mirror of
				https://github.com/postgres/postgres.git
				synced 2025-10-29 22:49:41 +03:00 
			
		
		
		
	We can adjust the not-yet-released cube--1.4--1.5.sql upgrade rather than making a whole new version. KaiGai Kohei Discussion: https://postgr.es/m/CAOP8fzZO4y60QPTK=RGDXeVeVHV9tLHKOsh7voUOoUouVCPV8A@mail.gmail.com
		
			
				
	
	
		
			1909 lines
		
	
	
		
			41 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1909 lines
		
	
	
		
			41 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /******************************************************************************
 | |
|   contrib/cube/cube.c
 | |
| 
 | |
|   This file contains routines that can be bound to a Postgres backend and
 | |
|   called by the backend in the process of processing queries.  The calling
 | |
|   format for these routines is dictated by Postgres architecture.
 | |
| ******************************************************************************/
 | |
| 
 | |
| #include "postgres.h"
 | |
| 
 | |
| #include <math.h>
 | |
| 
 | |
| #include "access/gist.h"
 | |
| #include "access/stratnum.h"
 | |
| #include "cubedata.h"
 | |
| #include "libpq/pqformat.h"
 | |
| #include "utils/array.h"
 | |
| #include "utils/float.h"
 | |
| 
 | |
| PG_MODULE_MAGIC;
 | |
| 
 | |
| /*
 | |
|  * Taken from the intarray contrib header
 | |
|  */
 | |
| #define ARRPTR(x)  ( (double *) ARR_DATA_PTR(x) )
 | |
| #define ARRNELEMS(x)  ArrayGetNItems( ARR_NDIM(x), ARR_DIMS(x))
 | |
| 
 | |
| /*
 | |
| ** Input/Output routines
 | |
| */
 | |
| PG_FUNCTION_INFO_V1(cube_in);
 | |
| PG_FUNCTION_INFO_V1(cube_a_f8_f8);
 | |
| PG_FUNCTION_INFO_V1(cube_a_f8);
 | |
| PG_FUNCTION_INFO_V1(cube_out);
 | |
| PG_FUNCTION_INFO_V1(cube_send);
 | |
| PG_FUNCTION_INFO_V1(cube_recv);
 | |
| PG_FUNCTION_INFO_V1(cube_f8);
 | |
| PG_FUNCTION_INFO_V1(cube_f8_f8);
 | |
| PG_FUNCTION_INFO_V1(cube_c_f8);
 | |
| PG_FUNCTION_INFO_V1(cube_c_f8_f8);
 | |
| PG_FUNCTION_INFO_V1(cube_dim);
 | |
| PG_FUNCTION_INFO_V1(cube_ll_coord);
 | |
| PG_FUNCTION_INFO_V1(cube_ur_coord);
 | |
| PG_FUNCTION_INFO_V1(cube_coord);
 | |
| PG_FUNCTION_INFO_V1(cube_coord_llur);
 | |
| PG_FUNCTION_INFO_V1(cube_subset);
 | |
| 
 | |
| /*
 | |
| ** GiST support methods
 | |
| */
 | |
| 
 | |
| PG_FUNCTION_INFO_V1(g_cube_consistent);
 | |
| PG_FUNCTION_INFO_V1(g_cube_compress);
 | |
| PG_FUNCTION_INFO_V1(g_cube_decompress);
 | |
| PG_FUNCTION_INFO_V1(g_cube_penalty);
 | |
| PG_FUNCTION_INFO_V1(g_cube_picksplit);
 | |
| PG_FUNCTION_INFO_V1(g_cube_union);
 | |
| PG_FUNCTION_INFO_V1(g_cube_same);
 | |
| PG_FUNCTION_INFO_V1(g_cube_distance);
 | |
| 
 | |
| /*
 | |
| ** B-tree support functions
 | |
| */
 | |
| PG_FUNCTION_INFO_V1(cube_eq);
 | |
| PG_FUNCTION_INFO_V1(cube_ne);
 | |
| PG_FUNCTION_INFO_V1(cube_lt);
 | |
| PG_FUNCTION_INFO_V1(cube_gt);
 | |
| PG_FUNCTION_INFO_V1(cube_le);
 | |
| PG_FUNCTION_INFO_V1(cube_ge);
 | |
| PG_FUNCTION_INFO_V1(cube_cmp);
 | |
| 
 | |
| /*
 | |
| ** R-tree support functions
 | |
| */
 | |
| 
 | |
| PG_FUNCTION_INFO_V1(cube_contains);
 | |
| PG_FUNCTION_INFO_V1(cube_contained);
 | |
| PG_FUNCTION_INFO_V1(cube_overlap);
 | |
| PG_FUNCTION_INFO_V1(cube_union);
 | |
| PG_FUNCTION_INFO_V1(cube_inter);
 | |
| PG_FUNCTION_INFO_V1(cube_size);
 | |
| 
 | |
| /*
 | |
| ** miscellaneous
 | |
| */
 | |
| PG_FUNCTION_INFO_V1(distance_taxicab);
 | |
| PG_FUNCTION_INFO_V1(cube_distance);
 | |
| PG_FUNCTION_INFO_V1(distance_chebyshev);
 | |
| PG_FUNCTION_INFO_V1(cube_is_point);
 | |
| PG_FUNCTION_INFO_V1(cube_enlarge);
 | |
| 
 | |
| /*
 | |
| ** For internal use only
 | |
| */
 | |
| int32		cube_cmp_v0(NDBOX *a, NDBOX *b);
 | |
| bool		cube_contains_v0(NDBOX *a, NDBOX *b);
 | |
| bool		cube_overlap_v0(NDBOX *a, NDBOX *b);
 | |
| NDBOX	   *cube_union_v0(NDBOX *a, NDBOX *b);
 | |
| void		rt_cube_size(NDBOX *a, double *sz);
 | |
| NDBOX	   *g_cube_binary_union(NDBOX *r1, NDBOX *r2, int *sizep);
 | |
| bool		g_cube_leaf_consistent(NDBOX *key, NDBOX *query, StrategyNumber strategy);
 | |
| bool		g_cube_internal_consistent(NDBOX *key, NDBOX *query, StrategyNumber strategy);
 | |
| 
 | |
| /*
 | |
| ** Auxiliary functions
 | |
| */
 | |
| static double distance_1D(double a1, double a2, double b1, double b2);
 | |
| static bool cube_is_point_internal(NDBOX *cube);
 | |
| 
 | |
| 
 | |
| /*****************************************************************************
 | |
|  * Input/Output functions
 | |
|  *****************************************************************************/
 | |
| 
 | |
| /* NdBox = [(lowerleft),(upperright)] */
 | |
| /* [(xLL(1)...xLL(N)),(xUR(1)...xUR(n))] */
 | |
| Datum
 | |
| cube_in(PG_FUNCTION_ARGS)
 | |
| {
 | |
| 	char	   *str = PG_GETARG_CSTRING(0);
 | |
| 	NDBOX	   *result;
 | |
| 
 | |
| 	cube_scanner_init(str);
 | |
| 
 | |
| 	if (cube_yyparse(&result) != 0)
 | |
| 		cube_yyerror(&result, "cube parser failed");
 | |
| 
 | |
| 	cube_scanner_finish();
 | |
| 
 | |
| 	PG_RETURN_NDBOX_P(result);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Allows the construction of a cube from 2 float[]'s
 | |
| */
 | |
| Datum
 | |
| cube_a_f8_f8(PG_FUNCTION_ARGS)
 | |
| {
 | |
| 	ArrayType  *ur = PG_GETARG_ARRAYTYPE_P(0);
 | |
| 	ArrayType  *ll = PG_GETARG_ARRAYTYPE_P(1);
 | |
| 	NDBOX	   *result;
 | |
| 	int			i;
 | |
| 	int			dim;
 | |
| 	int			size;
 | |
| 	bool		point;
 | |
| 	double	   *dur,
 | |
| 			   *dll;
 | |
| 
 | |
| 	if (array_contains_nulls(ur) || array_contains_nulls(ll))
 | |
| 		ereport(ERROR,
 | |
| 				(errcode(ERRCODE_ARRAY_ELEMENT_ERROR),
 | |
| 				 errmsg("cannot work with arrays containing NULLs")));
 | |
| 
 | |
| 	dim = ARRNELEMS(ur);
 | |
| 	if (dim > CUBE_MAX_DIM)
 | |
| 		ereport(ERROR,
 | |
| 				(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
 | |
| 				 errmsg("can't extend cube"),
 | |
| 				 errdetail("A cube cannot have more than %d dimensions.",
 | |
| 						   CUBE_MAX_DIM)));
 | |
| 
 | |
| 	if (ARRNELEMS(ll) != dim)
 | |
| 		ereport(ERROR,
 | |
| 				(errcode(ERRCODE_ARRAY_ELEMENT_ERROR),
 | |
| 				 errmsg("UR and LL arrays must be of same length")));
 | |
| 
 | |
| 	dur = ARRPTR(ur);
 | |
| 	dll = ARRPTR(ll);
 | |
| 
 | |
| 	/* Check if it's a point */
 | |
| 	point = true;
 | |
| 	for (i = 0; i < dim; i++)
 | |
| 	{
 | |
| 		if (dur[i] != dll[i])
 | |
| 		{
 | |
| 			point = false;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	size = point ? POINT_SIZE(dim) : CUBE_SIZE(dim);
 | |
| 	result = (NDBOX *) palloc0(size);
 | |
| 	SET_VARSIZE(result, size);
 | |
| 	SET_DIM(result, dim);
 | |
| 
 | |
| 	for (i = 0; i < dim; i++)
 | |
| 		result->x[i] = dur[i];
 | |
| 
 | |
| 	if (!point)
 | |
| 	{
 | |
| 		for (i = 0; i < dim; i++)
 | |
| 			result->x[i + dim] = dll[i];
 | |
| 	}
 | |
| 	else
 | |
| 		SET_POINT_BIT(result);
 | |
| 
 | |
| 	PG_RETURN_NDBOX_P(result);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Allows the construction of a zero-volume cube from a float[]
 | |
| */
 | |
| Datum
 | |
| cube_a_f8(PG_FUNCTION_ARGS)
 | |
| {
 | |
| 	ArrayType  *ur = PG_GETARG_ARRAYTYPE_P(0);
 | |
| 	NDBOX	   *result;
 | |
| 	int			i;
 | |
| 	int			dim;
 | |
| 	int			size;
 | |
| 	double	   *dur;
 | |
| 
 | |
| 	if (array_contains_nulls(ur))
 | |
| 		ereport(ERROR,
 | |
| 				(errcode(ERRCODE_ARRAY_ELEMENT_ERROR),
 | |
| 				 errmsg("cannot work with arrays containing NULLs")));
