mirror of
				https://github.com/postgres/postgres.git
				synced 2025-10-24 01:29:19 +03:00 
			
		
		
		
	Both Blowfish and DES implementations of crypt() can take arbitrarily long time, depending on the number of rounds specified by the caller; make sure they can be interrupted. Author: Andreas Karlsson Reviewer: Jeff Janes Backpatch to 9.1.
		
			
				
	
	
		
			794 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			794 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * FreeSec: libcrypt for NetBSD
 | |
|  *
 | |
|  * contrib/pgcrypto/crypt-des.c
 | |
|  *
 | |
|  * Copyright (c) 1994 David Burren
 | |
|  * All rights reserved.
 | |
|  *
 | |
|  * Adapted for FreeBSD-2.0 by Geoffrey M. Rehmet
 | |
|  *	this file should now *only* export crypt(), in order to make
 | |
|  *	binaries of libcrypt exportable from the USA
 | |
|  *
 | |
|  * Adapted for FreeBSD-4.0 by Mark R V Murray
 | |
|  *	this file should now *only* export crypt_des(), in order to make
 | |
|  *	a module that can be optionally included in libcrypt.
 | |
|  *
 | |
|  * Redistribution and use in source and binary forms, with or without
 | |
|  * modification, are permitted provided that the following conditions
 | |
|  * are met:
 | |
|  * 1. Redistributions of source code must retain the above copyright
 | |
|  *	  notice, this list of conditions and the following disclaimer.
 | |
|  * 2. Redistributions in binary form must reproduce the above copyright
 | |
|  *	  notice, this list of conditions and the following disclaimer in the
 | |
|  *	  documentation and/or other materials provided with the distribution.
 | |
|  * 3. Neither the name of the author nor the names of other contributors
 | |
|  *	  may be used to endorse or promote products derived from this software
 | |
|  *	  without specific prior written permission.
 | |
|  *
 | |
|  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 | |
|  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | |
|  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 | |
|  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 | |
|  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 | |
|  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 | |
|  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 | |
|  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 | |
|  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 | |
|  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 | |
|  * SUCH DAMAGE.
 | |
|  *
 | |
|  * $FreeBSD: src/secure/lib/libcrypt/crypt-des.c,v 1.12 1999/09/20 12:39:20 markm Exp $
 | |
|  *
 | |
|  * This is an original implementation of the DES and the crypt(3) interfaces
 | |
|  * by David Burren <davidb@werj.com.au>.
 | |
|  *
 | |
|  * An excellent reference on the underlying algorithm (and related
 | |
|  * algorithms) is:
 | |
|  *
 | |
|  *	B. Schneier, Applied Cryptography: protocols, algorithms,
 | |
|  *	and source code in C, John Wiley & Sons, 1994.
 | |
|  *
 | |
|  * Note that in that book's description of DES the lookups for the initial,
 | |
|  * pbox, and final permutations are inverted (this has been brought to the
 | |
|  * attention of the author).  A list of errata for this book has been
 | |
|  * posted to the sci.crypt newsgroup by the author and is available for FTP.
 | |
|  *
 | |
|  * ARCHITECTURE ASSUMPTIONS:
 | |
|  *	It is assumed that the 8-byte arrays passed by reference can be
 | |
|  *	addressed as arrays of uint32's (ie. the CPU is not picky about
 | |
|  *	alignment).
 | |
|  */
 | |
| 
 | |
| #include "postgres.h"
 | |
| #include "miscadmin.h"
 | |
| 
 | |
| #include "px-crypt.h"
 | |
| 
 | |
| /* for ntohl/htonl */
 | |
| #include <netinet/in.h>
 | |
| #include <arpa/inet.h>
 | |
| 
 | |
| #define _PASSWORD_EFMT1 '_'
 | |
| 
 | |
| static const char _crypt_a64[] =
 | |
| "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
 | |
| 
 | |
| static uint8 IP[64] = {
 | |
| 	58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4,
 | |
| 	62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8,
 | |
| 	57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3,
 | |
| 	61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7
 | |
| };
 | |
| 
 | |
| static uint8 inv_key_perm[64];
 | |
| static uint8 u_key_perm[56];
 | |
| static uint8 key_perm[56] = {
 | |
| 	57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18,
 | |
| 	10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36,
 | |
| 	63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22,
 | |
| 	14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4
 | |
| };
 | |
| 
 | |
| static uint8 key_shifts[16] = {
 | |
| 	1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1
 | |
| };
 | |
| 
 | |
| static uint8 inv_comp_perm[56];
 | |
| static uint8 comp_perm[48] = {
 | |
| 	14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10,
 | |
| 	23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2,
 | |
| 	41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48,
 | |
| 	44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32
 | |
| };
 | |
| 
 | |
| /*
 | |
|  *	No E box is used, as it's replaced by some ANDs, shifts, and ORs.
