1
0
mirror of https://github.com/postgres/postgres.git synced 2025-04-29 13:56:47 +03:00
Tom Lane e7a45c787e Repair subselect.c's occasional assignment of the wrong vartypmod to
Vars created to fill subplan args lists.  This is an ancient error, going
back at least to 7.0, but is more easily triggered in 7.4 than before
because we no longer compare varlevelsup when deciding whether a Param
slot can be re-used.  Fixes bug reported by Klint Gore.
2003-11-25 23:59:12 +00:00

1108 lines
32 KiB
C

/*-------------------------------------------------------------------------
*
* subselect.c
* Planning routines for subselects and parameters.
*
* Portions Copyright (c) 1996-2003, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/optimizer/plan/subselect.c,v 1.85 2003/11/25 23:59:12 tgl Exp $
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "catalog/pg_operator.h"
#include "catalog/pg_type.h"
#include "miscadmin.h"
#include "nodes/makefuncs.h"
#include "nodes/params.h"
#include "optimizer/clauses.h"
#include "optimizer/cost.h"
#include "optimizer/planmain.h"
#include "optimizer/planner.h"
#include "optimizer/subselect.h"
#include "optimizer/var.h"
#include "parser/parsetree.h"
#include "parser/parse_expr.h"
#include "parser/parse_oper.h"
#include "parser/parse_relation.h"
#include "rewrite/rewriteManip.h"
#include "utils/builtins.h"
#include "utils/lsyscache.h"
#include "utils/syscache.h"
Index PlannerQueryLevel; /* level of current query */
List *PlannerInitPlan; /* init subplans for current query */
List *PlannerParamList; /* to keep track of cross-level Params */
int PlannerPlanId = 0; /* to assign unique ID to subquery plans */
/*
* PlannerParamList keeps track of the PARAM_EXEC slots that we have decided
* we need for the query. At runtime these slots are used to pass values
* either down into subqueries (for outer references in subqueries) or up out
* of subqueries (for the results of a subplan). The n'th entry in the list
* (n counts from 0) corresponds to Param->paramid = n.
*
* Each ParamList item shows the absolute query level it is associated with,
* where the outermost query is level 1 and nested subqueries have higher
* numbers. The item the parameter slot represents can be one of three kinds:
*
* A Var: the slot represents a variable of that level that must be passed
* down because subqueries have outer references to it. The varlevelsup
* value in the Var will always be zero.
*
* An Aggref (with an expression tree representing its argument): the slot
* represents an aggregate expression that is an outer reference for some
* subquery. The Aggref itself has agglevelsup = 0, and its argument tree
* is adjusted to match in level.
*
* A Param: the slot holds the result of a subplan (it is a setParam item
* for that subplan). The absolute level shown for such items corresponds
* to the parent query of the subplan.
*
* Note: we detect duplicate Var parameters and coalesce them into one slot,
* but we do not do this for Aggref or Param slots.
*/
typedef struct PlannerParamItem
{
Node *item; /* the Var, Aggref, or Param */
Index abslevel; /* its absolute query level */
} PlannerParamItem;
typedef struct finalize_primnode_context
{
Bitmapset *paramids; /* Set of PARAM_EXEC paramids found */
Bitmapset *outer_params; /* Set of accessible outer paramids */
} finalize_primnode_context;
static List *convert_sublink_opers(List *lefthand, List *operOids,
List *targetlist, int rtindex,
List **righthandIds);
static bool subplan_is_hashable(SubLink *slink, SubPlan *node);
static Node *replace_correlation_vars_mutator(Node *node, void *context);
static Node *process_sublinks_mutator(Node *node, bool *isTopQual);
static Bitmapset *finalize_plan(Plan *plan, List *rtable,
Bitmapset *outer_params,
Bitmapset *valid_params);
static bool finalize_primnode(Node *node, finalize_primnode_context *context);
/*
* Generate a Param node to replace the given Var,
* which is expected to have varlevelsup > 0 (ie, it is not local).
