1
0
mirror of https://github.com/postgres/postgres.git synced 2025-11-03 09:13:20 +03:00
Files
postgres/src/test/regress/expected/incremental_sort.out
David Rowley c2a4078eba Enable BUFFERS with EXPLAIN ANALYZE by default
The topic of turning EXPLAIN's BUFFERS option on with the ANALYZE option
has come up a few times over the past few years.  In many ways, doing this
seems like a good idea as it may be more obvious to users why a given
query is running more slowly than they might expect.  Also, from my own
(David's) personal experience, I've seen users posting to the mailing
lists with two identical plans, one slow and one fast asking why their
query is sometimes slow.  In many cases, this is due to additional reads.
Having BUFFERS on by default may help reduce some of these questions, and
if not, make it more obvious to the user before they post, or save a
round-trip to the mailing list when additional I/O effort is the cause of
the slowness.

The general consensus is that we want BUFFERS on by default with
ANALYZE.  However, there were more than zero concerns raised with doing
so.  The primary reason against is the additional verbosity, making it
harder to read large plans.  Another concern was that buffer information
isn't always useful so may not make sense to have it on by default.

It's currently December, so let's commit this to see if anyone comes
forward with a strong objection against making this change.  We have over
half a year remaining in the v18 cycle where we could still easily consider
reverting this if someone were to come forward with a convincing enough
reason as to why doing this is a bad idea.

There were two patches independently submitted to achieve this goal, one
by me and the other by Guillaume.  This commit is a mix of both of these
patches with some additional work done by me to adjust various
additional places in the documentation which include EXPLAIN ANALYZE
output.

Author: Guillaume Lelarge, David Rowley
Reviewed-by: Robert Haas, Greg Sabino Mullane, Michael Christofides
Discussion: https://postgr.es/m/CANNMO++W7MM8T0KyXN3ZheXXt-uLVM3aEtZd+WNfZ=obxffUiA@mail.gmail.com
2024-12-11 22:35:11 +13:00

1725 lines
38 KiB
Plaintext

-- When there is a LIMIT clause, incremental sort is beneficial because
-- it only has to sort some of the groups, and not the entire table.
explain (costs off)
select * from (select * from tenk1 order by four) t order by four, ten
limit 1;
QUERY PLAN
-----------------------------------------
Limit
-> Incremental Sort
Sort Key: tenk1.four, tenk1.ten
Presorted Key: tenk1.four
-> Sort
Sort Key: tenk1.four
-> Seq Scan on tenk1
(7 rows)
-- When work_mem is not enough to sort the entire table, incremental sort
-- may be faster if individual groups still fit into work_mem.
set work_mem to '2MB';
explain (costs off)
select * from (select * from tenk1 order by four) t order by four, ten;
QUERY PLAN
-----------------------------------
Incremental Sort
Sort Key: tenk1.four, tenk1.ten
Presorted Key: tenk1.four
-> Sort
Sort Key: tenk1.four
-> Seq Scan on tenk1
(6 rows)
reset work_mem;
create table t(a integer, b integer);
create or replace function explain_analyze_without_memory(query text)
returns table (out_line text) language plpgsql
as
$$
declare
line text;
begin
for line in
execute 'explain (analyze, costs off, summary off, timing off, buffers off) ' || query
loop
out_line := regexp_replace(line, '\d+kB', 'NNkB', 'g');
return next;
end loop;
end;
$$;
create or replace function explain_analyze_inc_sort_nodes(query text)
returns jsonb language plpgsql
as
$$
declare
elements jsonb;
element jsonb;
matching_nodes jsonb := '[]'::jsonb;
begin
execute 'explain (analyze, costs off, summary off, timing off, buffers off, format ''json'') ' || query into strict elements;
while jsonb_array_length(elements) > 0 loop
element := elements->0;
elements := elements - 0;
case jsonb_typeof(element)
when 'array' then
if jsonb_array_length(element) > 0 then
elements := elements || element;
end if;
when 'object' then
if element ? 'Plan' then
elements := elements || jsonb_build_array(element->'Plan');
element := element - 'Plan';
else
if element ? 'Plans' then
elements := elements || jsonb_build_array(element->'Plans');
element := element - 'Plans';
end if;
if (element->>'Node Type')::text = 'Incremental Sort' then
matching_nodes := matching_nodes || element;
end if;
end if;
end case;
end loop;
return matching_nodes;
end;
$$;
create or replace function explain_analyze_inc_sort_nodes_without_memory(query text)
returns jsonb language plpgsql
as
$$
declare
nodes jsonb := '[]'::jsonb;
node jsonb;
group_key text;
space_key text;
begin
for node in select * from jsonb_array_elements(explain_analyze_inc_sort_nodes(query)) t loop
for group_key in select unnest(array['Full-sort Groups', 'Pre-sorted Groups']::text[]) t loop
for space_key in select unnest(array['Sort Space Memory', 'Sort Space Disk']::text[]) t loop
node := jsonb_set(node, array[group_key, space_key, 'Average Sort Space Used'], '"NN"', false);
node := jsonb_set(node, array[group_key, space_key, 'Peak Sort Space Used'], '"NN"', false);
end loop;
end loop;
nodes := nodes || node;
end loop;
return nodes;
end;
$$;
create or replace function explain_analyze_inc_sort_nodes_verify_invariants(query text)
returns bool language plpgsql
as
$$
declare
node jsonb;
group_stats jsonb;
group_key text;
space_key text;
begin
for node in select * from jsonb_array_elements(explain_analyze_inc_sort_nodes(query)) t loop
for group_key in select unnest(array['Full-sort Groups', 'Pre-sorted Groups']::text[]) t loop
group_stats := node->group_key;
for space_key in select unnest(array['Sort Space Memory', 'Sort Space Disk']::text[]) t loop
if (group_stats->space_key->'Peak Sort Space Used')::bigint < (group_stats->space_key->'Peak Sort Space Used')::bigint then
raise exception '% has invalid max space < average space', group_key;
end if;
end loop;
end loop;
end loop;
return true;
end;
$$;
-- A single large group tested around each mode transition point.
