, SCRAM_KEY_LEN);
free(decoded_server_signature);
return true;
}
/*
* Calculate the client proof, part of the final exchange message sent
* by the client.
*/
static void
calculate_client_proof(fe_scram_state *state,
const char *client_final_message_without_proof,
uint8 *result)
{
uint8 StoredKey[SCRAM_KEY_LEN];
uint8 ClientKey[SCRAM_KEY_LEN];
uint8 ClientSignature[SCRAM_KEY_LEN];
int i;
scram_HMAC_ctx ctx;
/*
* Calculate SaltedPassword, and store it in 'state' so that we can reuse
* it later in verify_server_signature.
*/
scram_SaltedPassword(state->password, state->salt, state->saltlen,
state->iterations, state->SaltedPassword);
scram_ClientKey(state->SaltedPassword, ClientKey);
scram_H(ClientKey, SCRAM_KEY_LEN, StoredKey);
scram_HMAC_init(&ctx, StoredKey, SCRAM_KEY_LEN);
scram_HMAC_update(&ctx,
state->client_first_message_bare,
strlen(state->client_first_message_bare));
scram_HMAC_update(&ctx, ",", 1);
scram_HMAC_update(&ctx,
state->server_first_message,
strlen(state->server_first_message));
scram_HMAC_update(&ctx, ",", 1);
scram_HMAC_update(&ctx,
client_final_message_without_proof,
strlen(client_final_message_without_proof));
scram_HMAC_final(ClientSignature, &ctx);
for (i = 0; i < SCRAM_KEY_LEN; i++)
result[i] = ClientKey[i] ^ ClientSignature[i];
}
/*
* Validate the server signature, received as part of the final exchange
* message received from the server.
*/
static bool
verify_server_signature(fe_scram_state *state)
{
uint8 expected_ServerSignature[SCRAM_KEY_LEN];
uint8 ServerKey[SCRAM_KEY_LEN];
scram_HMAC_ctx ctx;
scram_ServerKey(state->SaltedPassword, ServerKey);
/* calculate ServerSignature */
scram_HMAC_init(&ctx, ServerKey, SCRAM_KEY_LEN);
scram_HMAC_update(&ctx,
state->client_first_message_bare,
strlen(state->client_first_message_bare));
scram_HMAC_update(&ctx, ",", 1);
scram_HMAC_update(&ctx,
state->server_first_message,
strlen(state->server_first_message));
scram_HMAC_update(&ctx, ",", 1);
scram_HMAC_update(&ctx,
state->client_final_message_without_proof,
strlen(state->client_final_message_without_proof));
scram_HMAC_final(expected_ServerSignature, &ctx);
if (memcmp(expected_ServerSignature, state->ServerSignature, SCRAM_KEY_LEN) != 0)
return false;
return true;
}
/*
* Build a new SCRAM secret.
*/
char *
pg_fe_scram_build_secret(const char *password)
{
char *prep_password;
pg_saslprep_rc rc;
char saltbuf[SCRAM_DEFAULT_SALT_LEN];
char *result;
/*
* Normalize the password with SASLprep. If that doesn't work, because
* the password isn't valid UTF-8 or contains prohibited characters, just
* proceed with the original password. (See comments at top of file.)
*/
rc = pg_saslprep(password, &prep_password);
if (rc == SASLPREP_OOM)
return NULL;
if (rc == SASLPREP_SUCCESS)
password = (const char *) prep_password;
/* Generate a random salt */
if (!pg_strong_random(saltbuf, SCRAM_DEFAULT_SALT_LEN))
{
if (prep_password)
free(prep_password);
return NULL;
}
result = scram_build_secret(saltbuf, SCRAM_DEFAULT_SALT_LEN,
SCRAM_DEFAULT_ITERATIONS, password);
if (prep_password)
free(prep_password);
return result;
}