*/
static Param *
replace_outer_var(Var *var)
{
Param *retval;
List *ppl;
PlannerParamItem *pitem;
Index abslevel;
int i;
Assert(var->varlevelsup > 0 && var->varlevelsup < PlannerQueryLevel);
abslevel = PlannerQueryLevel - var->varlevelsup;
/*
* If there's already a PlannerParamList entry for this same Var, just
* use it. NOTE: in sufficiently complex querytrees, it is possible
* for the same varno/abslevel to refer to different RTEs in different
* parts of the parsetree, so that different fields might end up
* sharing the same Param number. As long as we check the vartype as
* well, I believe that this sort of aliasing will cause no trouble.
* The correct field should get stored into the Param slot at
* execution in each part of the tree.
*
* We also need to demand a match on vartypmod. This does not matter
* for the Param itself, since those are not typmod-dependent, but it
* does matter when make_subplan() instantiates a modified copy of the
* Var for a subplan's args list.
*/
i = 0;
foreach(ppl, PlannerParamList)
{
pitem = (PlannerParamItem *) lfirst(ppl);
if (pitem->abslevel == abslevel && IsA(pitem->item, Var))
{
Var *pvar = (Var *) pitem->item;
if (pvar->varno == var->varno &&
pvar->varattno == var->varattno &&
pvar->vartype == var->vartype &&
pvar->vartypmod == var->vartypmod)
break;
}
i++;
}
if (!ppl)
{
/* Nope, so make a new one */
var = (Var *) copyObject(var);
var->varlevelsup = 0;
pitem = (PlannerParamItem *) palloc(sizeof(PlannerParamItem));
pitem->item = (Node *) var;
pitem->abslevel = abslevel;
PlannerParamList = lappend(PlannerParamList, pitem);
/* i is already the correct index for the new item */
}
retval = makeNode(Param);
retval->paramkind = PARAM_EXEC;
retval->paramid = (AttrNumber) i;
retval->paramtype = var->vartype;
return retval;
}
/*
* Generate a Param node to replace the given Aggref
* which is expected to have agglevelsup > 0 (ie, it is not local).
*/
static Param *
replace_outer_agg(Aggref *agg)
{
Param *retval;
PlannerParamItem *pitem;
Index abslevel;
int i;
Assert(agg->agglevelsup > 0 && agg->agglevelsup < PlannerQueryLevel);
abslevel = PlannerQueryLevel - agg->agglevelsup;
/*
* It does not seem worthwhile to try to match duplicate outer aggs.
* Just make a new slot every time.
*/
agg = (Aggref *) copyObject(agg);
IncrementVarSublevelsUp((Node *) agg, -((int) agg->agglevelsup), 0);
Assert(agg->agglevelsup == 0);
pitem = (PlannerParamItem *) palloc(sizeof(PlannerParamItem));
pitem->item = (Node *) agg;
pitem->abslevel = abslevel;
PlannerParamList = lappend(PlannerParamList, pitem);
i = length(PlannerParamList) - 1;
retval = makeNode(Param);
retval->paramkind = PARAM_EXEC;
retval->paramid = (AttrNumber) i;
retval->paramtype = agg->aggtype;
return retval;
}
/*
* Generate a new Param node that will not conflict with any other.
*
* This is used to allocate PARAM_EXEC slots for subplan outputs.
*
* paramtypmod is currently unused but might be wanted someday.
*/
static Param *
generate_new_param(Oid paramtype, int32 paramtypmod)
{
Param *retval;
PlannerParamItem *pitem;
retval = makeNode(Param);
retval->paramkind = PARAM_EXEC;
retval->paramid = (AttrNumber) length(PlannerParamList);
retval->paramtype = paramtype;
pitem = (PlannerParamItem *) palloc(sizeof(PlannerParamItem));
pitem->item = (Node *) retval;
pitem->abslevel = PlannerQueryLevel;
PlannerParamList = lappend(PlannerParamList, pitem);
return retval;
}
/*
* Convert a bare SubLink (as created by the parser) into a SubPlan.
*
* We are given the raw SubLink and the already-processed lefthand argument
* list (use this instead of the SubLink's own field). We are also told if
* this expression appears at top level of a WHERE/HAVING qual.
*
* The result is whatever we need to substitute in place of the SubLink
* node in the executable expression. This will be either the SubPlan
* node (if we have to do the subplan as a subplan), or a Param node
* representing the result of an InitPlan, or possibly an AND or OR tree
* containing InitPlan Param nodes.