 | |
|  */
 | |
| 
 | |
| static uint8 u_sbox[8][64];
 | |
| static uint8 sbox[8][64] = {
 | |
| 	{
 | |
| 		14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,
 | |
| 		0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,
 | |
| 		4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,
 | |
| 		15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13
 | |
| 	},
 | |
| 	{
 | |
| 		15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,
 | |
| 		3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,
 | |
| 		0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,
 | |
| 		13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9
 | |
| 	},
 | |
| 	{
 | |
| 		10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,
 | |
| 		13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1,
 | |
| 		13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7,
 | |
| 		1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12
 | |
| 	},
 | |
| 	{
 | |
| 		7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,
 | |
| 		13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,
 | |
| 		10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,
 | |
| 		3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14
 | |
| 	},
 | |
| 	{
 | |
| 		2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,
 | |
| 		14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,
 | |
| 		4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,
 | |
| 		11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3
 | |
| 	},
 | |
| 	{
 | |
| 		12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,
 | |
| 		10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,
 | |
| 		9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,
 | |
| 		4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13
 | |
| 	},
 | |
| 	{
 | |
| 		4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,
 | |
| 		13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,
 | |
| 		1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,
 | |
| 		6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12
 | |
| 	},
 | |
| 	{
 | |
| 		13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,
 | |
| 		1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,
 | |
| 		7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,
 | |
| 		2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11
 | |
| 	}
 | |
| };
 | |
| 
 | |
| static uint8 un_pbox[32];
 | |
| static uint8 pbox[32] = {
 | |
| 	16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10,
 | |
| 	2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25
 | |
| };
 | |
| 
 | |
| static uint32 _crypt_bits32[32] =
 | |
| {
 | |
| 	0x80000000, 0x40000000, 0x20000000, 0x10000000,
 | |
| 	0x08000000, 0x04000000, 0x02000000, 0x01000000,
 | |
| 	0x00800000, 0x00400000, 0x00200000, 0x00100000,
 | |
| 	0x00080000, 0x00040000, 0x00020000, 0x00010000,
 | |
| 	0x00008000, 0x00004000, 0x00002000, 0x00001000,
 | |
| 	0x00000800, 0x00000400, 0x00000200, 0x00000100,
 | |
| 	0x00000080, 0x00000040, 0x00000020, 0x00000010,
 | |
| 	0x00000008, 0x00000004, 0x00000002, 0x00000001
 | |
| };
 | |
| 
 | |
| static uint8 _crypt_bits8[8] = {0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01};
 | |
| 
 | |
| static uint32 saltbits;
 | |
| static long old_salt;
 | |
| static uint32 *bits28,
 | |
| 		   *bits24;
 | |
| static uint8 init_perm[64],
 | |
| 			final_perm[64];
 | |
| static uint32 en_keysl[16],
 | |
| 			en_keysr[16];
 | |
| static uint32 de_keysl[16],
 | |
| 			de_keysr[16];
 | |
| static int	des_initialised = 0;
 | |
| static uint8 m_sbox[4][4096];
 | |
| static uint32 psbox[4][256];
 | |
| static uint32 ip_maskl[8][256],
 | |
| 			ip_maskr[8][256];
 | |
| static uint32 fp_maskl[8][256],
 | |
| 			fp_maskr[8][256];
 | |
| static uint32 key_perm_maskl[8][128],
 | |
| 			key_perm_maskr[8][128];
 | |
| static uint32 comp_maskl[8][128],
 | |
| 			comp_maskr[8][128];
 | |
| static uint32 old_rawkey0,
 | |
| 			old_rawkey1;
 | |
| 
 | |
| static inline int
 | |
| ascii_to_bin(char ch)
 | |
| {
 | |
| 	if (ch > 'z')
 | |
| 		return (0);
 | |
| 	if (ch >= 'a')
 | |
| 		return (ch - 'a' + 38);
 | |
| 	if (ch > 'Z')
 | |
| 		return (0);
 | |
| 	if (ch >= 'A')
 | |
| 		return (ch - 'A' + 12);
 | |
| 	if (ch > '9')
 | |
| 		return (0);
 | |
| 	if (ch >= '.')