 | |
| 
 | |
| 	dim = ARRNELEMS(ur);
 | |
| 	if (dim > CUBE_MAX_DIM)
 | |
| 		ereport(ERROR,
 | |
| 				(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
 | |
| 				 errmsg("array is too long"),
 | |
| 				 errdetail("A cube cannot have more than %d dimensions.",
 | |
| 						   CUBE_MAX_DIM)));
 | |
| 
 | |
| 	dur = ARRPTR(ur);
 | |
| 
 | |
| 	size = POINT_SIZE(dim);
 | |
| 	result = (NDBOX *) palloc0(size);
 | |
| 	SET_VARSIZE(result, size);
 | |
| 	SET_DIM(result, dim);
 | |
| 	SET_POINT_BIT(result);
 | |
| 
 | |
| 	for (i = 0; i < dim; i++)
 | |
| 		result->x[i] = dur[i];
 | |
| 
 | |
| 	PG_RETURN_NDBOX_P(result);
 | |
| }
 | |
| 
 | |
| Datum
 | |
| cube_subset(PG_FUNCTION_ARGS)
 | |
| {
 | |
| 	NDBOX	   *c = PG_GETARG_NDBOX_P(0);
 | |
| 	ArrayType  *idx = PG_GETARG_ARRAYTYPE_P(1);
 | |
| 	NDBOX	   *result;
 | |
| 	int			size,
 | |
| 				dim,
 | |
| 				i;
 | |
| 	int		   *dx;
 | |
| 
 | |
| 	if (array_contains_nulls(idx))
 | |
| 		ereport(ERROR,
 | |
| 				(errcode(ERRCODE_ARRAY_ELEMENT_ERROR),
 | |
| 				 errmsg("cannot work with arrays containing NULLs")));
 | |
| 
 | |
| 	dx = (int32 *) ARR_DATA_PTR(idx);
 | |
| 
 | |
| 	dim = ARRNELEMS(idx);
 | |
| 	if (dim > CUBE_MAX_DIM)
 | |
| 		ereport(ERROR,
 | |
| 				(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
 | |
| 				 errmsg("array is too long"),
 | |
| 				 errdetail("A cube cannot have more than %d dimensions.",
 | |
| 						   CUBE_MAX_DIM)));
 | |
| 
 | |
| 	size = IS_POINT(c) ? POINT_SIZE(dim) : CUBE_SIZE(dim);
 | |
| 	result = (NDBOX *) palloc0(size);
 | |
| 	SET_VARSIZE(result, size);
 | |
| 	SET_DIM(result, dim);
 | |
| 
 | |
| 	if (IS_POINT(c))
 | |
| 		SET_POINT_BIT(result);
 | |
| 
 | |
| 	for (i = 0; i < dim; i++)
 | |
| 	{
 | |
| 		if ((dx[i] <= 0) || (dx[i] > DIM(c)))
 | |
| 			ereport(ERROR,
 | |
| 					(errcode(ERRCODE_ARRAY_ELEMENT_ERROR),
 | |
| 					 errmsg("Index out of bounds")));
 | |
| 		result->x[i] = c->x[dx[i] - 1];
 | |
| 		if (!IS_POINT(c))
 | |
| 			result->x[i + dim] = c->x[dx[i] + DIM(c) - 1];
 | |
| 	}
 | |
| 
 | |
| 	PG_FREE_IF_COPY(c, 0);
 | |
| 	PG_RETURN_NDBOX_P(result);
 | |
| }
 | |
| 
 | |
| Datum
 | |
| cube_out(PG_FUNCTION_ARGS)
 | |
| {
 | |
| 	NDBOX	   *cube = PG_GETARG_NDBOX_P(0);
 | |
| 	StringInfoData buf;
 | |
| 	int			dim = DIM(cube);
 | |
| 	int			i;
 | |
| 
 | |
| 	initStringInfo(&buf);
 | |
| 
 | |
| 	appendStringInfoChar(&buf, '(');
 | |
| 	for (i = 0; i < dim; i++)
 | |
| 	{
 | |
| 		if (i > 0)
 | |
| 			appendStringInfoString(&buf, ", ");
 | |
| 		appendStringInfoString(&buf, float8out_internal(LL_COORD(cube, i)));
 | |
| 	}
 | |
| 	appendStringInfoChar(&buf, ')');
 | |
| 
 | |
| 	if (!cube_is_point_internal(cube))
 | |
| 	{
 | |
| 		appendStringInfoString(&buf, ",(");
 | |
| 		for (i = 0; i < dim; i++)
 | |
| 		{
 | |
| 			if (i > 0)
 | |
| 				appendStringInfoString(&buf, ", ");
 | |
| 			appendStringInfoString(&buf, float8out_internal(UR_COORD(cube, i)));
 | |
| 		}
 | |
| 		appendStringInfoChar(&buf, ')');
 | |
| 	}
 | |
| 
 | |
| 	PG_FREE_IF_COPY(cube, 0);
 | |
| 	PG_RETURN_CSTRING(buf.data);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * cube_send - a binary output handler for cube type
 | |
|  */
 | |
| Datum
 | |
| cube_send(PG_FUNCTION_ARGS)
 | |
| {
 | |
| 	NDBOX	   *cube = PG_GETARG_NDBOX_P(0);
 | |
| 	StringInfoData buf;
 | |
| 	int32		i,
 | |
| 				nitems = DIM(cube);
 | |
| 
 | |
| 	pq_begintypsend(&buf);
 | |
| 	pq_sendint32(&buf, cube->header);
 | |
| 	if (!IS_POINT(cube))
 | |
| 		nitems += nitems;
 | |
| 	/* for symmetry with cube_recv, we don't use LL_COORD/UR_COORD here */
 | |
| 	for (i = 0; i < nitems; i++)
 | |
| 		pq_sendfloat8(&buf, cube->x[i]);
 | |
| 
 | |
| 	PG_RETURN_BYTEA_P(pq_endtypsend(&buf));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * cube_recv - a binary input handler for cube type
 | |
|  */
 | |
| Datum
 | |
| cube_recv(PG_FUNCTION_ARGS)
 | |
| {
 | |
| 	StringInfo	buf = (StringInfo) PG_GETARG_POINTER(0);
 | |
| 	int32		header;
 | |
| 	int32		i,
 | |
| 				nitems;
 | |
| 	NDBOX	   *cube;
 | |
| 
 | |
| 	header = pq_getmsgint(buf, sizeof(int32));
 | |
| 	nitems = (header & DIM_MASK);
 | |
| 	if (nitems > CUBE_MAX_DIM)
 | |
| 		ereport(ERROR,
 | |
| 				(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
 | |
| 				 errmsg("cube dimension is too large"),
 | |
| 				 errdetail("A cube cannot have more than %d dimensions.",
 | |
| 						   CUBE_MAX_DIM)));
 | |
| 	if ((header & POINT_BIT) == 0)
 | |
| 		nitems += nitems;
 | |
| 	cube = palloc(offsetof(NDBOX, x) + sizeof(double) * nitems);
 | |
| 	SET_VARSIZE(cube, offsetof(NDBOX, x) + sizeof(double) * nitems);
 | |
| 	cube->header = header;
 | |
| 	for (i = 0; i < nitems; i++)
 | |
| 		cube->x[i] = pq_getmsgfloat8(buf);
 | |
| 
 | |
| 	PG_RETURN_NDBOX_P(cube);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*****************************************************************************
 | |
|  *						   GiST functions
 | |
|  *****************************************************************************/
 | |
| 
 | |
| /*
 | |
| ** The GiST Consistent method for boxes
 | |
| ** Should return false if for all data items x below entry,
 | |
| ** the predicate x op query == false, where op is the oper
 | |
| ** corresponding to strategy in the pg_amop table.
 | |
| */
 | |
| Datum
 | |
| g_cube_consistent(PG_FUNCTION_ARGS)
 | |
| {
 | |
| 	GISTENTRY  *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
 | |
| 	NDBOX	   *query = PG_GETARG_NDBOX_P(1);
 | |
| 	StrategyNumber strategy = (StrategyNumber) PG_GETARG_UINT16(2);
 | |
| 
 | |
| 	/* Oid		subtype = PG_GETARG_OID(3); */
 | |
| 	bool	   *recheck = (bool *) PG_GETARG_POINTER(4);
 | |
| 	bool		res;
 | |
| 
 | |
| 	/* All cases served by this function are exact */
 | |
| 	*recheck = false;
 | |
| 
 | |
| 	/*
 | |
| 	 * if entry is not leaf, use g_cube_internal_consistent, else use
 | |
| 	 * g_cube_leaf_consistent
 | |
| 	 */
 | |
| 	if (GIST_LEAF(entry))
 | |
| 		res = g_cube_leaf_consistent(DatumGetNDBOXP(entry->key),
 | |
| 									 query, strategy);
 | |
| 	else
 | |
| 		res = g_cube_internal_consistent(DatumGetNDBOXP(entry->key),
 | |
| 										 query, strategy);
 | |
| 
 | |
| 	PG_FREE_IF_COPY(query, 1);
 | |
| 	PG_RETURN_BOOL(res);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** The GiST Union method for boxes
 | |
| ** returns the minimal bounding box that encloses all the entries in entryvec
 | |
| */
 | |
| Datum
 | |
| g_cube_union(PG_FUNCTION_ARGS)
 | |
| {
 | |
| 	GistEntryVector *entryvec = (GistEntryVector *) PG_GETARG_POINTER(0);
 | |
| 	int		   *sizep = (int *) PG_GETARG_POINTER(1);
 | |
| 	NDBOX	   *out = (NDBOX *) NULL;
 | |
| 	NDBOX	   *tmp;
 | |
| 	int			i;
 | |
| 
 | |
| 	tmp = DatumGetNDBOXP(entryvec->vector[0].key);
 | |
| 
 | |
| 	/*
 | |
| 	 * sizep = sizeof(NDBOX); -- NDBOX has variable size
 | |
| 	 */
 | |
| 	*sizep = VARSIZE(tmp);
 | |
| 
 | |
| 	for (i = 1; i < entryvec->n; i++)
 | |
| 	{
 | |
| 		out = g_cube_binary_union(tmp,
 | |
| 								  DatumGetNDBOXP(entryvec->vector[i].key),
 | |
| 								  sizep);
 | |
| 		tmp = out;
 | |
| 	}
 | |
| 
 | |
| 	PG_RETURN_POINTER(out);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** GiST Compress and Decompress methods for boxes
 | |
| ** do not do anything.