insert into t(a, b) select i/100 + 1, i + 1 from generate_series(0, 999) n(i);
analyze t;
explain (costs off) select * from (select * from t order by a) s order by a, b limit 31;
QUERY PLAN
---------------------------------
Limit
-> Incremental Sort
Sort Key: t.a, t.b
Presorted Key: t.a
-> Sort
Sort Key: t.a
-> Seq Scan on t
(7 rows)
select * from (select * from t order by a) s order by a, b limit 31;
a | b
---+----
1 | 1
1 | 2
1 | 3
1 | 4
1 | 5
1 | 6
1 | 7
1 | 8
1 | 9
1 | 10
1 | 11
1 | 12
1 | 13
1 | 14
1 | 15
1 | 16
1 | 17
1 | 18
1 | 19
1 | 20
1 | 21
1 | 22
1 | 23
1 | 24
1 | 25
1 | 26
1 | 27
1 | 28
1 | 29
1 | 30
1 | 31
(31 rows)
explain (costs off) select * from (select * from t order by a) s order by a, b limit 32;
QUERY PLAN
---------------------------------
Limit
-> Incremental Sort
Sort Key: t.a, t.b
Presorted Key: t.a
-> Sort
Sort Key: t.a
-> Seq Scan on t
(7 rows)
select * from (select * from t order by a) s order by a, b limit 32;
a | b
---+----
1 | 1
1 | 2
1 | 3
1 | 4
1 | 5
1 | 6
1 | 7
1 | 8
1 | 9
1 | 10
1 | 11
1 | 12
1 | 13
1 | 14
1 | 15
1 | 16
1 | 17
1 | 18
1 | 19
1 | 20
1 | 21
1 | 22
1 | 23
1 | 24
1 | 25
1 | 26
1 | 27
1 | 28
1 | 29
1 | 30
1 | 31
1 | 32
(32 rows)
explain (costs off) select * from (select * from t order by a) s order by a, b limit 33;
QUERY PLAN
---------------------------------
Limit
-> Incremental Sort
Sort Key: t.a, t.b
Presorted Key: t.a
-> Sort
Sort Key: t.a
-> Seq Scan on t
(7 rows)
select * from (select * from t order by a) s order by a, b limit 33;
a | b
---+----
1 | 1
1 | 2
1 | 3
1 | 4
1 | 5
1 | 6
1 | 7
1 | 8
1 | 9
1 | 10
1 | 11
1 | 12
1 | 13
1 | 14
1 | 15
1 | 16
1 | 17
1 | 18
1 | 19
1 | 20
1 | 21
1 | 22
1 | 23
1 | 24
1 | 25
1 | 26
1 | 27
1 | 28
1 | 29
1 | 30
1 | 31
1 | 32
1 | 33
(33 rows)
explain (costs off) select * from (select * from t order by a) s order by a, b limit 65;
QUERY PLAN
---------------------------------
Limit
-> Incremental Sort
Sort Key: t.a, t.b
Presorted Key: t.a
-> Sort
Sort Key: t.a
-> Seq Scan on t
(7 rows)
select * from (select * from t order by a) s order by a, b limit 65;
a | b
---+----
1 | 1
1 | 2
1 | 3
1 | 4
1 | 5
1 | 6
1 | 7
1 | 8
1 | 9
1 | 10
1 | 11
1 | 12
1 | 13
1 | 14
1 | 15
1 | 16
1 | 17
1 | 18
1 | 19
1 | 20
1 | 21
1 | 22
1 | 23
1 | 24
1 | 25
1 | 26
1 | 27
1 | 28
1 | 29
1 | 30
1 | 31
1 | 32
1 | 33
1 | 34
1 | 35
1 | 36
1 | 37
1 | 38
1 | 39
1 | 40
1 | 41
1 | 42
1 | 43
1 | 44
1 | 45
1 | 46
1 | 47
1 | 48
1 | 49
1 | 50
1 | 51
1 | 52
1 | 53
1 | 54
1 | 55
1 | 56
1 | 57
1 | 58
1 | 59
1 | 60
1 | 61
1 | 62
1 | 63
1 | 64
1 | 65
(65 rows)
explain (costs off) select * from (select * from t order by a) s order by a, b limit 66;
QUERY PLAN
---------------------------------
Limit
-> Incremental Sort
Sort Key: t.a, t.b
Presorted Key: t.a
-> Sort
Sort Key: t.a
-> Seq Scan on t
(7 rows)
select * from (select * from t order by a) s order by a, b limit 66;
a | b
---+----
1 | 1
1 | 2
1 | 3
1 | 4
1 | 5
1 | 6
1 | 7
1 | 8
1 | 9
1 | 10
1 | 11
1 | 12
1 | 13
1 | 14
1 | 15
1 | 16
1 | 17
1 | 18
1 | 19
1 | 20
1 | 21
1 | 22
1 | 23
1 | 24
1 | 25
1 | 26
1 | 27
1 | 28
1 | 29
1 | 30
1 | 31
1 | 32
1 | 33
1 | 34
1 | 35
1 | 36
1 | 37
1 | 38
1 | 39
1 | 40
1 | 41
1 | 42
1 | 43
1 | 44
1 | 45
1 | 46
1 | 47
1 | 48
1 | 49
1 | 50
1 | 51
1 | 52
1 | 53
1 | 54
1 | 55
1 | 56
1 | 57
1 | 58
1 | 59
1 | 60
1 | 61
1 | 62
1 | 63
1 | 64
1 | 65
1 | 66
(66 rows)
delete from t;
-- An initial large group followed by a small group.