 | |
| 		return (ch - '.');
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| static void
 | |
| des_init(void)
 | |
| {
 | |
| 	int			i,
 | |
| 				j,
 | |
| 				b,
 | |
| 				k,
 | |
| 				inbit,
 | |
| 				obit;
 | |
| 	uint32	   *p,
 | |
| 			   *il,
 | |
| 			   *ir,
 | |
| 			   *fl,
 | |
| 			   *fr;
 | |
| 
 | |
| 	old_rawkey0 = old_rawkey1 = 0L;
 | |
| 	saltbits = 0L;
 | |
| 	old_salt = 0L;
 | |
| 	bits24 = (bits28 = _crypt_bits32 + 4) + 4;
 | |
| 
 | |
| 	/*
 | |
| 	 * Invert the S-boxes, reordering the input bits.
 | |
| 	 */
 | |
| 	for (i = 0; i < 8; i++)
 | |
| 		for (j = 0; j < 64; j++)
 | |
| 		{
 | |
| 			b = (j & 0x20) | ((j & 1) << 4) | ((j >> 1) & 0xf);
 | |
| 			u_sbox[i][j] = sbox[i][b];
 | |
| 		}
 | |
| 
 | |
| 	/*
 | |
| 	 * Convert the inverted S-boxes into 4 arrays of 8 bits. Each will handle
 | |
| 	 * 12 bits of the S-box input.
 | |
| 	 */
 | |
| 	for (b = 0; b < 4; b++)
 | |
| 		for (i = 0; i < 64; i++)
 | |
| 			for (j = 0; j < 64; j++)
 | |
| 				m_sbox[b][(i << 6) | j] =
 | |
| 					(u_sbox[(b << 1)][i] << 4) |
 | |
| 					u_sbox[(b << 1) + 1][j];
 | |
| 
 | |
| 	/*
 | |
| 	 * Set up the initial & final permutations into a useful form, and
 | |
| 	 * initialise the inverted key permutation.
 | |
| 	 */
 | |
| 	for (i = 0; i < 64; i++)
 | |
| 	{
 | |
| 		init_perm[final_perm[i] = IP[i] - 1] = i;
 | |
| 		inv_key_perm[i] = 255;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Invert the key permutation and initialise the inverted key compression
 | |
| 	 * permutation.
 | |
| 	 */
 | |
| 	for (i = 0; i < 56; i++)
 | |
| 	{
 | |
| 		u_key_perm[i] = key_perm[i] - 1;
 | |
| 		inv_key_perm[key_perm[i] - 1] = i;
 | |
| 		inv_comp_perm[i] = 255;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Invert the key compression permutation.
 | |
| 	 */
 | |
| 	for (i = 0; i < 48; i++)
 | |
| 		inv_comp_perm[comp_perm[i] - 1] = i;
 | |
| 
 | |
| 	/*
 | |
| 	 * Set up the OR-mask arrays for the initial and final permutations, and
 | |
| 	 * for the key initial and compression permutations.