*/
static Node *
make_subplan(SubLink *slink, List *lefthand, bool isTopQual)
{
SubPlan *node = makeNode(SubPlan);
Query *subquery = (Query *) (slink->subselect);
double tuple_fraction;
Plan *plan;
Bitmapset *tmpset;
int paramid;
List *lst;
Node *result;
/*
* Copy the source Query node. This is a quick and dirty kluge to
* resolve the fact that the parser can generate trees with multiple
* links to the same sub-Query node, but the planner wants to scribble
* on the Query. Try to clean this up when we do querytree redesign...
*/
subquery = (Query *) copyObject(subquery);
/*
* For an EXISTS subplan, tell lower-level planner to expect that only
* the first tuple will be retrieved. For ALL and ANY subplans, we
* will be able to stop evaluating if the test condition fails, so
* very often not all the tuples will be retrieved; for lack of a
* better idea, specify 50% retrieval. For EXPR and MULTIEXPR
* subplans, use default behavior (we're only expecting one row out,
* anyway).
*
* NOTE: if you change these numbers, also change cost_qual_eval_walker()
* in path/costsize.c.
*
* XXX If an ALL/ANY subplan is uncorrelated, we may decide to hash or
* materialize its result below. In that case it would've been better
* to specify full retrieval. At present, however, we can only detect
* correlation or lack of it after we've made the subplan :-(. Perhaps
* detection of correlation should be done as a separate step.
* Meanwhile, we don't want to be too optimistic about the percentage
* of tuples retrieved, for fear of selecting a plan that's bad for
* the materialization case.
*/
if (slink->subLinkType == EXISTS_SUBLINK)
tuple_fraction = 1.0; /* just like a LIMIT 1 */
else if (slink->subLinkType == ALL_SUBLINK ||
slink->subLinkType == ANY_SUBLINK)
tuple_fraction = 0.5; /* 50% */
else
tuple_fraction = 0.0; /* default behavior */
/*
* Generate the plan for the subquery.
*/
node->plan = plan = subquery_planner(subquery, tuple_fraction);
node->plan_id = PlannerPlanId++; /* Assign unique ID to this
* SubPlan */
node->rtable = subquery->rtable;
/*
* Initialize other fields of the SubPlan node.
*/
node->subLinkType = slink->subLinkType;
node->useOr = slink->useOr;
node->exprs = NIL;
node->paramIds = NIL;
node->useHashTable = false;
/* At top level of a qual, can treat UNKNOWN the same as FALSE */
node->unknownEqFalse = isTopQual;
node->setParam = NIL;
node->parParam = NIL;
node->args = NIL;
/*
* Make parParam list of params that current query level will pass to
* this child plan.
*/
tmpset = bms_copy(plan->extParam);
while ((paramid = bms_first_member(tmpset)) >= 0)
{
PlannerParamItem *pitem = nth(paramid, PlannerParamList);
if (pitem->abslevel == PlannerQueryLevel)
node->parParam = lappendi(node->parParam, paramid);
}
bms_free(tmpset);
/*
* Un-correlated or undirect correlated plans of EXISTS, EXPR, ARRAY,
* or MULTIEXPR types can be used as initPlans. For EXISTS, EXPR, or
* ARRAY, we just produce a Param referring to the result of
* evaluating the initPlan. For MULTIEXPR, we must build an AND or
* OR-clause of the individual comparison operators, using the
* appropriate lefthand side expressions and Params for the initPlan's
* target items.
