mirror of
				https://github.com/postgres/postgres.git
				synced 2025-10-31 10:30:33 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			895 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			895 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * internal.c
 | |
|  *		Wrapper for builtin functions
 | |
|  *
 | |
|  * Copyright (c) 2001 Marko Kreen
 | |
|  * All rights reserved.
 | |
|  *
 | |
|  * Redistribution and use in source and binary forms, with or without
 | |
|  * modification, are permitted provided that the following conditions
 | |
|  * are met:
 | |
|  * 1. Redistributions of source code must retain the above copyright
 | |
|  *	  notice, this list of conditions and the following disclaimer.
 | |
|  * 2. Redistributions in binary form must reproduce the above copyright
 | |
|  *	  notice, this list of conditions and the following disclaimer in the
 | |
|  *	  documentation and/or other materials provided with the distribution.
 | |
|  *
 | |
|  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 | |
|  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | |
|  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 | |
|  * ARE DISCLAIMED.	IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 | |
|  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 | |
|  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 | |
|  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 | |
|  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 | |
|  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 | |
|  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 | |
|  * SUCH DAMAGE.
 | |
|  *
 | |
|  * $PostgreSQL: pgsql/contrib/pgcrypto/internal.c,v 1.23 2005/10/15 02:49:06 momjian Exp $
 | |
|  */
 | |
| 
 | |
| #include "postgres.h"
 | |
| 
 | |
| #include <time.h>
 | |
| 
 | |
| #include "px.h"
 | |
| #include "md5.h"
 | |
| #include "sha1.h"
 | |
| #include "sha2.h"
 | |
| #include "blf.h"
 | |
| #include "rijndael.h"
 | |
| #include "fortuna.h"
 | |
| 
 | |
| /*
 | |
|  * System reseeds should be separated at least this much.
 | |
|  */
 | |
| #define SYSTEM_RESEED_MIN			(20*60)		/* 20 min */
 | |
| /*
 | |
|  * How often to roll dice.
 | |
|  */
 | |
| #define SYSTEM_RESEED_CHECK_TIME	(10*60)		/* 10 min */
 | |
| /*
 | |
|  * The chance is x/256 that the reseed happens.
 | |
|  */
 | |
| #define SYSTEM_RESEED_CHANCE		(4) /* 256/4 * 10min ~ 10h */
 | |
| 
 | |
| /*
 | |
|  * If this much time has passed, force reseed.
 | |
|  */
 | |
| #define SYSTEM_RESEED_MAX			(12*60*60)	/* 12h */
 | |
| 
 | |
| 
 | |
| #ifndef MD5_DIGEST_LENGTH
 | |
| #define MD5_DIGEST_LENGTH 16
 | |
| #endif
 | |
| 
 | |
| #ifndef SHA1_DIGEST_LENGTH
 | |
| #ifdef SHA1_RESULTLEN
 | |
| #define SHA1_DIGEST_LENGTH SHA1_RESULTLEN
 | |
| #else
 | |
| #define SHA1_DIGEST_LENGTH 20
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| #define SHA1_BLOCK_SIZE 64
 | |
| #define MD5_BLOCK_SIZE 64
 | |
| 
 | |
| static void init_md5(PX_MD * h);
 | |
| static void init_sha1(PX_MD * h);
 | |
| static void init_sha256(PX_MD * h);
 | |
| static void init_sha384(PX_MD * h);
 | |
| static void init_sha512(PX_MD * h);
 | |
| 
 | |
| struct int_digest
 | |
| {
 | |
| 	char	   *name;
 | |
| 	void		(*init) (PX_MD * h);
 | |
| };
 | |
| 
 | |
| static const struct int_digest
 | |
| 			int_digest_list[] = {
 | |
| 	{"md5", init_md5},
 | |
| 	{"sha1", init_sha1},
 | |
| 	{"sha256", init_sha256},
 | |
| 	{"sha384", init_sha384},
 | |
| 	{"sha512", init_sha512},
 | |
| 	{NULL, NULL}
 | |
| };
 | |
| 
 | |
| /* MD5 */
 | |
| 
 | |
| static unsigned
 | |
| int_md5_len(PX_MD * h)
 | |
| {
 | |
| 	return MD5_DIGEST_LENGTH;
 | |
| }
 | |
| 
 | |
| static unsigned
 | |
| int_md5_block_len(PX_MD * h)
 | |
| {
 | |
| 	return MD5_BLOCK_SIZE;
 | |
| }
 | |
| 
 | |
| static void
 | |
| int_md5_update(PX_MD * h, const uint8 *data, unsigned dlen)
 | |
| {
 | |