 | |
| 	 */
 | |
| 	for (k = 0; k < 8; k++)
 | |
| 	{
 | |
| 		for (i = 0; i < 256; i++)
 | |
| 		{
 | |
| 			*(il = &ip_maskl[k][i]) = 0L;
 | |
| 			*(ir = &ip_maskr[k][i]) = 0L;
 | |
| 			*(fl = &fp_maskl[k][i]) = 0L;
 | |
| 			*(fr = &fp_maskr[k][i]) = 0L;
 | |
| 			for (j = 0; j < 8; j++)
 | |
| 			{
 | |
| 				inbit = 8 * k + j;
 | |
| 				if (i & _crypt_bits8[j])
 | |
| 				{
 | |
| 					if ((obit = init_perm[inbit]) < 32)
 | |
| 						*il |= _crypt_bits32[obit];
 | |
| 					else
 | |
| 						*ir |= _crypt_bits32[obit - 32];
 | |
| 					if ((obit = final_perm[inbit]) < 32)
 | |
| 						*fl |= _crypt_bits32[obit];
 | |
| 					else
 | |
| 						*fr |= _crypt_bits32[obit - 32];
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 		for (i = 0; i < 128; i++)
 | |
| 		{
 | |
| 			*(il = &key_perm_maskl[k][i]) = 0L;
 | |
| 			*(ir = &key_perm_maskr[k][i]) = 0L;
 | |
| 			for (j = 0; j < 7; j++)
 | |
| 			{
 | |
| 				inbit = 8 * k + j;
 | |
| 				if (i & _crypt_bits8[j + 1])
 | |
| 				{
 | |
| 					if ((obit = inv_key_perm[inbit]) == 255)
 | |
| 						continue;
 | |
| 					if (obit < 28)
 | |
| 						*il |= bits28[obit];
 | |
| 					else
 | |
| 						*ir |= bits28[obit - 28];
 | |
| 				}
 | |
| 			}
 | |
| 			*(il = &comp_maskl[k][i]) = 0L;
 | |
| 			*(ir = &comp_maskr[k][i]) = 0L;
 | |
| 			for (j = 0; j < 7; j++)
 | |
| 			{
 | |
| 				inbit = 7 * k + j;
 | |
| 				if (i & _crypt_bits8[j + 1])
 | |
| 				{
 | |
| 					if ((obit = inv_comp_perm[inbit]) == 255)
 | |
| 						continue;
 | |
| 					if (obit < 24)
 | |
| 						*il |= bits24[obit];
 | |
| 					else
 | |
| 						*ir |= bits24[obit - 24];
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Invert the P-box permutation, and convert into OR-masks for handling
 | |
| 	 * the output of the S-box arrays setup above.
 | |
| 	 */
 | |
| 	for (i = 0; i < 32; i++)
 | |
| 		un_pbox[pbox[i] - 1] = i;
 | |
| 
 | |
| 	for (b = 0; b < 4; b++)
 | |
| 		for (i = 0; i < 256; i++)
 | |
| 		{
 | |
| 			*(p = &psbox[b][i]) = 0L;
 | |
| 			for (j = 0; j < 8; j++)
 | |
| 			{
 | |
| 				if (i & _crypt_bits8[j])
 | |
| 					*p |= _crypt_bits32[un_pbox[8 * b + j]];
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 	des_initialised = 1;
 | |
| }
 | |
| 
 | |
| static void
 | |
| setup_salt(long salt)
 | |
| {
 | |
| 	uint32		obit,
 | |
| 				saltbit;
 | |
| 	int			i;
 | |
| 
 | |
| 	if (salt == old_salt)
 | |
| 		return;
 | |
| 	old_salt = salt;
 | |
| 
 | |
| 	saltbits = 0L;
 | |
| 	saltbit = 1;
 | |
| 	obit = 0x800000;
 | |
| 	for (i = 0; i < 24; i++)
 | |
| 	{
 | |
| 		if (salt & saltbit)
 | |
| 			saltbits |= obit;
 | |
| 		saltbit <<= 1;
 | |
| 		obit >>= 1;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int
 | |
| des_setkey(const char *key)
 | |
| {
 | |
| 	uint32		k0,
 | |
| 				k1,
 | |
| 				rawkey0,
 | |
| 				rawkey1;
 | |
| 	int			shifts,
 | |
| 				round;
 | |
| 
 | |
| 	if (!des_initialised)
 | |
| 		des_init();
 | |
| 
 | |
| 	rawkey0 = ntohl(*(const uint32 *) key);
 | |
| 	rawkey1 = ntohl(*(const uint32 *) (key + 4));
 | |
| 
 | |
| 	if ((rawkey0 | rawkey1)
 | |
| 		&& rawkey0 == old_rawkey0
 | |
| 		&& rawkey1 == old_rawkey1)
 | |
| 	{
 | |
| 		/*
 | |
| 		 * Already setup for this key. This optimisation fails on a zero key
 | |
| 		 * (which is weak and has bad parity anyway) in order to simplify the
 | |
| 		 * starting conditions.
 | |
| 		 */
 | |
| 		return (0);
 | |
| 	}
 | |
| 	old_rawkey0 = rawkey0;
 | |
| 	old_rawkey1 = rawkey1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Do key permutation and split into two 28-bit subkeys.