*/
if (node->parParam == NIL && slink->subLinkType == EXISTS_SUBLINK)
{
Param *prm;
prm = generate_new_param(BOOLOID, -1);
node->setParam = makeListi1(prm->paramid);
PlannerInitPlan = lappend(PlannerInitPlan, node);
result = (Node *) prm;
}
else if (node->parParam == NIL && slink->subLinkType == EXPR_SUBLINK)
{
TargetEntry *te = lfirst(plan->targetlist);
Param *prm;
Assert(!te->resdom->resjunk);
prm = generate_new_param(te->resdom->restype, te->resdom->restypmod);
node->setParam = makeListi1(prm->paramid);
PlannerInitPlan = lappend(PlannerInitPlan, node);
result = (Node *) prm;
}
else if (node->parParam == NIL && slink->subLinkType == ARRAY_SUBLINK)
{
TargetEntry *te = lfirst(plan->targetlist);
Oid arraytype;
Param *prm;
Assert(!te->resdom->resjunk);
arraytype = get_array_type(te->resdom->restype);
if (!OidIsValid(arraytype))
elog(ERROR, "could not find array type for datatype %s",
format_type_be(te->resdom->restype));
prm = generate_new_param(arraytype, -1);
node->setParam = makeListi1(prm->paramid);
PlannerInitPlan = lappend(PlannerInitPlan, node);
result = (Node *) prm;
}
else if (node->parParam == NIL && slink->subLinkType == MULTIEXPR_SUBLINK)
{
List *exprs;
/* Convert the lefthand exprs and oper OIDs into executable exprs */
exprs = convert_sublink_opers(lefthand,
slink->operOids,
plan->targetlist,
0,
&node->paramIds);
node->setParam = listCopy(node->paramIds);
PlannerInitPlan = lappend(PlannerInitPlan, node);
/*
* The executable expressions are returned to become part of the
* outer plan's expression tree; they are not kept in the initplan
* node.
*/
if (length(exprs) > 1)
result = (Node *) (node->useOr ? make_orclause(exprs) :
make_andclause(exprs));
else
result = (Node *) lfirst(exprs);
}
else
{
List *args;
/*
* We can't convert subplans of ALL_SUBLINK or ANY_SUBLINK types
* to initPlans, even when they are uncorrelated or undirect
* correlated, because we need to scan the output of the subplan
* for each outer tuple. But if it's an IN (= ANY) test, we might
* be able to use a hashtable to avoid comparing all the tuples.
*/
if (subplan_is_hashable(slink, node))
node->useHashTable = true;
/*
* Otherwise, we have the option to tack a MATERIAL node onto the
* top of the subplan, to reduce the cost of reading it
* repeatedly. This is pointless for a direct-correlated subplan,
* since we'd have to recompute its results each time anyway. For
* uncorrelated/undirect correlated subplans, we add MATERIAL if
* the subplan's top plan node is anything more complicated than a
* plain sequential scan, and we do it even for seqscan if the
* qual appears selective enough to eliminate many tuples.
*/
else if (node->parParam == NIL)
{
bool use_material;
switch (nodeTag(plan))
{
case T_SeqScan:
if (plan->initPlan)
use_material = true;
else
{
Selectivity qualsel;
qualsel = clauselist_selectivity(subquery,
plan->qual,
0, JOIN_INNER);
/* Is 10% selectivity a good threshold?? */
use_material = qualsel < 0.10;
}
break;
case T_Material:
case T_FunctionScan:
case T_Sort:
/*
* Don't add another Material node if there's one
* already, nor if the top node is any other type that
* materializes its output anyway.
*/
use_material = false;
break;
default:
use_material = true;
break;
}
if (use_material)
node->plan = plan = materialize_finished_plan(plan);
}
/* Convert the lefthand exprs and oper OIDs into executable exprs */
node->exprs = convert_sublink_opers(lefthand,
slink->operOids,
plan->targetlist,
0,
&node->paramIds);
/*
* Make node->args from parParam.
*/
args = NIL;
foreach(lst, node->parParam)
{
PlannerParamItem *pitem = nth(lfirsti(lst), PlannerParamList);
/*
* The Var or Aggref has already been adjusted to have the
* correct varlevelsup or agglevelsup. We probably don't even
* need to copy it again, but be safe.
*/
args = lappend(args, copyObject(pitem->item));
}
node->args = args;
result = (Node *) node;
}
return result;
}
/*
* convert_sublink_opers: given a lefthand-expressions list and a list of
* operator OIDs, build a list of actually executable expressions. The
* righthand sides of the expressions are Params or Vars representing the
* results of the sub-select.
*
* If rtindex is 0, we build Params to represent the sub-select outputs.
* The paramids of the Params created are returned in the *righthandIds list.
*
* If rtindex is not 0, we build Vars using that rtindex as varno. Copies
* of the Var nodes are returned in *righthandIds (this is a bit of a type
* cheat, but we can get away with it).