insert into t(a, b) select i/50 + 1, i + 1 from generate_series(0, 999) n(i);
analyze t;
explain (costs off) select * from (select * from t order by a) s order by a, b limit 55;
QUERY PLAN
---------------------------------
Limit
-> Incremental Sort
Sort Key: t.a, t.b
Presorted Key: t.a
-> Sort
Sort Key: t.a
-> Seq Scan on t
(7 rows)
select * from (select * from t order by a) s order by a, b limit 55;
a | b
---+----
1 | 1
1 | 2
1 | 3
1 | 4
1 | 5
1 | 6
1 | 7
1 | 8
1 | 9
1 | 10
1 | 11
1 | 12
1 | 13
1 | 14
1 | 15
1 | 16
1 | 17
1 | 18
1 | 19
1 | 20
1 | 21
1 | 22
1 | 23
1 | 24
1 | 25
1 | 26
1 | 27
1 | 28
1 | 29
1 | 30
1 | 31
1 | 32
1 | 33
1 | 34
1 | 35
1 | 36
1 | 37
1 | 38
1 | 39
1 | 40
1 | 41
1 | 42
1 | 43
1 | 44
1 | 45
1 | 46
1 | 47
1 | 48
1 | 49
1 | 50
2 | 51
2 | 52
2 | 53
2 | 54
2 | 55
(55 rows)
-- Test EXPLAIN ANALYZE with only a fullsort group.
select explain_analyze_without_memory('select * from (select * from t order by a) s order by a, b limit 55');
explain_analyze_without_memory
---------------------------------------------------------------------------------------------------------------
Limit (actual rows=55 loops=1)
-> Incremental Sort (actual rows=55 loops=1)
Sort Key: t.a, t.b
Presorted Key: t.a
Full-sort Groups: 2 Sort Methods: top-N heapsort, quicksort Average Memory: NNkB Peak Memory: NNkB
-> Sort (actual rows=101 loops=1)
Sort Key: t.a
Sort Method: quicksort Memory: NNkB
-> Seq Scan on t (actual rows=1000 loops=1)
(9 rows)
select jsonb_pretty(explain_analyze_inc_sort_nodes_without_memory('select * from (select * from t order by a) s order by a, b limit 55'));
jsonb_pretty
-------------------------------------------------
[ +
{ +
"Disabled": false, +
"Sort Key": [ +
"t.a", +
"t.b" +
], +
"Node Type": "Incremental Sort", +
"Actual Rows": 55, +
"Actual Loops": 1, +
"Async Capable": false, +
"Presorted Key": [ +
"t.a" +
], +
"Parallel Aware": false, +
"Full-sort Groups": { +
"Group Count": 2, +
"Sort Methods Used": [ +
"top-N heapsort", +
"quicksort" +
], +
"Sort Space Memory": { +
"Peak Sort Space Used": "NN", +
"Average Sort Space Used": "NN"+
} +
}, +
"Parent Relationship": "Outer" +
} +
]
(1 row)
select explain_analyze_inc_sort_nodes_verify_invariants('select * from (select * from t order by a) s order by a, b limit 55');
explain_analyze_inc_sort_nodes_verify_invariants
--------------------------------------------------
t
(1 row)
delete from t;
-- An initial small group followed by a large group.
insert into t(a, b) select (case when i < 5 then i else 9 end), i from generate_series(1, 1000) n(i);
analyze t;
explain (costs off) select * from (select * from t order by a) s order by a, b limit 70;
QUERY PLAN
---------------------------------
Limit
-> Incremental Sort
Sort Key: t.a, t.b
Presorted Key: t.a
-> Sort
Sort Key: t.a
-> Seq Scan on t
(7 rows)
select * from (select * from t order by a) s order by a, b limit 70;
a | b
---+----
1 | 1
2 | 2
3 | 3
4 | 4
9 | 5
9 | 6
9 | 7
9 | 8
9 | 9
9 | 10
9 | 11
9 | 12
9 | 13
9 | 14
9 | 15
9 | 16
9 | 17
9 | 18
9 | 19
9 | 20
9 | 21
9 | 22
9 | 23
9 | 24
9 | 25
9 | 26
9 | 27
9 | 28
9 | 29
9 | 30
9 | 31
9 | 32
9 | 33
9 | 34
9 | 35
9 | 36
9 | 37
9 | 38
9 | 39
9 | 40
9 | 41
9 | 42
9 | 43
9 | 44
9 | 45
9 | 46
9 | 47
9 | 48
9 | 49
9 | 50
9 | 51
9 | 52
9 | 53
9 | 54
9 | 55
9 | 56
9 | 57
9 | 58
9 | 59
9 | 60
9 | 61
9 | 62
9 | 63
9 | 64
9 | 65
9 | 66
9 | 67
9 | 68
9 | 69
9 | 70
(70 rows)
-- Checks case where we hit a group boundary at the last tuple of a batch.