 | |
| 	 */
 | |
| 	k0 = key_perm_maskl[0][rawkey0 >> 25]
 | |
| 		| key_perm_maskl[1][(rawkey0 >> 17) & 0x7f]
 | |
| 		| key_perm_maskl[2][(rawkey0 >> 9) & 0x7f]
 | |
| 		| key_perm_maskl[3][(rawkey0 >> 1) & 0x7f]
 | |
| 		| key_perm_maskl[4][rawkey1 >> 25]
 | |
| 		| key_perm_maskl[5][(rawkey1 >> 17) & 0x7f]
 | |
| 		| key_perm_maskl[6][(rawkey1 >> 9) & 0x7f]
 | |
| 		| key_perm_maskl[7][(rawkey1 >> 1) & 0x7f];
 | |
| 	k1 = key_perm_maskr[0][rawkey0 >> 25]
 | |
| 		| key_perm_maskr[1][(rawkey0 >> 17) & 0x7f]
 | |
| 		| key_perm_maskr[2][(rawkey0 >> 9) & 0x7f]
 | |
| 		| key_perm_maskr[3][(rawkey0 >> 1) & 0x7f]
 | |
| 		| key_perm_maskr[4][rawkey1 >> 25]
 | |
| 		| key_perm_maskr[5][(rawkey1 >> 17) & 0x7f]
 | |
| 		| key_perm_maskr[6][(rawkey1 >> 9) & 0x7f]
 | |
| 		| key_perm_maskr[7][(rawkey1 >> 1) & 0x7f];
 | |
| 
 | |
| 	/*
 | |
| 	 * Rotate subkeys and do compression permutation.
 | |
| 	 */
 | |
| 	shifts = 0;
 | |
| 	for (round = 0; round < 16; round++)
 | |
| 	{
 | |
| 		uint32		t0,
 | |
| 					t1;
 | |
| 
 | |
| 		shifts += key_shifts[round];
 | |
| 
 | |
| 		t0 = (k0 << shifts) | (k0 >> (28 - shifts));
 | |
| 		t1 = (k1 << shifts) | (k1 >> (28 - shifts));
 | |
| 
 | |
| 		de_keysl[15 - round] =
 | |
| 			en_keysl[round] = comp_maskl[0][(t0 >> 21) & 0x7f]
 | |
| 			| comp_maskl[1][(t0 >> 14) & 0x7f]
 | |
| 			| comp_maskl[2][(t0 >> 7) & 0x7f]
 | |
| 			| comp_maskl[3][t0 & 0x7f]
 | |
| 			| comp_maskl[4][(t1 >> 21) & 0x7f]
 | |
| 			| comp_maskl[5][(t1 >> 14) & 0x7f]
 | |
| 			| comp_maskl[6][(t1 >> 7) & 0x7f]
 | |
| 			| comp_maskl[7][t1 & 0x7f];
 | |
| 
 | |
| 		de_keysr[15 - round] =
 | |
| 			en_keysr[round] = comp_maskr[0][(t0 >> 21) & 0x7f]
 | |
| 			| comp_maskr[1][(t0 >> 14) & 0x7f]
 | |
| 			| comp_maskr[2][(t0 >> 7) & 0x7f]
 | |
| 			| comp_maskr[3][t0 & 0x7f]
 | |
| 			| comp_maskr[4][(t1 >> 21) & 0x7f]
 | |
| 			| comp_maskr[5][(t1 >> 14) & 0x7f]
 | |
| 			| comp_maskr[6][(t1 >> 7) & 0x7f]
 | |
| 			| comp_maskr[7][t1 & 0x7f];
 | |
| 	}
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| static int
 | |
| do_des(uint32 l_in, uint32 r_in, uint32 *l_out, uint32 *r_out, int count)
 | |
| {
 | |
| 	/*
 | |
| 	 * l_in, r_in, l_out, and r_out are in pseudo-"big-endian" format.