*/
static List *
convert_sublink_opers(List *lefthand, List *operOids,
List *targetlist, int rtindex,
List **righthandIds)
{
List *result = NIL;
List *lst;
*righthandIds = NIL;
foreach(lst, operOids)
{
Oid opid = lfirsto(lst);
Node *leftop = lfirst(lefthand);
TargetEntry *te = lfirst(targetlist);
Node *rightop;
Operator tup;
Assert(!te->resdom->resjunk);
if (rtindex)
{
/* Make the Var node representing the subplan's result */
rightop = (Node *) makeVar(rtindex,
te->resdom->resno,
te->resdom->restype,
te->resdom->restypmod,
0);
/*
* Copy it for caller. NB: we need a copy to avoid having
* doubly-linked substructure in the modified parse tree.
*/
*righthandIds = lappend(*righthandIds, copyObject(rightop));
}
else
{
/* Make the Param node representing the subplan's result */
Param *prm;
prm = generate_new_param(te->resdom->restype,
te->resdom->restypmod);
/* Record its ID */
*righthandIds = lappendi(*righthandIds, prm->paramid);
rightop = (Node *) prm;
}
/* Look up the operator to pass to make_op_expr */
tup = SearchSysCache(OPEROID,
ObjectIdGetDatum(opid),
0, 0, 0);
if (!HeapTupleIsValid(tup))
elog(ERROR, "cache lookup failed for operator %u", opid);
/*
* Make the expression node.
*
* Note: we use make_op_expr in case runtime type conversion function
* calls must be inserted for this operator! (But we are not
* expecting to have to resolve unknown Params, so it's okay to
* pass a null pstate.)
*/
result = lappend(result,
make_op_expr(NULL,
tup,
leftop,
rightop,
exprType(leftop),
te->resdom->restype));
ReleaseSysCache(tup);
lefthand = lnext(lefthand);
targetlist = lnext(targetlist);
}
return result;
}
/*
* subplan_is_hashable: decide whether we can implement a subplan by hashing
*
* Caution: the SubPlan node is not completely filled in yet. We can rely
* on its plan and parParam fields, however.
*/
static bool
subplan_is_hashable(SubLink *slink, SubPlan *node)
{
double subquery_size;
List *opids;
/*
* The sublink type must be "= ANY" --- that is, an IN operator. (We
* require the operator name to be unqualified, which may be overly
* paranoid, or may not be.) XXX since we also check that the
* operators are hashable, the test on operator name may be redundant?
*/
if (slink->subLinkType != ANY_SUBLINK)
return false;
if (length(slink->operName) != 1 ||
strcmp(strVal(lfirst(slink->operName)), "=") != 0)
return false;
/*
* The subplan must not have any direct correlation vars --- else we'd
* have to recompute its output each time, so that the hashtable
* wouldn't gain anything.
*/
if (node->parParam != NIL)
return false;
/*
* The estimated size of the subquery result must fit in SortMem. (XXX
* what about hashtable overhead?)
*/
subquery_size = node->plan->plan_rows *
(MAXALIGN(node->plan->plan_width) + MAXALIGN(sizeof(HeapTupleData)));
if (subquery_size > SortMem * 1024L)
return false;
/*
* The combining operators must be hashable, strict, and
* self-commutative. The need for hashability is obvious, since we
* want to use hashing. Without strictness, behavior in the presence
* of nulls is too unpredictable. (We actually must assume even more
* than plain strictness, see nodeSubplan.c for details.) And
* commutativity ensures that the left and right datatypes are the
* same; this allows us to assume that the combining operators are
* equality for the righthand datatype, so that they can be used to
* compare righthand tuples as well as comparing lefthand to righthand
* tuples. (This last restriction could be relaxed by using two
* different sets of operators with the hash table, but there is no
* obvious usefulness to that at present.)
*/
foreach(opids, slink->operOids)
{
Oid opid = lfirsto(opids);
HeapTuple tup;
Form_pg_operator optup;
tup = SearchSysCache(OPEROID,
ObjectIdGetDatum(opid),
0, 0, 0);
if (!HeapTupleIsValid(tup))
elog(ERROR, "cache lookup failed for operator %u", opid);
optup = (Form_pg_operator) GETSTRUCT(tup);
if (!optup->oprcanhash || optup->oprcom != opid ||
!func_strict(optup->oprcode))
{
ReleaseSysCache(tup);
return false;
}
ReleaseSysCache(tup);
}
return true;
}
/*
* convert_IN_to_join: can we convert an IN SubLink to join style?