-- Because the full sort state is bounded, we scan 64 tuples (the mode
-- transition point) but only retain 5. Thus when we transition modes, all
-- tuples in the full sort state have different prefix keys.
explain (costs off) select * from (select * from t order by a) s order by a, b limit 5;
QUERY PLAN
---------------------------------
Limit
-> Incremental Sort
Sort Key: t.a, t.b
Presorted Key: t.a
-> Sort
Sort Key: t.a
-> Seq Scan on t
(7 rows)
select * from (select * from t order by a) s order by a, b limit 5;
a | b
---+---
1 | 1
2 | 2
3 | 3
4 | 4
9 | 5
(5 rows)
-- Test rescan.
begin;
-- We force the planner to choose a plan with incremental sort on the right side
-- of a nested loop join node. That way we trigger the rescan code path.
set local enable_hashjoin = off;
set local enable_mergejoin = off;
set local enable_material = off;
set local enable_sort = off;
explain (costs off) select * from t left join (select * from (select * from t order by a) v order by a, b) s on s.a = t.a where t.a in (1, 2);
QUERY PLAN
------------------------------------------------
Nested Loop Left Join
Join Filter: (t_1.a = t.a)
-> Seq Scan on t
Filter: (a = ANY ('{1,2}'::integer[]))
-> Incremental Sort
Sort Key: t_1.a, t_1.b
Presorted Key: t_1.a
-> Sort
Disabled: true
Sort Key: t_1.a
-> Seq Scan on t t_1
(11 rows)
select * from t left join (select * from (select * from t order by a) v order by a, b) s on s.a = t.a where t.a in (1, 2);
a | b | a | b
---+---+---+---
1 | 1 | 1 | 1
2 | 2 | 2 | 2
(2 rows)
rollback;
-- Test EXPLAIN ANALYZE with both fullsort and presorted groups.
select explain_analyze_without_memory('select * from (select * from t order by a) s order by a, b limit 70');
explain_analyze_without_memory
----------------------------------------------------------------------------------------------------------------
Limit (actual rows=70 loops=1)
-> Incremental Sort (actual rows=70 loops=1)
Sort Key: t.a, t.b
Presorted Key: t.a
Full-sort Groups: 1 Sort Method: quicksort Average Memory: NNkB Peak Memory: NNkB
Pre-sorted Groups: 5 Sort Methods: top-N heapsort, quicksort Average Memory: NNkB Peak Memory: NNkB
-> Sort (actual rows=1000 loops=1)
Sort Key: t.a
Sort Method: quicksort Memory: NNkB
-> Seq Scan on t (actual rows=1000 loops=1)
(10 rows)
select jsonb_pretty(explain_analyze_inc_sort_nodes_without_memory('select * from (select * from t order by a) s order by a, b limit 70'));
jsonb_pretty
-------------------------------------------------
[ +
{ +
"Disabled": false, +
"Sort Key": [ +
"t.a", +
"t.b" +
], +
"Node Type": "Incremental Sort", +
"Actual Rows": 70, +
"Actual Loops": 1, +
"Async Capable": false, +
"Presorted Key": [ +
"t.a" +
], +
"Parallel Aware": false, +
"Full-sort Groups": { +
"Group Count": 1, +
"Sort Methods Used": [ +
"quicksort" +
], +
"Sort Space Memory": { +
"Peak Sort Space Used": "NN", +
"Average Sort Space Used": "NN"+
} +
}, +
"Pre-sorted Groups": { +
"Group Count": 5, +
"Sort Methods Used": [ +
"top-N heapsort", +
"quicksort" +
], +
"Sort Space Memory": { +
"Peak Sort Space Used": "NN", +
"Average Sort Space Used": "NN"+
} +
}, +
"Parent Relationship": "Outer" +
} +
]
(1 row)
select explain_analyze_inc_sort_nodes_verify_invariants('select * from (select * from t order by a) s order by a, b limit 70');
explain_analyze_inc_sort_nodes_verify_invariants
--------------------------------------------------
t
(1 row)
delete from t;
-- Small groups of 10 tuples each tested around each mode transition point.