 | |
| 	 */
 | |
| 	uint32		l,
 | |
| 				r,
 | |
| 			   *kl,
 | |
| 			   *kr,
 | |
| 			   *kl1,
 | |
| 			   *kr1;
 | |
| 	uint32		f,
 | |
| 				r48l,
 | |
| 				r48r;
 | |
| 	int			round;
 | |
| 
 | |
| 	if (count == 0)
 | |
| 		return (1);
 | |
| 	else if (count > 0)
 | |
| 	{
 | |
| 		/*
 | |
| 		 * Encrypting
 | |
| 		 */
 | |
| 		kl1 = en_keysl;
 | |
| 		kr1 = en_keysr;
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		/*
 | |
| 		 * Decrypting
 | |
| 		 */
 | |
| 		count = -count;
 | |
| 		kl1 = de_keysl;
 | |
| 		kr1 = de_keysr;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Do initial permutation (IP).
 | |
| 	 */
 | |
| 	l = ip_maskl[0][l_in >> 24]
 | |
| 		| ip_maskl[1][(l_in >> 16) & 0xff]
 | |
| 		| ip_maskl[2][(l_in >> 8) & 0xff]
 | |
| 		| ip_maskl[3][l_in & 0xff]
 | |
| 		| ip_maskl[4][r_in >> 24]
 | |
| 		| ip_maskl[5][(r_in >> 16) & 0xff]
 | |
| 		| ip_maskl[6][(r_in >> 8) & 0xff]
 | |
| 		| ip_maskl[7][r_in & 0xff];
 | |
| 	r = ip_maskr[0][l_in >> 24]
 | |
| 		| ip_maskr[1][(l_in >> 16) & 0xff]
 | |
| 		| ip_maskr[2][(l_in >> 8) & 0xff]
 | |
| 		| ip_maskr[3][l_in & 0xff]
 | |
| 		| ip_maskr[4][r_in >> 24]
 | |
| 		| ip_maskr[5][(r_in >> 16) & 0xff]
 | |
| 		| ip_maskr[6][(r_in >> 8) & 0xff]
 | |
| 		| ip_maskr[7][r_in & 0xff];
 | |
| 
 | |
| 	while (count--)
 | |
| 	{
 | |
| 		CHECK_FOR_INTERRUPTS();
 | |
| 
 | |
| 		/*
 | |
| 		 * Do each round.
 | |
| 		 */
 | |
| 		kl = kl1;
 | |
| 		kr = kr1;
 | |
| 		round = 16;
 | |
| 		while (round--)
 | |
| 		{
 | |
| 			/*
 | |
| 			 * Expand R to 48 bits (simulate the E-box).
 | |
| 			 */
 | |
| 			r48l = ((r & 0x00000001) << 23)
 | |
| 				| ((r & 0xf8000000) >> 9)
 | |
| 				| ((r & 0x1f800000) >> 11)
 | |
| 				| ((r & 0x01f80000) >> 13)
 | |
| 				| ((r & 0x001f8000) >> 15);
 | |
| 
 | |
| 			r48r = ((r & 0x0001f800) << 7)
 | |
| 				| ((r & 0x00001f80) << 5)
 | |
| 				| ((r & 0x000001f8) << 3)
 | |
| 				| ((r & 0x0000001f) << 1)
 | |
| 				| ((r & 0x80000000) >> 31);
 | |
| 
 | |
| 			/*
 | |
| 			 * Do salting for crypt() and friends, and XOR with the permuted
 | |
| 			 * key.
 | |
| 			 */
 | |
| 			f = (r48l ^ r48r) & saltbits;
 | |
| 			r48l ^= f ^ *kl++;
 | |
| 			r48r ^= f ^ *kr++;
 | |
| 
 | |
| 			/*
 | |
| 			 * Do sbox lookups (which shrink it back to 32 bits) and do the
 | |
| 			 * pbox permutation at the same time.
 | |
| 			 */
 | |
| 			f = psbox[0][m_sbox[0][r48l >> 12]]
 | |
| 				| psbox[1][m_sbox[1][r48l & 0xfff]]
 | |
| 				| psbox[2][m_sbox[2][r48r >> 12]]
 | |
| 				| psbox[3][m_sbox[3][r48r & 0xfff]];
 | |
| 
 | |
| 			/*
 | |
| 			 * Now that we've permuted things, complete f().
 | |
| 			 */
 | |
| 			f ^= l;
 | |
| 			l = r;
 | |
| 			r = f;
 | |
| 		}
 | |
| 		r = l;
 | |
| 		l = f;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Do final permutation (inverse of IP).
