1
0
mirror of https://github.com/postgres/postgres.git synced 2025-05-01 01:04:50 +03:00
Andres Freund 5aa2350426 Introduce replication progress tracking infrastructure.
When implementing a replication solution ontop of logical decoding, two
related problems exist:
* How to safely keep track of replication progress
* How to change replication behavior, based on the origin of a row;
  e.g. to avoid loops in bi-directional replication setups

The solution to these problems, as implemented here, consist out of
three parts:

1) 'replication origins', which identify nodes in a replication setup.
2) 'replication progress tracking', which remembers, for each
   replication origin, how far replay has progressed in a efficient and
   crash safe manner.
3) The ability to filter out changes performed on the behest of a
   replication origin during logical decoding; this allows complex
   replication topologies. E.g. by filtering all replayed changes out.

Most of this could also be implemented in "userspace", e.g. by inserting
additional rows contain origin information, but that ends up being much
less efficient and more complicated.  We don't want to require various
replication solutions to reimplement logic for this independently. The
infrastructure is intended to be generic enough to be reusable.

This infrastructure also replaces the 'nodeid' infrastructure of commit
timestamps. It is intended to provide all the former capabilities,
except that there's only 2^16 different origins; but now they integrate
with logical decoding. Additionally more functionality is accessible via
SQL.  Since the commit timestamp infrastructure has also been introduced
in 9.5 (commit 73c986add) changing the API is not a problem.

For now the number of origins for which the replication progress can be
tracked simultaneously is determined by the max_replication_slots
GUC. That GUC is not a perfect match to configure this, but there
doesn't seem to be sufficient reason to introduce a separate new one.

Bumps both catversion and wal page magic.

Author: Andres Freund, with contributions from Petr Jelinek and Craig Ringer
Reviewed-By: Heikki Linnakangas, Petr Jelinek, Robert Haas, Steve Singer
Discussion: 20150216002155.GI15326@awork2.anarazel.de,
    20140923182422.GA15776@alap3.anarazel.de,
    20131114172632.GE7522@alap2.anarazel.de
2015-04-29 19:30:53 +02:00
..
2015-01-06 11:43:47 -05:00
2015-01-06 11:43:47 -05:00
2015-01-06 11:43:47 -05:00
2015-02-03 09:43:44 +02:00
2015-04-26 10:33:14 -04:00
2015-04-26 10:33:14 -04:00
2015-01-06 11:43:47 -05:00
2015-01-06 11:43:47 -05:00
2015-01-06 11:43:47 -05:00
2015-01-06 11:43:47 -05:00
2015-01-06 11:43:47 -05:00
2015-01-06 11:43:47 -05:00
2015-04-26 10:33:14 -04:00

The PostgreSQL contrib tree
---------------------------

This subtree contains porting tools, analysis utilities, and plug-in
features that are not part of the core PostgreSQL system, mainly
because they address a limited audience or are too experimental to be
part of the main source tree.  This does not preclude their
usefulness.

User documentation for each module appears in the main SGML
documentation.

When building from the source distribution, these modules are not
built automatically, unless you build the "world" target.  You can
also build and install them all by running "make all" and "make
install" in this directory; or to build and install just one selected
module, do the same in that module's subdirectory.

Some directories supply new user-defined functions, operators, or
types.  To make use of one of these modules, after you have installed
the code you need to register the new SQL objects in the database
system by executing a CREATE EXTENSION command.  In a fresh database,
you can simply do

    CREATE EXTENSION module_name;

See the PostgreSQL documentation for more information about this
procedure.