 | |
| */
 | |
| 
 | |
| Datum
 | |
| g_cube_compress(PG_FUNCTION_ARGS)
 | |
| {
 | |
| 	PG_RETURN_DATUM(PG_GETARG_DATUM(0));
 | |
| }
 | |
| 
 | |
| Datum
 | |
| g_cube_decompress(PG_FUNCTION_ARGS)
 | |
| {
 | |
| 	GISTENTRY  *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
 | |
| 	NDBOX	   *key = DatumGetNDBOXP(entry->key);
 | |
| 
 | |
| 	if (key != DatumGetNDBOXP(entry->key))
 | |
| 	{
 | |
| 		GISTENTRY  *retval = (GISTENTRY *) palloc(sizeof(GISTENTRY));
 | |
| 
 | |
| 		gistentryinit(*retval, PointerGetDatum(key),
 | |
| 					  entry->rel, entry->page,
 | |
| 					  entry->offset, false);
 | |
| 		PG_RETURN_POINTER(retval);
 | |
| 	}
 | |
| 	PG_RETURN_POINTER(entry);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** The GiST Penalty method for boxes
 | |
| ** As in the R-tree paper, we use change in area as our penalty metric
 | |
| */
 | |
| Datum
 | |
| g_cube_penalty(PG_FUNCTION_ARGS)
 | |
| {
 | |
| 	GISTENTRY  *origentry = (GISTENTRY *) PG_GETARG_POINTER(0);
 | |
| 	GISTENTRY  *newentry = (GISTENTRY *) PG_GETARG_POINTER(1);
 | |
| 	float	   *result = (float *) PG_GETARG_POINTER(2);
 | |
| 	NDBOX	   *ud;
 | |
| 	double		tmp1,
 | |
| 				tmp2;
 | |
| 
 | |
| 	ud = cube_union_v0(DatumGetNDBOXP(origentry->key),
 | |
| 					   DatumGetNDBOXP(newentry->key));
 | |
| 	rt_cube_size(ud, &tmp1);
 | |
| 	rt_cube_size(DatumGetNDBOXP(origentry->key), &tmp2);
 | |
| 	*result = (float) (tmp1 - tmp2);
 | |
| 
 | |
| 	PG_RETURN_FLOAT8(*result);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** The GiST PickSplit method for boxes
 | |
| ** We use Guttman's poly time split algorithm
 | |
| */
 | |
| Datum
 | |
| g_cube_picksplit(PG_FUNCTION_ARGS)
 | |
| {
 | |
| 	GistEntryVector *entryvec = (GistEntryVector *) PG_GETARG_POINTER(0);
 | |
| 	GIST_SPLITVEC *v = (GIST_SPLITVEC *) PG_GETARG_POINTER(1);
 | |
| 	OffsetNumber i,
 | |
| 				j;
 | |
| 	NDBOX	   *datum_alpha,
 | |
| 			   *datum_beta;
 | |
| 	NDBOX	   *datum_l,
 | |
| 			   *datum_r;
 | |
| 	NDBOX	   *union_d,
 | |
| 			   *union_dl,
 | |
| 			   *union_dr;
 | |
| 	NDBOX	   *inter_d;
 | |
| 	bool		firsttime;
 | |
| 	double		size_alpha,
 | |
| 				size_beta,
 | |
| 				size_union,
 | |
| 				size_inter;
 | |
| 	double		size_waste,
 | |
| 				waste;
 | |
| 	double		size_l,
 | |
| 				size_r;
 | |
| 	int			nbytes;
 | |
| 	OffsetNumber seed_1 = 1,
 | |
| 				seed_2 = 2;
 | |
| 	OffsetNumber *left,
 | |
| 			   *right;
 | |
| 	OffsetNumber maxoff;
 | |
| 
 | |
| 	maxoff = entryvec->n - 2;
 | |
| 	nbytes = (maxoff + 2) * sizeof(OffsetNumber);
 | |
| 	v->spl_left = (OffsetNumber *) palloc(nbytes);
 | |
| 	v->spl_right = (OffsetNumber *) palloc(nbytes);
 | |
| 
 | |
| 	firsttime = true;
 | |
| 	waste = 0.0;
 | |
| 
 | |
| 	for (i = FirstOffsetNumber; i < maxoff; i = OffsetNumberNext(i))
 | |
| 	{
 | |
| 		datum_alpha = DatumGetNDBOXP(entryvec->vector[i].key);
 | |
| 		for (j = OffsetNumberNext(i); j <= maxoff; j = OffsetNumberNext(j))
 | |
| 		{
 | |
| 			datum_beta = DatumGetNDBOXP(entryvec->vector[j].key);
 | |
| 
 | |
| 			/* compute the wasted space by unioning these guys */
 | |
| 			/* size_waste = size_union - size_inter; */
 | |
| 			union_d = cube_union_v0(datum_alpha, datum_beta);
 | |
| 			rt_cube_size(union_d, &size_union);
 | |
| 			inter_d = DatumGetNDBOXP(DirectFunctionCall2(cube_inter,
 | |
| 														 entryvec->vector[i].key,
 | |
| 														 entryvec->vector[j].key));
 | |
| 			rt_cube_size(inter_d, &size_inter);
 | |
| 			size_waste = size_union - size_inter;
 | |
| 
 | |
| 			/*
 | |
| 			 * are these a more promising split than what we've already seen?
 | |
| 			 */
 | |
| 
 | |
| 			if (size_waste > waste || firsttime)
 | |
| 			{
 | |
| 				waste = size_waste;
 | |
| 				seed_1 = i;
 | |
| 				seed_2 = j;
 | |
| 				firsttime = false;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	left = v->spl_left;
 | |
| 	v->spl_nleft = 0;
 | |
| 	right = v->spl_right;
 | |
| 	v->spl_nright = 0;
 | |
| 
 | |
| 	datum_alpha = DatumGetNDBOXP(entryvec->vector[seed_1].key);
 | |
| 	datum_l = cube_union_v0(datum_alpha, datum_alpha);
 | |
| 	rt_cube_size(datum_l, &size_l);
 | |
| 	datum_beta = DatumGetNDBOXP(entryvec->vector[seed_2].key);
 | |
| 	datum_r = cube_union_v0(datum_beta, datum_beta);
 | |
| 	rt_cube_size(datum_r, &size_r);
 | |
| 
 | |
| 	/*
 | |
| 	 * Now split up the regions between the two seeds.  An important property
 | |
| 	 * of this split algorithm is that the split vector v has the indices of
 | |
| 	 * items to be split in order in its left and right vectors.  We exploit
 | |
| 	 * this property by doing a merge in the code that actually splits the
 | |
| 	 * page.
 | |
| 	 *
 | |
| 	 * For efficiency, we also place the new index tuple in this loop. This is
 | |
| 	 * handled at the very end, when we have placed all the existing tuples
 | |
| 	 * and i == maxoff + 1.
 | |
| 	 */
 | |
| 
 | |
| 	maxoff = OffsetNumberNext(maxoff);
 | |
| 	for (i = FirstOffsetNumber; i <= maxoff; i = OffsetNumberNext(i))
 | |
| 	{
 | |
| 		/*
 | |
| 		 * If we've already decided where to place this item, just put it on
 | |
| 		 * the right list.  Otherwise, we need to figure out which page needs
 | |
| 		 * the least enlargement in order to store the item.