insert into t(a, b) select i / 10, i from generate_series(1, 1000) n(i);
analyze t;
explain (costs off) select * from (select * from t order by a) s order by a, b limit 31;
QUERY PLAN
---------------------------------
Limit
-> Incremental Sort
Sort Key: t.a, t.b
Presorted Key: t.a
-> Sort
Sort Key: t.a
-> Seq Scan on t
(7 rows)
select * from (select * from t order by a) s order by a, b limit 31;
a | b
---+----
0 | 1
0 | 2
0 | 3
0 | 4
0 | 5
0 | 6
0 | 7
0 | 8
0 | 9
1 | 10
1 | 11
1 | 12
1 | 13
1 | 14
1 | 15
1 | 16
1 | 17
1 | 18
1 | 19
2 | 20
2 | 21
2 | 22
2 | 23
2 | 24
2 | 25
2 | 26
2 | 27
2 | 28
2 | 29
3 | 30
3 | 31
(31 rows)
explain (costs off) select * from (select * from t order by a) s order by a, b limit 32;
QUERY PLAN
---------------------------------
Limit
-> Incremental Sort
Sort Key: t.a, t.b
Presorted Key: t.a
-> Sort
Sort Key: t.a
-> Seq Scan on t
(7 rows)
select * from (select * from t order by a) s order by a, b limit 32;
a | b
---+----
0 | 1
0 | 2
0 | 3
0 | 4
0 | 5
0 | 6
0 | 7
0 | 8
0 | 9
1 | 10
1 | 11
1 | 12
1 | 13
1 | 14
1 | 15
1 | 16
1 | 17
1 | 18
1 | 19
2 | 20
2 | 21
2 | 22
2 | 23
2 | 24
2 | 25
2 | 26
2 | 27
2 | 28
2 | 29
3 | 30
3 | 31
3 | 32
(32 rows)
explain (costs off) select * from (select * from t order by a) s order by a, b limit 33;
QUERY PLAN
---------------------------------
Limit
-> Incremental Sort
Sort Key: t.a, t.b
Presorted Key: t.a
-> Sort
Sort Key: t.a
-> Seq Scan on t
(7 rows)
select * from (select * from t order by a) s order by a, b limit 33;
a | b
---+----
0 | 1
0 | 2
0 | 3
0 | 4
0 | 5
0 | 6
0 | 7
0 | 8
0 | 9
1 | 10
1 | 11
1 | 12
1 | 13
1 | 14
1 | 15
1 | 16
1 | 17
1 | 18
1 | 19
2 | 20
2 | 21
2 | 22
2 | 23
2 | 24
2 | 25
2 | 26
2 | 27
2 | 28
2 | 29
3 | 30
3 | 31
3 | 32
3 | 33
(33 rows)
explain (costs off) select * from (select * from t order by a) s order by a, b limit 65;
QUERY PLAN
---------------------------------
Limit
-> Incremental Sort
Sort Key: t.a, t.b
Presorted Key: t.a
-> Sort
Sort Key: t.a
-> Seq Scan on t
(7 rows)
select * from (select * from t order by a) s order by a, b limit 65;
a | b
---+----
0 | 1
0 | 2
0 | 3
0 | 4
0 | 5
0 | 6
0 | 7
0 | 8
0 | 9
1 | 10
1 | 11
1 | 12
1 | 13
1 | 14
1 | 15
1 | 16
1 | 17
1 | 18
1 | 19
2 | 20
2 | 21
2 | 22
2 | 23
2 | 24
2 | 25
2 | 26
2 | 27
2 | 28
2 | 29
3 | 30
3 | 31
3 | 32
3 | 33
3 | 34
3 | 35
3 | 36
3 | 37
3 | 38
3 | 39
4 | 40
4 | 41
4 | 42
4 | 43
4 | 44
4 | 45
4 | 46
4 | 47
4 | 48
4 | 49
5 | 50
5 | 51
5 | 52
5 | 53
5 | 54
5 | 55
5 | 56
5 | 57
5 | 58
5 | 59
6 | 60
6 | 61
6 | 62
6 | 63
6 | 64
6 | 65
(65 rows)
explain (costs off) select * from (select * from t order by a) s order by a, b limit 66;
QUERY PLAN
---------------------------------
Limit
-> Incremental Sort
Sort Key: t.a, t.b
Presorted Key: t.a
-> Sort
Sort Key: t.a
-> Seq Scan on t
(7 rows)
select * from (select * from t order by a) s order by a, b limit 66;
a | b
---+----
0 | 1
0 | 2
0 | 3
0 | 4
0 | 5
0 | 6
0 | 7
0 | 8
0 | 9
1 | 10
1 | 11
1 | 12
1 | 13
1 | 14
1 | 15
1 | 16
1 | 17
1 | 18
1 | 19
2 | 20
2 | 21
2 | 22
2 | 23
2 | 24
2 | 25
2 | 26
2 | 27
2 | 28
2 | 29
3 | 30
3 | 31
3 | 32
3 | 33
3 | 34
3 | 35
3 | 36
3 | 37
3 | 38
3 | 39
4 | 40
4 | 41
4 | 42
4 | 43
4 | 44
4 | 45
4 | 46
4 | 47
4 | 48
4 | 49
5 | 50
5 | 51
5 | 52
5 | 53
5 | 54
5 | 55
5 | 56
5 | 57
5 | 58
5 | 59
6 | 60
6 | 61
6 | 62
6 | 63
6 | 64
6 | 65
6 | 66
(66 rows)
delete from t;
-- Small groups of only 1 tuple each tested around each mode transition point.