 | |
| 	 */
 | |
| 	*l_out = fp_maskl[0][l >> 24]
 | |
| 		| fp_maskl[1][(l >> 16) & 0xff]
 | |
| 		| fp_maskl[2][(l >> 8) & 0xff]
 | |
| 		| fp_maskl[3][l & 0xff]
 | |
| 		| fp_maskl[4][r >> 24]
 | |
| 		| fp_maskl[5][(r >> 16) & 0xff]
 | |
| 		| fp_maskl[6][(r >> 8) & 0xff]
 | |
| 		| fp_maskl[7][r & 0xff];
 | |
| 	*r_out = fp_maskr[0][l >> 24]
 | |
| 		| fp_maskr[1][(l >> 16) & 0xff]
 | |
| 		| fp_maskr[2][(l >> 8) & 0xff]
 | |
| 		| fp_maskr[3][l & 0xff]
 | |
| 		| fp_maskr[4][r >> 24]
 | |
| 		| fp_maskr[5][(r >> 16) & 0xff]
 | |
| 		| fp_maskr[6][(r >> 8) & 0xff]
 | |
| 		| fp_maskr[7][r & 0xff];
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| static int
 | |
| des_cipher(const char *in, char *out, long salt, int count)
 | |
| {
 | |
| 	uint32		buffer[2];
 | |
| 	uint32		l_out,
 | |
| 				r_out,
 | |
| 				rawl,
 | |
| 				rawr;
 | |
| 	int			retval;
 | |
| 
 | |
| 	if (!des_initialised)
 | |
| 		des_init();
 | |
| 
 | |
| 	setup_salt(salt);
 | |
| 
 | |
| 	/* copy data to avoid assuming input is word-aligned */
 | |
| 	memcpy(buffer, in, sizeof(buffer));
 | |
| 
 | |
| 	rawl = ntohl(buffer[0]);
 | |
| 	rawr = ntohl(buffer[1]);
 | |
| 
 | |
| 	retval = do_des(rawl, rawr, &l_out, &r_out, count);
 | |
| 
 | |
| 	buffer[0] = htonl(l_out);
 | |
| 	buffer[1] = htonl(r_out);
 | |
| 
 | |
| 	/* copy data to avoid assuming output is word-aligned */
 | |
| 	memcpy(out, buffer, sizeof(buffer));
 | |
| 
 | |
| 	return (retval);
 | |
| }
 | |
| 
 | |
| char *
 | |
| px_crypt_des(const char *key, const char *setting)
 | |
| {
 | |
| 	int			i;
 | |
| 	uint32		count,
 | |
| 				salt,
 | |
| 				l,
 | |
| 				r0,
 | |
| 				r1,
 | |
| 				keybuf[2];
 | |
| 	char	   *p;
 | |
| 	uint8	   *q;
 | |
| 	static char output[21];
 | |
| 
 | |
| 	if (!des_initialised)
 | |
| 		des_init();
 | |
| 
 | |
| 
 | |
| 	/*
 | |
| 	 * Copy the key, shifting each character up by one bit and padding with
 | |
| 	 * zeros.
 | |
| 	 */
 | |
| 	q = (uint8 *) keybuf;
 | |
| 	while (q - (uint8 *) keybuf - 8)
 | |
| 	{
 | |
| 		*q++ = *key << 1;
 | |
| 		if (*key != '\0')
 | |
| 			key++;
 | |
| 	}
 | |
| 	if (des_setkey((char *) keybuf))
 | |
| 		return (NULL);
 | |
| 
 | |
| #ifndef DISABLE_XDES
 | |
| 	if (*setting == _PASSWORD_EFMT1)
 | |
| 	{
 | |
| 		/*
 | |
| 		 * "new"-style: setting must be a 9-character (underscore, then 4
 | |
| 		 * bytes of count, then 4 bytes of salt) string. See CRYPT(3) under
 | |
| 		 * the "Extended crypt" heading for further details.
 | |
| 		 *
 | |
| 		 * Unlimited characters of the input key are used. This is known as
 | |
| 		 * the "Extended crypt" DES method.