 | |
| 		 */
 | |
| 
 | |
| 		if (i == seed_1)
 | |
| 		{
 | |
| 			*left++ = i;
 | |
| 			v->spl_nleft++;
 | |
| 			continue;
 | |
| 		}
 | |
| 		else if (i == seed_2)
 | |
| 		{
 | |
| 			*right++ = i;
 | |
| 			v->spl_nright++;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* okay, which page needs least enlargement? */
 | |
| 		datum_alpha = DatumGetNDBOXP(entryvec->vector[i].key);
 | |
| 		union_dl = cube_union_v0(datum_l, datum_alpha);
 | |
| 		union_dr = cube_union_v0(datum_r, datum_alpha);
 | |
| 		rt_cube_size(union_dl, &size_alpha);
 | |
| 		rt_cube_size(union_dr, &size_beta);
 | |
| 
 | |
| 		/* pick which page to add it to */
 | |
| 		if (size_alpha - size_l < size_beta - size_r)
 | |
| 		{
 | |
| 			datum_l = union_dl;
 | |
| 			size_l = size_alpha;
 | |
| 			*left++ = i;
 | |
| 			v->spl_nleft++;
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			datum_r = union_dr;
 | |
| 			size_r = size_beta;
 | |
| 			*right++ = i;
 | |
| 			v->spl_nright++;
 | |
| 		}
 | |
| 	}
 | |
| 	*left = *right = FirstOffsetNumber; /* sentinel value */
 | |
| 
 | |
| 	v->spl_ldatum = PointerGetDatum(datum_l);
 | |
| 	v->spl_rdatum = PointerGetDatum(datum_r);
 | |
| 
 | |
| 	PG_RETURN_POINTER(v);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Equality method
 | |
| */
 | |
| Datum
 | |
| g_cube_same(PG_FUNCTION_ARGS)
 | |
| {
 | |
| 	NDBOX	   *b1 = PG_GETARG_NDBOX_P(0);
 | |
| 	NDBOX	   *b2 = PG_GETARG_NDBOX_P(1);
 | |
| 	bool	   *result = (bool *) PG_GETARG_POINTER(2);
 | |
| 
 | |
| 	if (cube_cmp_v0(b1, b2) == 0)
 | |
| 		*result = true;
 | |
| 	else
 | |
| 		*result = false;
 | |
| 
 | |
| 	PG_RETURN_NDBOX_P(result);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** SUPPORT ROUTINES
 | |
| */
 | |
| bool
 | |
| g_cube_leaf_consistent(NDBOX *key,
 | |
| 					   NDBOX *query,
 | |
| 					   StrategyNumber strategy)
 | |
| {
 | |
| 	bool		retval;
 | |
| 
 | |
| 	switch (strategy)
 | |
| 	{
 | |
| 		case RTOverlapStrategyNumber:
 | |
| 			retval = cube_overlap_v0(key, query);
 | |
| 			break;
 | |
| 		case RTSameStrategyNumber:
 | |
| 			retval = (cube_cmp_v0(key, query) == 0);
 | |
| 			break;
 | |
| 		case RTContainsStrategyNumber:
 | |
| 		case RTOldContainsStrategyNumber:
 | |
| 			retval = cube_contains_v0(key, query);
 | |
| 			break;
 | |
| 		case RTContainedByStrategyNumber:
 | |
| 		case RTOldContainedByStrategyNumber:
 | |
| 			retval = cube_contains_v0(query, key);
 | |
| 			break;
 | |
| 		default:
 | |
| 			retval = false;
 | |
| 	}
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| bool
 | |
| g_cube_internal_consistent(NDBOX *key,
 | |
| 						   NDBOX *query,
 | |
| 						   StrategyNumber strategy)
 | |
| {
 | |
| 	bool		retval;
 | |
| 
 | |
| 	switch (strategy)
 | |
| 	{
 | |
| 		case RTOverlapStrategyNumber:
 | |
| 			retval = (bool) cube_overlap_v0(key, query);
 | |
| 			break;
 | |
| 		case RTSameStrategyNumber:
 | |
| 		case RTContainsStrategyNumber:
 | |
| 		case RTOldContainsStrategyNumber:
 | |
| 			retval = (bool) cube_contains_v0(key, query);
 | |
| 			break;
 | |
| 		case RTContainedByStrategyNumber:
 | |
| 		case RTOldContainedByStrategyNumber:
 | |
| 			retval = (bool) cube_overlap_v0(key, query);
 | |
| 			break;
 | |
| 		default:
 | |
| 			retval = false;
 | |
| 	}
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| NDBOX *
 | |
| g_cube_binary_union(NDBOX *r1, NDBOX *r2, int *sizep)
 | |
| {
 | |
| 	NDBOX	   *retval;
 | |
| 
 | |
| 	retval = cube_union_v0(r1, r2);
 | |
| 	*sizep = VARSIZE(retval);
 | |
| 
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* cube_union_v0 */
 | |
| NDBOX *
 | |
| cube_union_v0(NDBOX *a, NDBOX *b)
 | |
| {
 | |
| 	int			i;
 | |
| 	NDBOX	   *result;
 | |
| 	int			dim;
 | |
| 	int			size;
 | |
| 
 | |
| 	/* trivial case */
 | |
| 	if (a == b)
 | |
| 		return a;
 | |
| 
 | |
| 	/* swap the arguments if needed, so that 'a' is always larger than 'b' */
 | |
| 	if (DIM(a) < DIM(b))
 | |
| 	{
 | |
| 		NDBOX	   *tmp = b;
 | |
| 
 | |
| 		b = a;
 | |
| 		a = tmp;
 | |
| 	}
 | |
| 	dim = DIM(a);
 | |
| 
 | |
| 	size = CUBE_SIZE(dim);
 | |
| 	result = palloc0(size);
 | |
| 	SET_VARSIZE(result, size);
 | |
| 	SET_DIM(result, dim);
 | |
| 
 | |
| 	/* First compute the union of the dimensions present in both args */
 | |
| 	for (i = 0; i < DIM(b); i++)
 | |
| 	{
 | |
| 		result->x[i] = Min(Min(LL_COORD(a, i), UR_COORD(a, i)),
 | |
| 						   Min(LL_COORD(b, i), UR_COORD(b, i)));
 | |
| 		result->x[i + DIM(a)] = Max(Max(LL_COORD(a, i), UR_COORD(a, i)),
 | |
| 									Max(LL_COORD(b, i), UR_COORD(b, i)));
 | |
| 	}
 | |
| 	/* continue on the higher dimensions only present in 'a' */
 | |
| 	for (; i < DIM(a); i++)
 | |
| 	{
 | |
| 		result->x[i] = Min(0,
 | |
| 						   Min(LL_COORD(a, i), UR_COORD(a, i))
 | |
| 			);
 | |
| 		result->x[i + dim] = Max(0,
 | |
| 								 Max(LL_COORD(a, i), UR_COORD(a, i))
 | |
| 			);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Check if the result was in fact a point, and set the flag in the datum
 | |
| 	 * accordingly. (we don't bother to repalloc it smaller)
 | |
| 	 */
 | |
| 	if (cube_is_point_internal(result))
 | |
| 	{
 | |
| 		size = POINT_SIZE(dim);
 | |
| 		SET_VARSIZE(result, size);
 | |
| 		SET_POINT_BIT(result);
 | |
| 	}
 | |
| 
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| Datum
 | |
| cube_union(PG_FUNCTION_ARGS)
 | |
| {
 | |
| 	NDBOX	   *a = PG_GETARG_NDBOX_P(0);
 | |
| 	NDBOX	   *b = PG_GETARG_NDBOX_P(1);
 | |
| 	NDBOX	   *res;
 | |
| 
 | |
| 	res = cube_union_v0(a, b);
 | |
| 
 | |
| 	PG_FREE_IF_COPY(a, 0);
 | |
| 	PG_FREE_IF_COPY(b, 1);
 | |
| 	PG_RETURN_NDBOX_P(res);
 | |
| }
 | |
| 
 | |
| /* cube_inter */
 | |
| Datum
 | |
| cube_inter(PG_FUNCTION_ARGS)
 | |
| {
 | |
| 	NDBOX	   *a = PG_GETARG_NDBOX_P(0);
 | |
| 	NDBOX	   *b = PG_GETARG_NDBOX_P(1);
 | |
| 	NDBOX	   *result;
 | |
| 	bool		swapped = false;
 | |
| 	int			i;
 | |
| 	int			dim;
 | |
| 	int			size;
 | |
| 
 | |
| 	/* swap the arguments if needed, so that 'a' is always larger than 'b' */
 | |
| 	if (DIM(a) < DIM(b))
 | |
| 	{
 | |
| 		NDBOX	   *tmp = b;
 | |
| 
 | |
| 		b = a;
 | |
| 		a = tmp;
 | |
| 		swapped = true;
 | |
| 	}
 | |
| 	dim = DIM(a);
 | |
| 
 | |
| 	size = CUBE_SIZE(dim);
 | |
| 	result = (NDBOX *) palloc0(size);
 | |
| 	SET_VARSIZE(result, size);
 | |
| 	SET_DIM(result, dim);
 | |
| 
 | |
| 	/* First compute intersection of the dimensions present in both args */
 | |
| 	for (i = 0; i < DIM(b); i++)
 | |
| 	{
 | |
| 		result->x[i] = Max(Min(LL_COORD(a, i), UR_COORD(a, i)),
 | |
| 						   Min(LL_COORD(b, i), UR_COORD(b, i)));
 | |
| 		result->x[i + DIM(a)] = Min(Max(LL_COORD(a, i), UR_COORD(a, i)),
 | |
| 									Max(LL_COORD(b, i), UR_COORD(b, i)));
 | |
| 	}
 | |
| 	/* continue on the higher dimensions only present in 'a' */
 | |
| 	for (; i < DIM(a); i++)
 | |
| 	{
 | |
| 		result->x[i] = Max(0,
 | |
| 						   Min(LL_COORD(a, i), UR_COORD(a, i))
 | |
| 			);
 | |
| 		result->x[i + DIM(a)] = Min(0,
 | |
| 									Max(LL_COORD(a, i), UR_COORD(a, i))
 | |
| 			);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Check if the result was in fact a point, and set the flag in the datum
 | |
| 	 * accordingly. (we don't bother to repalloc it smaller)
 | |
| 	 */
 | |
| 	if (cube_is_point_internal(result))
 | |
| 	{
 | |
| 		size = POINT_SIZE(dim);
 | |
| 		result = repalloc(result, size);
 | |
| 		SET_VARSIZE(result, size);
 | |
| 		SET_POINT_BIT(result);
 | |
| 	}
 | |
| 
 | |
| 	if (swapped)
 | |
| 	{
 | |
| 		PG_FREE_IF_COPY(b, 0);
 | |
| 		PG_FREE_IF_COPY(a, 1);
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		PG_FREE_IF_COPY(a, 0);
 | |
| 		PG_FREE_IF_COPY(b, 1);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Is it OK to return a non-null intersection for non-overlapping boxes?