*
* The caller has found a SubLink at the top level of WHERE, but has not
* checked the properties of the SubLink at all. Decide whether it is
* appropriate to process this SubLink in join style. If not, return NULL.
* If so, build the qual clause(s) to replace the SubLink, and return them.
*
* Side effects of a successful conversion include adding the SubLink's
* subselect to the query's rangetable and adding an InClauseInfo node to
* its in_info_list.
*/
Node *
convert_IN_to_join(Query *parse, SubLink *sublink)
{
Query *subselect = (Query *) sublink->subselect;
Relids left_varnos;
int rtindex;
RangeTblEntry *rte;
RangeTblRef *rtr;
InClauseInfo *ininfo;
List *exprs;
/*
* The sublink type must be "= ANY" --- that is, an IN operator. (We
* require the operator name to be unqualified, which may be overly
* paranoid, or may not be.)
*/
if (sublink->subLinkType != ANY_SUBLINK)
return NULL;
if (length(sublink->operName) != 1 ||
strcmp(strVal(lfirst(sublink->operName)), "=") != 0)
return NULL;
/*
* The sub-select must not refer to any Vars of the parent query.
* (Vars of higher levels should be okay, though.)
*/
if (contain_vars_of_level((Node *) subselect, 1))
return NULL;
/*
* The left-hand expressions must contain some Vars of the current
* query, else it's not gonna be a join.
*/
left_varnos = pull_varnos((Node *) sublink->lefthand);
if (bms_is_empty(left_varnos))
return NULL;
/*
* The left-hand expressions mustn't be volatile. (Perhaps we should
* test the combining operators, too? We'd only need to point the
* function directly at the sublink ...)
*/
if (contain_volatile_functions((Node *) sublink->lefthand))
return NULL;
/*
* Okay, pull up the sub-select into top range table and jointree.
*
* We rely here on the assumption that the outer query has no references
* to the inner (necessarily true, other than the Vars that we build
* below). Therefore this is a lot easier than what
* pull_up_subqueries has to go through.
*/
rte = addRangeTableEntryForSubquery(NULL,
subselect,
makeAlias("IN_subquery", NIL),
false);
parse->rtable = lappend(parse->rtable, rte);
rtindex = length(parse->rtable);
rtr = makeNode(RangeTblRef);
rtr->rtindex = rtindex;
parse->jointree->fromlist = lappend(parse->jointree->fromlist, rtr);
/*
* Now build the InClauseInfo node.
*/
ininfo = makeNode(InClauseInfo);
ininfo->lefthand = left_varnos;
ininfo->righthand = bms_make_singleton(rtindex);
parse->in_info_list = lcons(ininfo, parse->in_info_list);
/*
* Build the result qual expressions. As a side effect,
* ininfo->sub_targetlist is filled with a list of Vars
* representing the subselect outputs.
*/
exprs = convert_sublink_opers(sublink->lefthand,
sublink->operOids,
subselect->targetList,
rtindex,
&ininfo->sub_targetlist);
return (Node *) make_ands_explicit(exprs);
}
/*
* Replace correlation vars (uplevel vars) with Params.
*
* Uplevel aggregates are replaced, too.
*
* Note: it is critical that this runs immediately after SS_process_sublinks.
* Since we do not recurse into the arguments of uplevel aggregates, they will
* get copied to the appropriate subplan args list in the parent query with
* uplevel vars not replaced by Params, but only adjusted in level (see
* replace_outer_agg). That's exactly what we want for the vars of the parent
* level --- but if an aggregate's argument contains any further-up variables,
* they have to be replaced with Params in their turn. That will happen when
* the parent level runs SS_replace_correlation_vars. Therefore it must do
* so after expanding its sublinks to subplans. And we don't want any steps
* in between, else those steps would never get applied to the aggregate
* argument expressions, either in the parent or the child level.