 | |
| 		 *
 | |
| 		 */
 | |
| 		if (strlen(setting) < 9)
 | |
| 			ereport(ERROR,
 | |
| 					(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
 | |
| 					 errmsg("invalid salt")));
 | |
| 
 | |
| 		for (i = 1, count = 0L; i < 5; i++)
 | |
| 			count |= ascii_to_bin(setting[i]) << (i - 1) * 6;
 | |
| 
 | |
| 		for (i = 5, salt = 0L; i < 9; i++)
 | |
| 			salt |= ascii_to_bin(setting[i]) << (i - 5) * 6;
 | |
| 
 | |
| 		while (*key)
 | |
| 		{
 | |
| 			/*
 | |
| 			 * Encrypt the key with itself.
 | |
| 			 */
 | |
| 			if (des_cipher((char *) keybuf, (char *) keybuf, 0L, 1))
 | |
| 				return (NULL);
 | |
| 
 | |
| 			/*
 | |
| 			 * And XOR with the next 8 characters of the key.
 | |
| 			 */
 | |
| 			q = (uint8 *) keybuf;
 | |
| 			while (q - (uint8 *) keybuf - 8 && *key)
 | |
| 				*q++ ^= *key++ << 1;
 | |
| 
 | |
| 			if (des_setkey((char *) keybuf))
 | |
| 				return (NULL);
 | |
| 		}
 | |
| 		strncpy(output, setting, 9);
 | |
| 
 | |
| 		/*
 | |
| 		 * Double check that we weren't given a short setting. If we were, the
 | |
| 		 * above code will probably have created weird values for count and
 | |
| 		 * salt, but we don't really care. Just make sure the output string
 | |
| 		 * doesn't have an extra NUL in it.
 | |
| 		 */
 | |
| 		output[9] = '\0';
 | |
| 		p = output + strlen(output);
 | |
| 	}
 | |
| 	else
 | |
| #endif   /* !DISABLE_XDES */
 | |
| 	{
 | |
| 		/*
 | |
| 		 * "old"-style: setting - 2 bytes of salt key - only up to the first 8
 | |
| 		 * characters of the input key are used.
 | |
| 		 */
 | |
| 		count = 25;
 | |
| 
 | |
| 		if (strlen(setting) < 2)
 | |
| 			ereport(ERROR,
 | |
| 					(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
 | |
| 					 errmsg("invalid salt")));
 | |
| 
 | |
| 		salt = (ascii_to_bin(setting[1]) << 6)
 | |
| 			| ascii_to_bin(setting[0]);
 | |
| 
 | |
| 		output[0] = setting[0];
 | |
| 
 | |
| 		/*
 | |
| 		 * If the encrypted password that the salt was extracted from is only
 | |
| 		 * 1 character long, the salt will be corrupted.  We need to ensure
 | |
| 		 * that the output string doesn't have an extra NUL in it!
 | |
| 		 */
 | |
| 		output[1] = setting[1] ? setting[1] : output[0];
 | |
| 
 | |
| 		p = output + 2;
 | |
| 	}
 | |
| 	setup_salt(salt);
 | |
| 
 | |
| 	/*
 | |
| 	 * Do it.
 | |
| 	 */
 | |
| 	if (do_des(0L, 0L, &r0, &r1, count))
 | |
| 		return (NULL);
 | |
| 
 | |
| 	/*
 | |
| 	 * Now encode the result...
 | |
| 	 */
 | |
| 	l = (r0 >> 8);
 | |
| 	*p++ = _crypt_a64[(l >> 18) & 0x3f];
 | |
| 	*p++ = _crypt_a64[(l >> 12) & 0x3f];
 | |
| 	*p++ = _crypt_a64[(l >> 6) & 0x3f];
 | |
| 	*p++ = _crypt_a64[l & 0x3f];
 | |
| 
 | |
| 	l = (r0 << 16) | ((r1 >> 16) & 0xffff);
 | |
| 	*p++ = _crypt_a64[(l >> 18) & 0x3f];
 | |
| 	*p++ = _crypt_a64[(l >> 12) & 0x3f];
 | |
| 	*p++ = _crypt_a64[(l >> 6) & 0x3f];
 | |
| 	*p++ = _crypt_a64[l & 0x3f];
 | |
| 
 | |
| 	l = r1 << 2;
 | |
| 	*p++ = _crypt_a64[(l >> 12) & 0x3f];
 | |
| 	*p++ = _crypt_a64[(l >> 6) & 0x3f];
 | |
| 	*p++ = _crypt_a64[l & 0x3f];
 | |
| 	*p = 0;
 | |
| 
 | |
| 	return (output);
 | |
| }
 |