 | |
| 	 */
 | |
| 	PG_RETURN_NDBOX_P(result);
 | |
| }
 | |
| 
 | |
| /* cube_size */
 | |
| Datum
 | |
| cube_size(PG_FUNCTION_ARGS)
 | |
| {
 | |
| 	NDBOX	   *a = PG_GETARG_NDBOX_P(0);
 | |
| 	double		result;
 | |
| 
 | |
| 	rt_cube_size(a, &result);
 | |
| 	PG_FREE_IF_COPY(a, 0);
 | |
| 	PG_RETURN_FLOAT8(result);
 | |
| }
 | |
| 
 | |
| void
 | |
| rt_cube_size(NDBOX *a, double *size)
 | |
| {
 | |
| 	double		result;
 | |
| 	int			i;
 | |
| 
 | |
| 	if (a == (NDBOX *) NULL)
 | |
| 	{
 | |
| 		/* special case for GiST */
 | |
| 		result = 0.0;
 | |
| 	}
 | |
| 	else if (IS_POINT(a) || DIM(a) == 0)
 | |
| 	{
 | |
| 		/* necessarily has zero size */
 | |
| 		result = 0.0;
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		result = 1.0;
 | |
| 		for (i = 0; i < DIM(a); i++)
 | |
| 			result *= Abs(UR_COORD(a, i) - LL_COORD(a, i));
 | |
| 	}
 | |
| 	*size = result;
 | |
| }
 | |
| 
 | |
| /* make up a metric in which one box will be 'lower' than the other
 | |
|    -- this can be useful for sorting and to determine uniqueness */
 | |
| int32
 | |
| cube_cmp_v0(NDBOX *a, NDBOX *b)
 | |
| {
 | |
| 	int			i;
 | |
| 	int			dim;
 | |
| 
 | |
| 	dim = Min(DIM(a), DIM(b));
 | |
| 
 | |
| 	/* compare the common dimensions */
 | |
| 	for (i = 0; i < dim; i++)
 | |
| 	{
 | |
| 		if (Min(LL_COORD(a, i), UR_COORD(a, i)) >
 | |
| 			Min(LL_COORD(b, i), UR_COORD(b, i)))
 | |
| 			return 1;
 | |
| 		if (Min(LL_COORD(a, i), UR_COORD(a, i)) <
 | |
| 			Min(LL_COORD(b, i), UR_COORD(b, i)))
 | |
| 			return -1;
 | |
| 	}
 | |
| 	for (i = 0; i < dim; i++)
 | |
| 	{
 | |
| 		if (Max(LL_COORD(a, i), UR_COORD(a, i)) >
 | |
| 			Max(LL_COORD(b, i), UR_COORD(b, i)))
 | |
| 			return 1;
 | |
| 		if (Max(LL_COORD(a, i), UR_COORD(a, i)) <
 | |
| 			Max(LL_COORD(b, i), UR_COORD(b, i)))
 | |
| 			return -1;
 | |
| 	}
 | |
| 
 | |
| 	/* compare extra dimensions to zero */
 | |
| 	if (DIM(a) > DIM(b))
 | |
| 	{
 | |
| 		for (i = dim; i < DIM(a); i++)
 | |
| 		{
 | |
| 			if (Min(LL_COORD(a, i), UR_COORD(a, i)) > 0)
 | |
| 				return 1;
 | |
| 			if (Min(LL_COORD(a, i), UR_COORD(a, i)) < 0)
 | |
| 				return -1;
 | |
| 		}
 | |
| 		for (i = dim; i < DIM(a); i++)
 | |
| 		{
 | |
| 			if (Max(LL_COORD(a, i), UR_COORD(a, i)) > 0)
 | |
| 				return 1;
 | |
| 			if (Max(LL_COORD(a, i), UR_COORD(a, i)) < 0)
 | |
| 				return -1;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * if all common dimensions are equal, the cube with more dimensions
 | |
| 		 * wins
 | |
| 		 */
 | |
| 		return 1;
 | |
| 	}
 | |
| 	if (DIM(a) < DIM(b))
 | |
| 	{
 | |
| 		for (i = dim; i < DIM(b); i++)
 | |
| 		{
 | |
| 			if (Min(LL_COORD(b, i), UR_COORD(b, i)) > 0)
 | |
| 				return -1;
 | |
| 			if (Min(LL_COORD(b, i), UR_COORD(b, i)) < 0)
 | |
| 				return 1;
 | |
| 		}
 | |
| 		for (i = dim; i < DIM(b); i++)
 | |
| 		{
 | |
| 			if (Max(LL_COORD(b, i), UR_COORD(b, i)) > 0)
 | |
| 				return -1;
 | |
| 			if (Max(LL_COORD(b, i), UR_COORD(b, i)) < 0)
 | |
| 				return 1;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * if all common dimensions are equal, the cube with more dimensions
 | |
| 		 * wins
 | |
| 		 */
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	/* They're really equal */
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| Datum
 | |
| cube_cmp(PG_FUNCTION_ARGS)
 | |
| {
 | |
| 	NDBOX	   *a = PG_GETARG_NDBOX_P(0),
 | |
| 			   *b = PG_GETARG_NDBOX_P(1);
 | |
| 	int32		res;
 | |
| 
 | |
| 	res = cube_cmp_v0(a, b);
 | |
| 
 | |
| 	PG_FREE_IF_COPY(a, 0);
 | |
| 	PG_FREE_IF_COPY(b, 1);
 | |
| 	PG_RETURN_INT32(res);
 | |
| }
 | |
| 
 | |
| 
 | |
| Datum
 | |
| cube_eq(PG_FUNCTION_ARGS)
 | |
| {
 | |
| 	NDBOX	   *a = PG_GETARG_NDBOX_P(0),
 | |
| 			   *b = PG_GETARG_NDBOX_P(1);
 | |
| 	int32		res;
 | |
| 
 | |
| 	res = cube_cmp_v0(a, b);
 | |
| 
 | |
| 	PG_FREE_IF_COPY(a, 0);
 | |
| 	PG_FREE_IF_COPY(b, 1);
 | |
| 	PG_RETURN_BOOL(res == 0);
 | |
| }
 | |
| 
 | |
| 
 | |
| Datum
 | |
| cube_ne(PG_FUNCTION_ARGS)
 | |
| {
 | |
| 	NDBOX	   *a = PG_GETARG_NDBOX_P(0),
 | |
| 			   *b = PG_GETARG_NDBOX_P(1);
 | |
| 	int32		res;
 | |
| 
 | |
| 	res = cube_cmp_v0(a, b);
 | |
| 
 | |
| 	PG_FREE_IF_COPY(a, 0);
 | |
| 	PG_FREE_IF_COPY(b, 1);
 | |
| 	PG_RETURN_BOOL(res != 0);
 | |
| }
 | |
| 
 | |
| 
 | |
| Datum
 | |
| cube_lt(PG_FUNCTION_ARGS)
 | |
| {
 | |
| 	NDBOX	   *a = PG_GETARG_NDBOX_P(0),
 | |
| 			   *b = PG_GETARG_NDBOX_P(1);
 | |
| 	int32		res;
 | |
| 
 | |
| 	res = cube_cmp_v0(a, b);
 | |
| 
 | |
| 	PG_FREE_IF_COPY(a, 0);
 | |
| 	PG_FREE_IF_COPY(b, 1);
 | |
| 	PG_RETURN_BOOL(res < 0);
 | |
| }
 | |
| 
 | |
| 
 | |
| Datum
 | |
| cube_gt(PG_FUNCTION_ARGS)
 | |
| {
 | |
| 	NDBOX	   *a = PG_GETARG_NDBOX_P(0),
 | |
| 			   *b = PG_GETARG_NDBOX_P(1);
 | |
| 	int32		res;
 | |
| 
 | |
| 	res = cube_cmp_v0(a, b);
 | |
| 
 | |
| 	PG_FREE_IF_COPY(a, 0);
 | |
| 	PG_FREE_IF_COPY(b, 1);
 | |
| 	PG_RETURN_BOOL(res > 0);
 | |
| }
 | |
| 
 | |
| 
 | |
| Datum
 | |
| cube_le(PG_FUNCTION_ARGS)
 | |
| {
 | |
| 	NDBOX	   *a = PG_GETARG_NDBOX_P(0),
 | |
| 			   *b = PG_GETARG_NDBOX_P(1);
 | |
| 	int32		res;
 | |
| 
 | |
| 	res = cube_cmp_v0(a, b);
 | |
| 
 | |
| 	PG_FREE_IF_COPY(a, 0);
 | |
| 	PG_FREE_IF_COPY(b, 1);
 | |
| 	PG_RETURN_BOOL(res <= 0);
 | |
| }
 | |
| 
 | |
| 
 | |
| Datum
 | |
| cube_ge(PG_FUNCTION_ARGS)
 | |
| {
 | |
| 	NDBOX	   *a = PG_GETARG_NDBOX_P(0),
 | |
| 			   *b = PG_GETARG_NDBOX_P(1);
 | |
| 	int32		res;
 | |
| 
 | |
| 	res = cube_cmp_v0(a, b);
 | |
| 
 | |
| 	PG_FREE_IF_COPY(a, 0);
 | |
| 	PG_FREE_IF_COPY(b, 1);
 | |
| 	PG_RETURN_BOOL(res >= 0);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Contains */
 | |
| /* Box(A) CONTAINS Box(B) IFF pt(A) < pt(B) */
 | |
| bool
 | |
| cube_contains_v0(NDBOX *a, NDBOX *b)
 | |
| {
 | |
| 	int			i;
 | |
| 
 | |
| 	if ((a == NULL) || (b == NULL))
 | |
| 		return false;
 | |
| 
 | |
| 	if (DIM(a) < DIM(b))
 | |
| 	{
 | |
| 		/*
 | |
| 		 * the further comparisons will make sense if the excess dimensions of
 | |
| 		 * (b) were zeroes Since both UL and UR coordinates must be zero, we
 | |
| 		 * can check them all without worrying about which is which.