*/
Node *
SS_replace_correlation_vars(Node *expr)
{
/* No setup needed for tree walk, so away we go */
return replace_correlation_vars_mutator(expr, NULL);
}
static Node *
replace_correlation_vars_mutator(Node *node, void *context)
{
if (node == NULL)
return NULL;
if (IsA(node, Var))
{
if (((Var *) node)->varlevelsup > 0)
return (Node *) replace_outer_var((Var *) node);
}
if (IsA(node, Aggref))
{
if (((Aggref *) node)->agglevelsup > 0)
return (Node *) replace_outer_agg((Aggref *) node);
}
return expression_tree_mutator(node,
replace_correlation_vars_mutator,
context);
}
/*
* Expand SubLinks to SubPlans in the given expression.
*
* The isQual argument tells whether or not this expression is a WHERE/HAVING
* qualifier expression. If it is, any sublinks appearing at top level need
* not distinguish FALSE from UNKNOWN return values.
*/
Node *
SS_process_sublinks(Node *expr, bool isQual)
{
/* The only context needed is the initial are-we-in-a-qual flag */
return process_sublinks_mutator(expr, &isQual);
}
static Node *
process_sublinks_mutator(Node *node, bool *isTopQual)
{
bool locTopQual;
if (node == NULL)
return NULL;
if (IsA(node, SubLink))
{
SubLink *sublink = (SubLink *) node;
List *lefthand;
/*
* First, recursively process the lefthand-side expressions, if
* any.
*/
locTopQual = false;
lefthand = (List *)
process_sublinks_mutator((Node *) sublink->lefthand, &locTopQual);
/*
* Now build the SubPlan node and make the expr to return.
*/
return make_subplan(sublink, lefthand, *isTopQual);
}
/*
* We should never see a SubPlan expression in the input (since this
* is the very routine that creates 'em to begin with). We shouldn't
* find ourselves invoked directly on a Query, either.
*/
Assert(!is_subplan(node));
Assert(!IsA(node, Query));
/*
* If we recurse down through anything other than a List node, we are
* definitely not at top qual level anymore.
*/
if (IsA(node, List))
locTopQual = *isTopQual;
else
locTopQual = false;
return expression_tree_mutator(node,
process_sublinks_mutator,
(void *) &locTopQual);
}
/*
* SS_finalize_plan - do final sublink processing for a completed Plan.
*
* This recursively computes the extParam and allParam sets
* for every Plan node in the given plan tree.
*/
void
SS_finalize_plan(Plan *plan, List *rtable)
{
Bitmapset *outer_params = NULL;
Bitmapset *valid_params = NULL;
int paramid;
List *lst;
/*
* First, scan the param list to discover the sets of params that are
* available from outer query levels and my own query level. We do
* this once to save time in the per-plan recursion steps.
*/
paramid = 0;
foreach(lst, PlannerParamList)
{
PlannerParamItem *pitem = (PlannerParamItem *) lfirst(lst);
if (pitem->abslevel < PlannerQueryLevel)
{
/* valid outer-level parameter */
outer_params = bms_add_member(outer_params, paramid);
valid_params = bms_add_member(valid_params, paramid);
}
else if (pitem->abslevel == PlannerQueryLevel &&
IsA(pitem->item, Param))
{
/* valid local parameter (i.e., a setParam of my child) */
valid_params = bms_add_member(valid_params, paramid);
}
paramid++;
}
/*
* Now recurse through plan tree.
*/
(void) finalize_plan(plan, rtable, outer_params, valid_params);
bms_free(outer_params);
bms_free(valid_params);
}
/*
* Recursive processing of all nodes in the plan tree
*
* The return value is the computed allParam set for the given Plan node.
* This is just an internal notational convenience.
*/
static Bitmapset *
finalize_plan(Plan *plan, List *rtable,
Bitmapset *outer_params, Bitmapset *valid_params)
{
finalize_primnode_context context;
List *lst;
if (plan == NULL)
return NULL;
context.paramids = NULL; /* initialize set to empty */
context.outer_params = outer_params;
/*
* When we call finalize_primnode, context.paramids sets are
* automatically merged together. But when recursing to self, we have
* to do it the hard way. We want the paramids set to include params
* in subplans as well as at this level.