insert into t(a, b) select i, i from generate_series(1, 1000) n(i);
analyze t;
explain (costs off) select * from (select * from t order by a) s order by a, b limit 31;
QUERY PLAN
---------------------------------
Limit
-> Incremental Sort
Sort Key: t.a, t.b
Presorted Key: t.a
-> Sort
Sort Key: t.a
-> Seq Scan on t
(7 rows)
select * from (select * from t order by a) s order by a, b limit 31;
a | b
----+----
1 | 1
2 | 2
3 | 3
4 | 4
5 | 5
6 | 6
7 | 7
8 | 8
9 | 9
10 | 10
11 | 11
12 | 12
13 | 13
14 | 14
15 | 15
16 | 16
17 | 17
18 | 18
19 | 19
20 | 20
21 | 21
22 | 22
23 | 23
24 | 24
25 | 25
26 | 26
27 | 27
28 | 28
29 | 29
30 | 30
31 | 31
(31 rows)
explain (costs off) select * from (select * from t order by a) s order by a, b limit 32;
QUERY PLAN
---------------------------------
Limit
-> Incremental Sort
Sort Key: t.a, t.b
Presorted Key: t.a
-> Sort
Sort Key: t.a
-> Seq Scan on t
(7 rows)
select * from (select * from t order by a) s order by a, b limit 32;
a | b
----+----
1 | 1
2 | 2
3 | 3
4 | 4
5 | 5
6 | 6
7 | 7
8 | 8
9 | 9
10 | 10
11 | 11
12 | 12
13 | 13
14 | 14
15 | 15
16 | 16
17 | 17
18 | 18
19 | 19
20 | 20
21 | 21
22 | 22
23 | 23
24 | 24
25 | 25
26 | 26
27 | 27
28 | 28
29 | 29
30 | 30
31 | 31
32 | 32
(32 rows)
explain (costs off) select * from (select * from t order by a) s order by a, b limit 33;
QUERY PLAN
---------------------------------
Limit
-> Incremental Sort
Sort Key: t.a, t.b
Presorted Key: t.a
-> Sort
Sort Key: t.a
-> Seq Scan on t
(7 rows)
select * from (select * from t order by a) s order by a, b limit 33;
a | b
----+----
1 | 1
2 | 2
3 | 3
4 | 4
5 | 5
6 | 6
7 | 7
8 | 8
9 | 9
10 | 10
11 | 11
12 | 12
13 | 13
14 | 14
15 | 15
16 | 16
17 | 17
18 | 18
19 | 19
20 | 20
21 | 21
22 | 22
23 | 23
24 | 24
25 | 25
26 | 26
27 | 27
28 | 28
29 | 29
30 | 30
31 | 31
32 | 32
33 | 33
(33 rows)
explain (costs off) select * from (select * from t order by a) s order by a, b limit 65;
QUERY PLAN
---------------------------------
Limit
-> Incremental Sort
Sort Key: t.a, t.b
Presorted Key: t.a
-> Sort
Sort Key: t.a
-> Seq Scan on t
(7 rows)
select * from (select * from t order by a) s order by a, b limit 65;
a | b
----+----
1 | 1
2 | 2
3 | 3
4 | 4
5 | 5
6 | 6
7 | 7
8 | 8
9 | 9
10 | 10
11 | 11
12 | 12
13 | 13
14 | 14
15 | 15
16 | 16
17 | 17
18 | 18
19 | 19
20 | 20
21 | 21
22 | 22
23 | 23
24 | 24
25 | 25
26 | 26
27 | 27
28 | 28
29 | 29
30 | 30
31 | 31
32 | 32
33 | 33
34 | 34
35 | 35
36 | 36
37 | 37
38 | 38
39 | 39
40 | 40
41 | 41
42 | 42
43 | 43
44 | 44
45 | 45
46 | 46
47 | 47
48 | 48
49 | 49
50 | 50
51 | 51
52 | 52
53 | 53
54 | 54
55 | 55
56 | 56
57 | 57
58 | 58
59 | 59
60 | 60
61 | 61
62 | 62
63 | 63
64 | 64
65 | 65
(65 rows)
explain (costs off) select * from (select * from t order by a) s order by a, b limit 66;
QUERY PLAN
---------------------------------
Limit
-> Incremental Sort
Sort Key: t.a, t.b
Presorted Key: t.a
-> Sort
Sort Key: t.a
-> Seq Scan on t
(7 rows)
select * from (select * from t order by a) s order by a, b limit 66;
a | b
----+----
1 | 1
2 | 2
3 | 3
4 | 4
5 | 5
6 | 6
7 | 7
8 | 8
9 | 9
10 | 10
11 | 11
12 | 12
13 | 13
14 | 14
15 | 15
16 | 16
17 | 17
18 | 18
19 | 19
20 | 20
21 | 21
22 | 22
23 | 23
24 | 24
25 | 25
26 | 26
27 | 27
28 | 28
29 | 29
30 | 30
31 | 31
32 | 32
33 | 33
34 | 34
35 | 35
36 | 36
37 | 37
38 | 38
39 | 39
40 | 40
41 | 41
42 | 42
43 | 43
44 | 44
45 | 45
46 | 46
47 | 47
48 | 48
49 | 49
50 | 50
51 | 51
52 | 52
53 | 53
54 | 54
55 | 55
56 | 56
57 | 57
58 | 58
59 | 59
60 | 60
61 | 61
62 | 62
63 | 63
64 | 64
65 | 65
66 | 66
(66 rows)
delete from t;
drop table t;
-- Incremental sort vs. parallel queries
set min_parallel_table_scan_size = '1kB';
set min_parallel_index_scan_size = '1kB';
set parallel_setup_cost = 0;
set parallel_tuple_cost = 0;
set max_parallel_workers_per_gather = 2;
create table t (a int, b int, c int);
insert into t select mod(i,10),mod(i,10),i from generate_series(1,10000) s(i);
create index on t (a);
analyze t;
set enable_incremental_sort = off;
explain (costs off) select a,b,sum(c) from t group by 1,2 order by 1,2,3 limit 1;
QUERY PLAN