 | |
| 		 */
 | |
| 		for (i = DIM(a); i < DIM(b); i++)
 | |
| 		{
 | |
| 			if (LL_COORD(b, i) != 0)
 | |
| 				return false;
 | |
| 			if (UR_COORD(b, i) != 0)
 | |
| 				return false;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Can't care less about the excess dimensions of (a), if any */
 | |
| 	for (i = 0; i < Min(DIM(a), DIM(b)); i++)
 | |
| 	{
 | |
| 		if (Min(LL_COORD(a, i), UR_COORD(a, i)) >
 | |
| 			Min(LL_COORD(b, i), UR_COORD(b, i)))
 | |
| 			return false;
 | |
| 		if (Max(LL_COORD(a, i), UR_COORD(a, i)) <
 | |
| 			Max(LL_COORD(b, i), UR_COORD(b, i)))
 | |
| 			return false;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| Datum
 | |
| cube_contains(PG_FUNCTION_ARGS)
 | |
| {
 | |
| 	NDBOX	   *a = PG_GETARG_NDBOX_P(0),
 | |
| 			   *b = PG_GETARG_NDBOX_P(1);
 | |
| 	bool		res;
 | |
| 
 | |
| 	res = cube_contains_v0(a, b);
 | |
| 
 | |
| 	PG_FREE_IF_COPY(a, 0);
 | |
| 	PG_FREE_IF_COPY(b, 1);
 | |
| 	PG_RETURN_BOOL(res);
 | |
| }
 | |
| 
 | |
| /* Contained */
 | |
| /* Box(A) Contained by Box(B) IFF Box(B) Contains Box(A) */
 | |
| Datum
 | |
| cube_contained(PG_FUNCTION_ARGS)
 | |
| {
 | |
| 	NDBOX	   *a = PG_GETARG_NDBOX_P(0),
 | |
| 			   *b = PG_GETARG_NDBOX_P(1);
 | |
| 	bool		res;
 | |
| 
 | |
| 	res = cube_contains_v0(b, a);
 | |
| 
 | |
| 	PG_FREE_IF_COPY(a, 0);
 | |
| 	PG_FREE_IF_COPY(b, 1);
 | |
| 	PG_RETURN_BOOL(res);
 | |
| }
 | |
| 
 | |
| /* Overlap */
 | |
| /* Box(A) Overlap Box(B) IFF (pt(a)LL < pt(B)UR) && (pt(b)LL < pt(a)UR) */
 | |
| bool
 | |
| cube_overlap_v0(NDBOX *a, NDBOX *b)
 | |
| {
 | |
| 	int			i;
 | |
| 
 | |
| 	if ((a == NULL) || (b == NULL))
 | |
| 		return false;
 | |
| 
 | |
| 	/* swap the box pointers if needed */
 | |
| 	if (DIM(a) < DIM(b))
 | |
| 	{
 | |
| 		NDBOX	   *tmp = b;
 | |
| 
 | |
| 		b = a;
 | |
| 		a = tmp;
 | |
| 	}
 | |
| 
 | |
| 	/* compare within the dimensions of (b) */
 | |
| 	for (i = 0; i < DIM(b); i++)
 | |
| 	{
 | |
| 		if (Min(LL_COORD(a, i), UR_COORD(a, i)) > Max(LL_COORD(b, i), UR_COORD(b, i)))
 | |
| 			return false;
 | |
| 		if (Max(LL_COORD(a, i), UR_COORD(a, i)) < Min(LL_COORD(b, i), UR_COORD(b, i)))
 | |
| 			return false;
 | |
| 	}
 | |
| 
 | |
| 	/* compare to zero those dimensions in (a) absent in (b) */
 | |
| 	for (i = DIM(b); i < DIM(a); i++)
 | |
| 	{
 | |
| 		if (Min(LL_COORD(a, i), UR_COORD(a, i)) > 0)
 | |
| 			return false;
 | |
| 		if (Max(LL_COORD(a, i), UR_COORD(a, i)) < 0)
 | |
| 			return false;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| Datum
 | |
| cube_overlap(PG_FUNCTION_ARGS)
 | |
| {
 | |
| 	NDBOX	   *a = PG_GETARG_NDBOX_P(0),
 | |
| 			   *b = PG_GETARG_NDBOX_P(1);
 | |
| 	bool		res;
 | |
| 
 | |
| 	res = cube_overlap_v0(a, b);
 | |
| 
 | |
| 	PG_FREE_IF_COPY(a, 0);
 | |
| 	PG_FREE_IF_COPY(b, 1);
 | |
| 	PG_RETURN_BOOL(res);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Distance */
 | |
| /* The distance is computed as a per axis sum of the squared distances
 | |
|    between 1D projections of the boxes onto Cartesian axes. Assuming zero
 | |
|    distance between overlapping projections, this metric coincides with the
 | |
|    "common sense" geometric distance */
 | |
| Datum
 | |
| cube_distance(PG_FUNCTION_ARGS)
 | |
| {
 | |
| 	NDBOX	   *a = PG_GETARG_NDBOX_P(0),
 | |
| 			   *b = PG_GETARG_NDBOX_P(1);
 | |
| 	bool		swapped = false;
 | |
| 	double		d,
 | |
| 				distance;
 | |
| 	int			i;
 | |
| 
 | |
| 	/* swap the box pointers if needed */
 | |
| 	if (DIM(a) < DIM(b))
 | |
| 	{
 | |
| 		NDBOX	   *tmp = b;
 | |
| 
 | |
| 		b = a;
 | |
| 		a = tmp;
 | |
| 		swapped = true;
 | |
| 	}
 | |
| 
 | |
| 	distance = 0.0;
 | |
| 	/* compute within the dimensions of (b) */
 | |
| 	for (i = 0; i < DIM(b); i++)
 | |
| 	{
 | |
| 		d = distance_1D(LL_COORD(a, i), UR_COORD(a, i), LL_COORD(b, i), UR_COORD(b, i));
 | |
| 		distance += d * d;
 | |
| 	}
 | |
| 
 | |
| 	/* compute distance to zero for those dimensions in (a) absent in (b) */
 | |
| 	for (i = DIM(b); i < DIM(a); i++)
 | |
| 	{
 | |
| 		d = distance_1D(LL_COORD(a, i), UR_COORD(a, i), 0.0, 0.0);
 | |
| 		distance += d * d;
 | |
| 	}
 | |
| 
 | |
| 	if (swapped)
 | |
| 	{
 | |
| 		PG_FREE_IF_COPY(b, 0);
 | |
| 		PG_FREE_IF_COPY(a, 1);
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		PG_FREE_IF_COPY(a, 0);
 | |
| 		PG_FREE_IF_COPY(b, 1);
 | |
| 	}
 | |
| 
 | |
| 	PG_RETURN_FLOAT8(sqrt(distance));
 | |
| }
 | |
| 
 | |
| Datum
 | |
| distance_taxicab(PG_FUNCTION_ARGS)
 | |
| {
 | |
| 	NDBOX	   *a = PG_GETARG_NDBOX_P(0),
 | |
| 			   *b = PG_GETARG_NDBOX_P(1);
 | |
| 	bool		swapped = false;
 | |
| 	double		distance;
 | |
| 	int			i;
 | |
| 
 | |
| 	/* swap the box pointers if needed */
 | |
| 	if (DIM(a) < DIM(b))
 | |
| 	{
 | |
| 		NDBOX	   *tmp = b;
 | |
| 
 | |
| 		b = a;
 | |
| 		a = tmp;
 | |
| 		swapped = true;
 | |
| 	}
 | |
| 
 | |
| 	distance = 0.0;
 | |
| 	/* compute within the dimensions of (b) */
 | |
| 	for (i = 0; i < DIM(b); i++)
 | |
| 		distance += fabs(distance_1D(LL_COORD(a, i), UR_COORD(a, i),
 | |
| 									 LL_COORD(b, i), UR_COORD(b, i)));
 | |
| 
 | |
| 	/* compute distance to zero for those dimensions in (a) absent in (b) */
 | |
| 	for (i = DIM(b); i < DIM(a); i++)
 | |
| 		distance += fabs(distance_1D(LL_COORD(a, i), UR_COORD(a, i),
 | |
| 									 0.0, 0.0));
 | |
| 
 | |
| 	if (swapped)
 | |
| 	{
 | |
| 		PG_FREE_IF_COPY(b, 0);
 | |
| 		PG_FREE_IF_COPY(a, 1);
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		PG_FREE_IF_COPY(a, 0);
 | |
| 		PG_FREE_IF_COPY(b, 1);
 | |
| 	}
 | |
| 
 | |
| 	PG_RETURN_FLOAT8(distance);
 | |
| }
 | |
| 
 | |
| Datum
 | |
| distance_chebyshev(PG_FUNCTION_ARGS)
 | |
| {
 | |
| 	NDBOX	   *a = PG_GETARG_NDBOX_P(0),
 | |
| 			   *b = PG_GETARG_NDBOX_P(1);
 | |
| 	bool		swapped = false;
 | |
| 	double		d,
 | |
| 				distance;
 | |
| 	int			i;
 | |
| 
 | |
| 	/* swap the box pointers if needed */
 | |
| 	if (DIM(a) < DIM(b))
 | |
| 	{
 | |
| 		NDBOX	   *tmp = b;
 | |
| 
 | |
| 		b = a;
 | |
| 		a = tmp;
 | |
| 		swapped = true;
 | |
| 	}
 | |
| 
 | |
| 	distance = 0.0;
 | |
| 	/* compute within the dimensions of (b) */
 | |
| 	for (i = 0; i < DIM(b); i++)
 | |
| 	{
 | |
| 		d = fabs(distance_1D(LL_COORD(a, i), UR_COORD(a, i),
 | |
| 							 LL_COORD(b, i), UR_COORD(b, i)));
 | |
| 		if (d > distance)
 | |
| 			distance = d;
 | |
| 	}
 | |
| 
 | |
| 	/* compute distance to zero for those dimensions in (a) absent in (b) */
 | |
| 	for (i = DIM(b); i < DIM(a); i++)
 | |
| 	{
 | |
| 		d = fabs(distance_1D(LL_COORD(a, i), UR_COORD(a, i), 0.0, 0.0));
 | |
| 		if (d > distance)
 | |
| 			distance = d;
 | |
| 	}
 | |
| 
 | |
| 	if (swapped)
 | |
| 	{
 | |
| 		PG_FREE_IF_COPY(b, 0);
 | |
| 		PG_FREE_IF_COPY(a, 1);
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		PG_FREE_IF_COPY(a, 0);
 | |
| 		PG_FREE_IF_COPY(b, 1);
 | |
| 	}
 | |
| 
 | |
| 	PG_RETURN_FLOAT8(distance);
 | |
| }
 | |
| 
 | |
| Datum
 | |
| g_cube_distance(PG_FUNCTION_ARGS)
 | |
| {
 | |
| 	GISTENTRY  *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
 | |
| 	StrategyNumber strategy = (StrategyNumber) PG_GETARG_UINT16(2);
 | |
| 	NDBOX	   *cube = DatumGetNDBOXP(entry->key);
 | |
| 	double		retval;
 | |
| 
 | |
| 	if (strategy == CubeKNNDistanceCoord)
 | |
| 	{
 | |
| 		/*
 | |
| 		 * Handle ordering by ~> operator.  See comments of cube_coord_llur()
 | |
| 		 * for details
 | |
| 		 */
 | |
| 		int			coord = PG_GETARG_INT32(1);
 | |
| 		bool		isLeaf = GistPageIsLeaf(entry->page);
 | |
| 		bool		inverse = false;
 | |
| 
 | |
| 		/* 0 is the only unsupported coordinate value */
 | |
| 		if (coord == 0)
 | |
| 			ereport(ERROR,
 | |
| 					(errcode(ERRCODE_ARRAY_ELEMENT_ERROR),
 | |
| 					 errmsg("zero cube index is not defined")));
 | |
| 
 | |
| 		/* Return inversed value for negative coordinate */
 | |
| 		if (coord < 0)
 | |
| 		{
 | |
| 			coord = -coord;
 | |
| 			inverse = true;
 | |
| 		}
 | |
| 
 | |
| 		if (coord <= 2 * DIM(cube))
 | |
| 		{
 | |
| 			/* dimension index */
 | |
| 			int			index = (coord - 1) / 2;
 | |
| 
 | |
| 			/* whether this is upper bound (lower bound otherwise) */
 | |
| 			bool		upper = ((coord - 1) % 2 == 1);
 | |
| 
 | |
| 			if (IS_POINT(cube))
 | |
| 			{
 | |
| 				retval = cube->x[index];
 | |
| 			}
 | |
| 			else
 | |
| 			{
 | |
| 				if (isLeaf)
 | |
| 				{
 | |
| 					/* For leaf just return required upper/lower bound */
 | |
| 					if (upper)
 | |
| 						retval = Max(cube->x[index], cube->x[index + DIM(cube)]);
 | |
| 					else
 | |
| 						retval = Min(cube->x[index], cube->x[index + DIM(cube)]);
 | |
| 				}
 | |
| 				else
 | |
| 				{
 | |
| 					/*
 | |
| 					 * For non-leaf we should always return lower bound,
 | |
| 					 * because even upper bound of a child in the subtree can
 | |
| 					 * be as small as our lower bound.  For inversed case we
 | |
| 					 * return upper bound because it becomes lower bound for
 | |
| 					 * inversed value.