*/
/* Find params in targetlist and qual */
finalize_primnode((Node *) plan->targetlist, &context);
finalize_primnode((Node *) plan->qual, &context);
/* Check additional node-type-specific fields */
switch (nodeTag(plan))
{
case T_Result:
finalize_primnode(((Result *) plan)->resconstantqual,
&context);
break;
case T_IndexScan:
finalize_primnode((Node *) ((IndexScan *) plan)->indxqual,
&context);
/*
* we need not look at indxqualorig, since it will have the
* same param references as indxqual.
*/
break;
case T_TidScan:
finalize_primnode((Node *) ((TidScan *) plan)->tideval,
&context);
break;
case T_SubqueryScan:
/*
* In a SubqueryScan, SS_finalize_plan has already been run on
* the subplan by the inner invocation of subquery_planner, so
* there's no need to do it again. Instead, just pull out the
* subplan's extParams list, which represents the params it
* needs from my level and higher levels.
*/
context.paramids = bms_add_members(context.paramids,
((SubqueryScan *) plan)->subplan->extParam);
break;
case T_FunctionScan:
{
RangeTblEntry *rte;
rte = rt_fetch(((FunctionScan *) plan)->scan.scanrelid,
rtable);
Assert(rte->rtekind == RTE_FUNCTION);
finalize_primnode(rte->funcexpr, &context);
}
break;
case T_Append:
foreach(lst, ((Append *) plan)->appendplans)
{
context.paramids =
bms_add_members(context.paramids,
finalize_plan((Plan *) lfirst(lst),
rtable,
outer_params,
valid_params));
}
break;
case T_NestLoop:
finalize_primnode((Node *) ((Join *) plan)->joinqual,
&context);
break;
case T_MergeJoin:
finalize_primnode((Node *) ((Join *) plan)->joinqual,
&context);
finalize_primnode((Node *) ((MergeJoin *) plan)->mergeclauses,
&context);
break;
case T_HashJoin:
finalize_primnode((Node *) ((Join *) plan)->joinqual,
&context);
finalize_primnode((Node *) ((HashJoin *) plan)->hashclauses,
&context);
break;
case T_Hash:
case T_Agg:
case T_SeqScan:
case T_Material:
case T_Sort:
case T_Unique:
case T_SetOp:
case T_Limit:
case T_Group:
break;
default:
elog(ERROR, "unrecognized node type: %d",
(int) nodeTag(plan));
}
/* Process left and right child plans, if any */
context.paramids = bms_add_members(context.paramids,
finalize_plan(plan->lefttree,
rtable,
outer_params,
valid_params));
context.paramids = bms_add_members(context.paramids,
finalize_plan(plan->righttree,
rtable,
outer_params,
valid_params));
/* Now we have all the paramids */
if (!bms_is_subset(context.paramids, valid_params))
elog(ERROR, "plan should not reference subplan's variable");
plan->extParam = bms_intersect(context.paramids, outer_params);
plan->allParam = context.paramids;
/*
* For speed at execution time, make sure extParam/allParam are
* actually NULL if they are empty sets.
*/
if (bms_is_empty(plan->extParam))
{
bms_free(plan->extParam);
plan->extParam = NULL;
}
if (bms_is_empty(plan->allParam))
{
bms_free(plan->allParam);
plan->allParam = NULL;
}
return plan->allParam;
}
/*
* finalize_primnode: add IDs of all PARAM_EXEC params appearing in the given
* expression tree to the result set.
*/
static bool
finalize_primnode(Node *node, finalize_primnode_context *context)
{
if (node == NULL)
return false;
if (IsA(node, Param))
{
if (((Param *) node)->paramkind == PARAM_EXEC)
{
int paramid = (int) ((Param *) node)->paramid;
context->paramids = bms_add_member(context->paramids, paramid);
}
return false; /* no more to do here */
}
if (is_subplan(node))
{
SubPlan *subplan = (SubPlan *) node;
/* Add outer-level params needed by the subplan to paramids */
context->paramids = bms_join(context->paramids,
bms_intersect(subplan->plan->extParam,
context->outer_params));
/* fall through to recurse into subplan args */
}
return expression_tree_walker(node, finalize_primnode,
(void *) context);
}