------------------------------------------------------
Limit
-> Sort
Sort Key: a, b, (sum(c))
-> Finalize HashAggregate
Group Key: a, b
-> Gather
Workers Planned: 2
-> Partial HashAggregate
Group Key: a, b
-> Parallel Seq Scan on t
(10 rows)
set enable_incremental_sort = on;
explain (costs off) select a,b,sum(c) from t group by 1,2 order by 1,2,3 limit 1;
QUERY PLAN
----------------------------------------------------------------------
Limit
-> Incremental Sort
Sort Key: a, b, (sum(c))
Presorted Key: a, b
-> GroupAggregate
Group Key: a, b
-> Gather Merge
Workers Planned: 2
-> Incremental Sort
Sort Key: a, b
Presorted Key: a
-> Parallel Index Scan using t_a_idx on t
(12 rows)
-- Incremental sort vs. set operations with varno 0
set enable_hashagg to off;
explain (costs off) select * from t union select * from t order by 1,3;
QUERY PLAN
----------------------------------------------------------
Incremental Sort
Sort Key: t.a, t.c
Presorted Key: t.a
-> Unique
-> Merge Append
Sort Key: t.a, t.b, t.c
-> Gather Merge
Workers Planned: 2
-> Sort
Sort Key: t.a, t.b, t.c
-> Parallel Seq Scan on t
-> Gather Merge
Workers Planned: 2
-> Sort
Sort Key: t_1.a, t_1.b, t_1.c
-> Parallel Seq Scan on t t_1
(16 rows)
-- Full sort, not just incremental sort can be pushed below a gather merge path
-- by generate_useful_gather_paths.
explain (costs off) select distinct a,b from t;
QUERY PLAN
------------------------------------------------
Unique
-> Gather Merge
Workers Planned: 2
-> Unique
-> Sort
Sort Key: a, b
-> Parallel Seq Scan on t
(7 rows)
drop table t;
-- Sort pushdown can't go below where expressions are part of the rel target.
-- In particular this is interesting for volatile expressions which have to
-- go above joins since otherwise we'll incorrectly use expression evaluations
-- across multiple rows.
set enable_hashagg=off;
set enable_seqscan=off;
set enable_incremental_sort = off;
set parallel_tuple_cost=0;
set parallel_setup_cost=0;
set min_parallel_table_scan_size = 0;
set min_parallel_index_scan_size = 0;
-- Parallel sort below join.
explain (costs off) select distinct sub.unique1, stringu1
from tenk1, lateral (select tenk1.unique1 from generate_series(1, 1000)) as sub;
QUERY PLAN
--------------------------------------------------------------------------
Unique
-> Nested Loop
-> Gather Merge
Workers Planned: 2
-> Sort
Sort Key: tenk1.unique1, tenk1.stringu1
-> Parallel Index Scan using tenk1_unique1 on tenk1
-> Function Scan on generate_series
(8 rows)
explain (costs off) select sub.unique1, stringu1
from tenk1, lateral (select tenk1.unique1 from generate_series(1, 1000)) as sub
order by 1, 2;
QUERY PLAN
--------------------------------------------------------------------
Nested Loop
-> Gather Merge
Workers Planned: 2
-> Sort
Sort Key: tenk1.unique1, tenk1.stringu1
-> Parallel Index Scan using tenk1_unique1 on tenk1
-> Function Scan on generate_series
(7 rows)
-- Parallel sort but with expression that can be safely generated at the base rel.
explain (costs off) select distinct sub.unique1, md5(stringu1)
from tenk1, lateral (select tenk1.unique1 from generate_series(1, 1000)) as sub;
QUERY PLAN
----------------------------------------------------------------------------------------
Unique
-> Nested Loop
-> Gather Merge
Workers Planned: 2
-> Sort
Sort Key: tenk1.unique1, (md5((tenk1.stringu1)::text)) COLLATE "C"
-> Parallel Index Scan using tenk1_unique1 on tenk1
-> Function Scan on generate_series
(8 rows)
explain (costs off) select sub.unique1, md5(stringu1)
from tenk1, lateral (select tenk1.unique1 from generate_series(1, 1000)) as sub
order by 1, 2;
QUERY PLAN
----------------------------------------------------------------------------------
Nested Loop
-> Gather Merge
Workers Planned: 2
-> Sort
Sort Key: tenk1.unique1, (md5((tenk1.stringu1)::text)) COLLATE "C"
-> Parallel Index Scan using tenk1_unique1 on tenk1
-> Function Scan on generate_series
(7 rows)
-- Parallel sort with an aggregate that can be safely generated in parallel,
-- but we can't sort by partial aggregate values.