 | |
| 					 */
 | |
| 					if (!inverse)
 | |
| 						retval = Min(cube->x[index], cube->x[index + DIM(cube)]);
 | |
| 					else
 | |
| 						retval = Max(cube->x[index], cube->x[index + DIM(cube)]);
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			retval = 0.0;
 | |
| 		}
 | |
| 
 | |
| 		/* Inverse return value if needed */
 | |
| 		if (inverse)
 | |
| 			retval = -retval;
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		NDBOX	   *query = PG_GETARG_NDBOX_P(1);
 | |
| 
 | |
| 		switch (strategy)
 | |
| 		{
 | |
| 			case CubeKNNDistanceTaxicab:
 | |
| 				retval = DatumGetFloat8(DirectFunctionCall2(distance_taxicab,
 | |
| 															PointerGetDatum(cube), PointerGetDatum(query)));
 | |
| 				break;
 | |
| 			case CubeKNNDistanceEuclid:
 | |
| 				retval = DatumGetFloat8(DirectFunctionCall2(cube_distance,
 | |
| 															PointerGetDatum(cube), PointerGetDatum(query)));
 | |
| 				break;
 | |
| 			case CubeKNNDistanceChebyshev:
 | |
| 				retval = DatumGetFloat8(DirectFunctionCall2(distance_chebyshev,
 | |
| 															PointerGetDatum(cube), PointerGetDatum(query)));
 | |
| 				break;
 | |
| 			default:
 | |
| 				elog(ERROR, "unrecognized cube strategy number: %d", strategy);
 | |
| 				retval = 0;		/* keep compiler quiet */
 | |
| 				break;
 | |
| 		}
 | |
| 	}
 | |
| 	PG_RETURN_FLOAT8(retval);
 | |
| }
 | |
| 
 | |
| static double
 | |
| distance_1D(double a1, double a2, double b1, double b2)
 | |
| {
 | |
| 	/* interval (a) is entirely on the left of (b) */
 | |
| 	if ((a1 <= b1) && (a2 <= b1) && (a1 <= b2) && (a2 <= b2))
 | |
| 		return (Min(b1, b2) - Max(a1, a2));
 | |
| 
 | |
| 	/* interval (a) is entirely on the right of (b) */
 | |
| 	if ((a1 > b1) && (a2 > b1) && (a1 > b2) && (a2 > b2))
 | |
| 		return (Min(a1, a2) - Max(b1, b2));
 | |
| 
 | |
| 	/* the rest are all sorts of intersections */
 | |
| 	return 0.0;
 | |
| }
 | |
| 
 | |
| /* Test if a box is also a point */
 | |
| Datum
 | |
| cube_is_point(PG_FUNCTION_ARGS)
 | |
| {
 | |
| 	NDBOX	   *cube = PG_GETARG_NDBOX_P(0);
 | |
| 	bool		result;
 | |
| 
 | |
| 	result = cube_is_point_internal(cube);
 | |
| 	PG_FREE_IF_COPY(cube, 0);
 | |
| 	PG_RETURN_BOOL(result);
 | |
| }
 | |
| 
 | |
| static bool
 | |
| cube_is_point_internal(NDBOX *cube)
 | |
| {
 | |
| 	int			i;
 | |
| 
 | |
| 	if (IS_POINT(cube))
 | |
| 		return true;
 | |
| 
 | |
| 	/*
 | |
| 	 * Even if the point-flag is not set, all the lower-left coordinates might
 | |
| 	 * match the upper-right coordinates, so that the value is in fact a
 | |
| 	 * point. Such values don't arise with current code - the point flag is
 | |
| 	 * always set if appropriate - but they might be present on-disk in
 | |
| 	 * clusters upgraded from pre-9.4 versions.
 | |
| 	 */
 | |
| 	for (i = 0; i < DIM(cube); i++)
 | |
| 	{
 | |
| 		if (LL_COORD(cube, i) != UR_COORD(cube, i))
 | |
| 			return false;
 | |
| 	}
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /* Return dimensions in use in the data structure */
 | |
| Datum
 | |
| cube_dim(PG_FUNCTION_ARGS)
 | |
| {
 | |
| 	NDBOX	   *c = PG_GETARG_NDBOX_P(0);
 | |
| 	int			dim = DIM(c);
 | |
| 
 | |
| 	PG_FREE_IF_COPY(c, 0);
 | |
| 	PG_RETURN_INT32(dim);
 | |
| }
 | |
| 
 | |
| /* Return a specific normalized LL coordinate */
 | |
| Datum
 | |
| cube_ll_coord(PG_FUNCTION_ARGS)
 | |
| {
 | |
| 	NDBOX	   *c = PG_GETARG_NDBOX_P(0);
 | |
| 	int			n = PG_GETARG_INT32(1);
 | |
| 	double		result;
 | |
| 
 | |
| 	if (DIM(c) >= n && n > 0)
 | |
| 		result = Min(LL_COORD(c, n - 1), UR_COORD(c, n - 1));
 | |
| 	else
 | |
| 		result = 0;
 | |
| 
 | |
| 	PG_FREE_IF_COPY(c, 0);
 | |
| 	PG_RETURN_FLOAT8(result);
 | |
| }
 | |
| 
 | |
| /* Return a specific normalized UR coordinate */
 | |
| Datum
 | |
| cube_ur_coord(PG_FUNCTION_ARGS)
 | |
| {
 | |
| 	NDBOX	   *c = PG_GETARG_NDBOX_P(0);
 | |
| 	int			n = PG_GETARG_INT32(1);
 | |
| 	double		result;
 | |
| 
 | |
| 	if (DIM(c) >= n && n > 0)
 | |
| 		result = Max(LL_COORD(c, n - 1), UR_COORD(c, n - 1));
 | |
| 	else
 | |
| 		result = 0;
 | |
| 
 | |
| 	PG_FREE_IF_COPY(c, 0);
 | |
| 	PG_RETURN_FLOAT8(result);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Function returns cube coordinate.
 | |
|  * Numbers from 1 to DIM denotes first corner coordinates.
 | |
|  * Numbers from DIM+1 to 2*DIM denotes second corner coordinates.
 | |
|  */
 | |
| Datum
 | |
| cube_coord(PG_FUNCTION_ARGS)
 | |
| {
 | |
| 	NDBOX	   *cube = PG_GETARG_NDBOX_P(0);
 | |
| 	int			coord = PG_GETARG_INT32(1);
 | |
| 
 | |
| 	if (coord <= 0 || coord > 2 * DIM(cube))
 | |
| 		ereport(ERROR,
 | |
| 				(errcode(ERRCODE_ARRAY_ELEMENT_ERROR),
 | |
| 				 errmsg("cube index %d is out of bounds", coord)));
 | |
| 
 | |
| 	if (IS_POINT(cube))
 | |
| 		PG_RETURN_FLOAT8(cube->x[(coord - 1) % DIM(cube)]);
 | |
| 	else
 | |
| 		PG_RETURN_FLOAT8(cube->x[coord - 1]);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*----
 | |
|  * This function works like cube_coord(), but rearranges coordinates in the
 | |
|  * way suitable to support coordinate ordering using KNN-GiST.  For historical
 | |
|  * reasons this extension allows us to create cubes in form ((2,1),(1,2)) and
 | |
|  * instead of normalizing such cube to ((1,1),(2,2)) it stores cube in original
 | |
|  * way.  But in order to get cubes ordered by one of dimensions from the index
 | |
|  * without explicit sort step we need this representation-independent coordinate
 | |
|  * getter.  Moreover, indexed dataset may contain cubes of different dimensions
 | |
|  * number.  Accordingly, this coordinate getter should be able to return
 | |
|  * lower/upper bound for particular dimension independently on number of cube
 | |
|  * dimensions.  Also, KNN-GiST supports only ascending sorting.  In order to
 | |
|  * support descending sorting, this function returns inverse of value when
 | |
|  * negative coordinate is given.
 | |
|  *
 | |
|  * Long story short, this function uses following meaning of coordinates:
 | |
|  * # (2 * N - 1) -- lower bound of Nth dimension,
 | |
|  * # (2 * N) -- upper bound of Nth dimension,
 | |
|  * # - (2 * N - 1) -- negative of lower bound of Nth dimension,
 | |
|  * # - (2 * N) -- negative of upper bound of Nth dimension.
 | |
|  *
 | |
|  * When given coordinate exceeds number of cube dimensions, then 0 returned
 | |
|  * (reproducing logic of GiST indexing of variable-length cubes).
 | |
|  */
 | |
| Datum
 | |
| cube_coord_llur(PG_FUNCTION_ARGS)
 | |
| {
 | |
| 	NDBOX	   *cube = PG_GETARG_NDBOX_P(0);
 | |
| 	int			coord = PG_GETARG_INT32(1);
 | |
| 	bool		inverse = false;
 | |
| 	float8		result;
 | |
| 
 | |
| 	/* 0 is the only unsupported coordinate value */
 | |
| 	if (coord == 0)
 | |
| 		ereport(ERROR,
 | |
| 				(errcode(ERRCODE_ARRAY_ELEMENT_ERROR),
 | |
| 				 errmsg("zero cube index is not defined")));
 | |
| 
 | |
| 	/* Return inversed value for negative coordinate */
 | |
| 	if (coord < 0)
 | |
| 	{
 | |
| 		coord = -coord;
 | |
| 		inverse = true;
 | |
| 	}
 | |
| 
 | |
| 	if (coord <= 2 * DIM(cube))
 | |
| 	{
 | |
| 		/* dimension index */
 | |
| 		int			index = (coord - 1) / 2;
 | |
| 
 | |
| 		/* whether this is upper bound (lower bound otherwise) */
 | |
| 		bool		upper = ((coord - 1) % 2 == 1);
 | |
| 
 | |
| 		if (IS_POINT(cube))
 | |
| 		{
 | |
| 			result = cube->x[index];
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			if (upper)
 | |
| 				result = Max(cube->x[index], cube->x[index + DIM(cube)]);
 | |
| 			else
 | |
| 				result = Min(cube->x[index], cube->x[index + DIM(cube)]);
 | |
| 		}
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		/*
 | |
| 		 * Return zero if coordinate is out of bound.  That reproduces logic
 | |
| 		 * of how cubes with low dimension number are expanded during GiST
 | |
| 		 * indexing.