explain (costs off) select count(*)
from tenk1 t1
join tenk1 t2 on t1.unique1 = t2.unique2
join tenk1 t3 on t2.unique1 = t3.unique1
order by count(*);
QUERY PLAN
-----------------------------------------------------------------------------------------------
Sort
Sort Key: (count(*))
-> Finalize Aggregate
-> Gather
Workers Planned: 2
-> Partial Aggregate
-> Parallel Hash Join
Hash Cond: (t2.unique1 = t3.unique1)
-> Parallel Hash Join
Hash Cond: (t1.unique1 = t2.unique2)
-> Parallel Index Only Scan using tenk1_unique1 on tenk1 t1
-> Parallel Hash
-> Parallel Index Scan using tenk1_unique2 on tenk1 t2
-> Parallel Hash
-> Parallel Index Only Scan using tenk1_unique1 on tenk1 t3
(15 rows)
-- Parallel sort but with expression (correlated subquery) that
-- is prohibited in parallel plans.
explain (costs off) select distinct
unique1,
(select t.unique1 from tenk1 where tenk1.unique1 = t.unique1)
from tenk1 t, generate_series(1, 1000);
QUERY PLAN
---------------------------------------------------------------------------------
Unique
-> Sort
Sort Key: t.unique1, ((SubPlan 1))
-> Gather
Workers Planned: 2
-> Nested Loop
-> Parallel Index Only Scan using tenk1_unique1 on tenk1 t
-> Function Scan on generate_series
SubPlan 1
-> Index Only Scan using tenk1_unique1 on tenk1
Index Cond: (unique1 = t.unique1)
(11 rows)
explain (costs off) select
unique1,
(select t.unique1 from tenk1 where tenk1.unique1 = t.unique1)
from tenk1 t, generate_series(1, 1000)
order by 1, 2;
QUERY PLAN
---------------------------------------------------------------------------
Sort
Sort Key: t.unique1, ((SubPlan 1))
-> Gather
Workers Planned: 2
-> Nested Loop
-> Parallel Index Only Scan using tenk1_unique1 on tenk1 t
-> Function Scan on generate_series
SubPlan 1
-> Index Only Scan using tenk1_unique1 on tenk1
Index Cond: (unique1 = t.unique1)
(10 rows)
-- Parallel sort but with expression not available until the upper rel.
explain (costs off) select distinct sub.unique1, stringu1 || random()::text
from tenk1, lateral (select tenk1.unique1 from generate_series(1, 1000)) as sub;
QUERY PLAN
---------------------------------------------------------------------------------------------
Unique
-> Sort
Sort Key: tenk1.unique1, (((tenk1.stringu1)::text || (random())::text)) COLLATE "C"
-> Gather
Workers Planned: 2
-> Nested Loop
-> Parallel Index Scan using tenk1_unique1 on tenk1
-> Function Scan on generate_series
(8 rows)
explain (costs off) select sub.unique1, stringu1 || random()::text
from tenk1, lateral (select tenk1.unique1 from generate_series(1, 1000)) as sub
order by 1, 2;
QUERY PLAN
---------------------------------------------------------------------------------------
Sort
Sort Key: tenk1.unique1, (((tenk1.stringu1)::text || (random())::text)) COLLATE "C"
-> Gather
Workers Planned: 2
-> Nested Loop
-> Parallel Index Scan using tenk1_unique1 on tenk1
-> Function Scan on generate_series
(7 rows)
reset enable_hashagg;
reset enable_seqscan;
reset enable_incremental_sort;
reset parallel_tuple_cost;
reset parallel_setup_cost;
reset min_parallel_table_scan_size;
reset min_parallel_index_scan_size;
-- Ensure incremental sorts work for amcanorderbyop type indexes
create table point_table (a point, b int);
create index point_table_a_idx on point_table using gist(a);
-- Ensure we get an incremental sort plan for both of the following queries
explain (costs off) select a, b, a <-> point(5, 5) dist from point_table order by dist, b limit 1;
QUERY PLAN
---------------------------------------------------------------
Limit
-> Incremental Sort
Sort Key: ((a <-> '(5,5)'::point)), b
Presorted Key: ((a <-> '(5,5)'::point))
-> Index Scan using point_table_a_idx on point_table
Order By: (a <-> '(5,5)'::point)
(6 rows)
explain (costs off) select a, b, a <-> point(5, 5) dist from point_table order by dist, b desc limit 1;
QUERY PLAN
---------------------------------------------------------------
Limit
-> Incremental Sort
Sort Key: ((a <-> '(5,5)'::point)), b DESC
Presorted Key: ((a <-> '(5,5)'::point))
-> Index Scan using point_table_a_idx on point_table
Order By: (a <-> '(5,5)'::point)
(6 rows)
-- Ensure we get an incremental sort on the outer side of the mergejoin
explain (costs off)
select * from
(select * from tenk1 order by four) t1 join tenk1 t2 on t1.four = t2.four and t1.two = t2.two
order by t1.four, t1.two limit 1;
QUERY PLAN
-----------------------------------------------------------------------
Limit
-> Merge Join
Merge Cond: ((tenk1.four = t2.four) AND (tenk1.two = t2.two))
-> Incremental Sort
Sort Key: tenk1.four, tenk1.two
Presorted Key: tenk1.four
-> Sort
Sort Key: tenk1.four
-> Seq Scan on tenk1
-> Sort
Sort Key: t2.four, t2.two
-> Seq Scan on tenk1 t2
(12 rows)