 | |
| 		 */
 | |
| 		result = 0.0;
 | |
| 	}
 | |
| 
 | |
| 	/* Inverse value if needed */
 | |
| 	if (inverse)
 | |
| 		result = -result;
 | |
| 
 | |
| 	PG_RETURN_FLOAT8(result);
 | |
| }
 | |
| 
 | |
| /* Increase or decrease box size by a radius in at least n dimensions. */
 | |
| Datum
 | |
| cube_enlarge(PG_FUNCTION_ARGS)
 | |
| {
 | |
| 	NDBOX	   *a = PG_GETARG_NDBOX_P(0);
 | |
| 	double		r = PG_GETARG_FLOAT8(1);
 | |
| 	int32		n = PG_GETARG_INT32(2);
 | |
| 	NDBOX	   *result;
 | |
| 	int			dim = 0;
 | |
| 	int			size;
 | |
| 	int			i,
 | |
| 				j;
 | |
| 
 | |
| 	if (n > CUBE_MAX_DIM)
 | |
| 		n = CUBE_MAX_DIM;
 | |
| 	if (r > 0 && n > 0)
 | |
| 		dim = n;
 | |
| 	if (DIM(a) > dim)
 | |
| 		dim = DIM(a);
 | |
| 
 | |
| 	size = CUBE_SIZE(dim);
 | |
| 	result = (NDBOX *) palloc0(size);
 | |
| 	SET_VARSIZE(result, size);
 | |
| 	SET_DIM(result, dim);
 | |
| 
 | |
| 	for (i = 0, j = dim; i < DIM(a); i++, j++)
 | |
| 	{
 | |
| 		if (LL_COORD(a, i) >= UR_COORD(a, i))
 | |
| 		{
 | |
| 			result->x[i] = UR_COORD(a, i) - r;
 | |
| 			result->x[j] = LL_COORD(a, i) + r;
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			result->x[i] = LL_COORD(a, i) - r;
 | |
| 			result->x[j] = UR_COORD(a, i) + r;
 | |
| 		}
 | |
| 		if (result->x[i] > result->x[j])
 | |
| 		{
 | |
| 			result->x[i] = (result->x[i] + result->x[j]) / 2;
 | |
| 			result->x[j] = result->x[i];
 | |
| 		}
 | |
| 	}
 | |
| 	/* dim > a->dim only if r > 0 */
 | |
| 	for (; i < dim; i++, j++)
 | |
| 	{
 | |
| 		result->x[i] = -r;
 | |
| 		result->x[j] = r;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Check if the result was in fact a point, and set the flag in the datum
 | |
| 	 * accordingly. (we don't bother to repalloc it smaller)
 | |
| 	 */
 | |
| 	if (cube_is_point_internal(result))
 | |
| 	{
 | |
| 		size = POINT_SIZE(dim);
 | |
| 		SET_VARSIZE(result, size);
 | |
| 		SET_POINT_BIT(result);
 | |
| 	}
 | |
| 
 | |
| 	PG_FREE_IF_COPY(a, 0);
 | |
| 	PG_RETURN_NDBOX_P(result);
 | |
| }
 | |
| 
 | |
| /* Create a one dimensional box with identical upper and lower coordinates */
 | |
| Datum
 | |
| cube_f8(PG_FUNCTION_ARGS)
 | |
| {
 | |
| 	double		x = PG_GETARG_FLOAT8(0);
 | |
| 	NDBOX	   *result;
 | |
| 	int			size;
 | |
| 
 | |
| 	size = POINT_SIZE(1);
 | |
| 	result = (NDBOX *) palloc0(size);
 | |
| 	SET_VARSIZE(result, size);
 | |
| 	SET_DIM(result, 1);
 | |
| 	SET_POINT_BIT(result);
 | |
| 	result->x[0] = x;
 | |
| 
 | |
| 	PG_RETURN_NDBOX_P(result);
 | |
| }
 | |
| 
 | |
| /* Create a one dimensional box */
 | |
| Datum
 | |
| cube_f8_f8(PG_FUNCTION_ARGS)
 | |
| {
 | |
| 	double		x0 = PG_GETARG_FLOAT8(0);
 | |
| 	double		x1 = PG_GETARG_FLOAT8(1);
 | |
| 	NDBOX	   *result;
 | |
| 	int			size;
 | |
| 
 | |
| 	if (x0 == x1)
 | |
| 	{
 | |
| 		size = POINT_SIZE(1);
 | |
| 		result = (NDBOX *) palloc0(size);
 | |
| 		SET_VARSIZE(result, size);
 | |
| 		SET_DIM(result, 1);
 | |
| 		SET_POINT_BIT(result);
 | |
| 		result->x[0] = x0;
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		size = CUBE_SIZE(1);
 | |
| 		result = (NDBOX *) palloc0(size);
 | |
| 		SET_VARSIZE(result, size);
 | |
| 		SET_DIM(result, 1);
 | |
| 		result->x[0] = x0;
 | |
| 		result->x[1] = x1;
 | |
| 	}
 | |
| 
 | |
| 	PG_RETURN_NDBOX_P(result);
 | |
| }
 | |
| 
 | |
| /* Add a dimension to an existing cube with the same values for the new
 | |
|    coordinate */
 | |
| Datum
 | |
| cube_c_f8(PG_FUNCTION_ARGS)
 | |
| {
 | |
| 	NDBOX	   *cube = PG_GETARG_NDBOX_P(0);
 | |
| 	double		x = PG_GETARG_FLOAT8(1);
 | |
| 	NDBOX	   *result;
 | |
| 	int			size;
 | |
| 	int			i;
 | |
| 
 | |
| 	if (DIM(cube) + 1 > CUBE_MAX_DIM)
 | |
| 		ereport(ERROR,
 | |
| 				(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
 | |
| 				 errmsg("can't extend cube"),
 | |
| 				 errdetail("A cube cannot have more than %d dimensions.",
 | |
| 						   CUBE_MAX_DIM)));
 | |
| 
 | |
| 	if (IS_POINT(cube))
 | |
| 	{
 | |
| 		size = POINT_SIZE((DIM(cube) + 1));
 | |
| 		result = (NDBOX *) palloc0(size);
 | |
| 		SET_VARSIZE(result, size);
 | |
| 		SET_DIM(result, DIM(cube) + 1);
 | |
| 		SET_POINT_BIT(result);
 | |
| 		for (i = 0; i < DIM(cube); i++)
 | |
| 			result->x[i] = cube->x[i];
 | |
| 		result->x[DIM(result) - 1] = x;
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		size = CUBE_SIZE((DIM(cube) + 1));
 | |
| 		result = (NDBOX *) palloc0(size);
 | |
| 		SET_VARSIZE(result, size);
 | |
| 		SET_DIM(result, DIM(cube) + 1);
 | |
| 		for (i = 0; i < DIM(cube); i++)
 | |
| 		{
 | |
| 			result->x[i] = cube->x[i];
 | |
| 			result->x[DIM(result) + i] = cube->x[DIM(cube) + i];
 | |
| 		}
 | |
| 		result->x[DIM(result) - 1] = x;
 | |
| 		result->x[2 * DIM(result) - 1] = x;
 | |
| 	}
 | |
| 
 | |
| 	PG_FREE_IF_COPY(cube, 0);
 | |
| 	PG_RETURN_NDBOX_P(result);
 | |
| }
 | |
| 
 | |
| /* Add a dimension to an existing cube */
 | |
| Datum
 | |
| cube_c_f8_f8(PG_FUNCTION_ARGS)
 | |
| {
 | |
| 	NDBOX	   *cube = PG_GETARG_NDBOX_P(0);
 | |
| 	double		x1 = PG_GETARG_FLOAT8(1);
 | |
| 	double		x2 = PG_GETARG_FLOAT8(2);
 | |
| 	NDBOX	   *result;
 | |
| 	int			size;
 | |
| 	int			i;
 | |
| 
 | |
| 	if (DIM(cube) + 1 > CUBE_MAX_DIM)
 | |
| 		ereport(ERROR,
 | |
| 				(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
 | |
| 				 errmsg("can't extend cube"),
 | |
| 				 errdetail("A cube cannot have more than %d dimensions.",
 | |
| 						   CUBE_MAX_DIM)));
 | |
| 
 | |
| 	if (IS_POINT(cube) && (x1 == x2))
 | |
| 	{
 | |
| 		size = POINT_SIZE((DIM(cube) + 1));
 | |
| 		result = (NDBOX *) palloc0(size);
 | |
| 		SET_VARSIZE(result, size);
 | |
| 		SET_DIM(result, DIM(cube) + 1);
 | |
| 		SET_POINT_BIT(result);
 | |
| 		for (i = 0; i < DIM(cube); i++)
 | |
| 			result->x[i] = cube->x[i];
 | |
| 		result->x[DIM(result) - 1] = x1;
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		size = CUBE_SIZE((DIM(cube) + 1));
 | |
| 		result = (NDBOX *) palloc0(size);
 | |
| 		SET_VARSIZE(result, size);
 | |
| 		SET_DIM(result, DIM(cube) + 1);
 | |
| 		for (i = 0; i < DIM(cube); i++)
 | |
| 		{
 | |
| 			result->x[i] = LL_COORD(cube, i);
 | |
| 			result->x[DIM(result) + i] = UR_COORD(cube, i);
 | |
| 		}
 | |
| 		result->x[DIM(result) - 1] = x1;
 | |
| 		result->x[2 * DIM(result) - 1] = x2;
 | |
| 	}
 | |
| 
 | |
| 	PG_FREE_IF_COPY(cube, 0);
 | |
| 	PG_RETURN_NDBOX_P(result);
 | |
| }
 |