| 	MD5_CTX    *ctx = (MD5_CTX *) h->p.ptr;
 | |
| 
 | |
| 	MD5Update(ctx, data, dlen);
 | |
| }
 | |
| 
 | |
| static void
 | |
| int_md5_reset(PX_MD * h)
 | |
| {
 | |
| 	MD5_CTX    *ctx = (MD5_CTX *) h->p.ptr;
 | |
| 
 | |
| 	MD5Init(ctx);
 | |
| }
 | |
| 
 | |
| static void
 | |
| int_md5_finish(PX_MD * h, uint8 *dst)
 | |
| {
 | |
| 	MD5_CTX    *ctx = (MD5_CTX *) h->p.ptr;
 | |
| 
 | |
| 	MD5Final(dst, ctx);
 | |
| }
 | |
| 
 | |
| static void
 | |
| int_md5_free(PX_MD * h)
 | |
| {
 | |
| 	MD5_CTX    *ctx = (MD5_CTX *) h->p.ptr;
 | |
| 
 | |
| 	memset(ctx, 0, sizeof(*ctx));
 | |
| 	px_free(ctx);
 | |
| 	px_free(h);
 | |
| }
 | |
| 
 | |
| /* SHA1 */
 | |
| 
 | |
| static unsigned
 | |
| int_sha1_len(PX_MD * h)
 | |
| {
 | |
| 	return SHA1_DIGEST_LENGTH;
 | |
| }
 | |
| 
 | |
| static unsigned
 | |
| int_sha1_block_len(PX_MD * h)
 | |
| {
 | |
| 	return SHA1_BLOCK_SIZE;
 | |
| }
 | |
| 
 | |
| static void
 | |
| int_sha1_update(PX_MD * h, const uint8 *data, unsigned dlen)
 | |
| {
 | |
| 	SHA1_CTX   *ctx = (SHA1_CTX *) h->p.ptr;
 | |
| 
 | |
| 	SHA1Update(ctx, data, dlen);
 | |
| }
 | |
| 
 | |
| static void
 | |
| int_sha1_reset(PX_MD * h)
 | |
| {
 | |
| 	SHA1_CTX   *ctx = (SHA1_CTX *) h->p.ptr;
 | |
| 
 | |
| 	SHA1Init(ctx);
 | |
| }
 | |
| 
 | |
| static void
 | |
| int_sha1_finish(PX_MD * h, uint8 *dst)
 | |
| {
 | |
| 	SHA1_CTX   *ctx = (SHA1_CTX *) h->p.ptr;
 | |
| 
 | |
| 	SHA1Final(dst, ctx);
 | |
| }
 | |
| 
 | |
| static void
 | |
| int_sha1_free(PX_MD * h)
 | |
| {
 | |
| 	SHA1_CTX   *ctx = (SHA1_CTX *) h->p.ptr;
 | |
| 
 | |
| 	memset(ctx, 0, sizeof(*ctx));
 | |
| 	px_free(ctx);
 | |
| 	px_free(h);
 | |
| }
 | |
| 
 | |
| /* SHA256 */
 | |
| 
 | |
| static unsigned
 | |
| int_sha256_len(PX_MD * h)
 | |
| {
 | |
| 	return SHA256_DIGEST_LENGTH;
 | |
| }
 | |
| 
 | |
| static unsigned
 | |
| int_sha256_block_len(PX_MD * h)
 | |
| {
 | |
| 	return SHA256_BLOCK_LENGTH;
 | |
| }
 | |
| 
 | |
| static void
 | |
| int_sha256_update(PX_MD * h, const uint8 *data, unsigned dlen)
 | |
| {
 | |
| 	SHA256_CTX *ctx = (SHA256_CTX *) h->p.ptr;
 | |
| 
 | |
| 	SHA256_Update(ctx, data, dlen);
 | |
| }
 | |
| 
 | |
| static void
 | |
| int_sha256_reset(PX_MD * h)
 | |
| {
 | |
| 	SHA256_CTX *ctx = (SHA256_CTX *) h->p.ptr;
 | |
| 
 | |
| 	SHA256_Init(ctx);
 | |
| }
 | |
| 
 | |
| static void
 | |
| int_sha256_finish(PX_MD * h, uint8 *dst)
 | |
| {
 | |
| 	SHA256_CTX *ctx = (SHA256_CTX *) h->p.ptr;
 | |
| 
 | |
| 	SHA256_Final(dst, ctx);
 | |
| }
 | |
| 
 | |
| static void
 | |
| int_sha256_free(PX_MD * h)
 | |
| {
 | |
| 	SHA256_CTX *ctx = (SHA256_CTX *) h->p.ptr;
 | |
| 
 | |
| 	memset(ctx, 0, sizeof(*ctx));
 | |
| 	px_free(ctx);
 | |
| 	px_free(h);
 | |
| }
 | |
| 
 | |
| /* SHA384 */
 | |
| 
 | |
| static unsigned
 | |
| int_sha384_len(PX_MD * h)
 | |
| {
 | |
| 	return SHA384_DIGEST_LENGTH;
 | |
| }
 | |
| 
 | |
| static unsigned
 | |
| int_sha384_block_len(PX_MD * h)
 | |
| {
 | |
| 	return SHA384_BLOCK_LENGTH;
 | |
| }
 | |
| 
 | |
| static void
 | |
| int_sha384_update(PX_MD * h, const uint8 *data, unsigned dlen)
 | |
| {
 | |
| 	SHA384_CTX *ctx = (SHA384_CTX *) h->p.ptr;
 | |
| 
 | |
| 	SHA384_Update(ctx, data, dlen);
 | |
| }
 | |
| 
 | |
| static void
 | |
| int_sha384_reset(PX_MD * h)
 | |
| {
 | |
| 	SHA384_CTX *ctx = (SHA384_CTX *) h->p.ptr;
 | |
| 
 | |
| 	SHA384_Init(ctx);
 | |
| }
 | |
| 
 | |
| static void
 | |
| int_sha384_finish(PX_MD * h, uint8 *dst)
 | |
| {
 | |
| 	SHA384_CTX *ctx = (SHA384_CTX *) h->p.ptr;
 | |
| 
 | |
| 	SHA384_Final(dst, ctx);
 | |
| }
 | |
| 
 | |
| static void
 | |
| int_sha384_free(PX_MD * h)
 | |
| {
 | |
| 	SHA384_CTX *ctx = (SHA384_CTX *) h->p.ptr;
 | |
| 
 | |
| 	memset(ctx, 0, sizeof(*ctx));
 | |
| 	px_free(ctx);
 | |
| 	px_free(h);
 | |
| }
 | |
| 
 | |
| /* SHA512 */
 | |
| 
 | |
| static unsigned
 | |
| int_sha512_len(PX_MD * h)
 | |
| {
 | |
| 	return SHA512_DIGEST_LENGTH;
 | |
| }
 | |
| 
 | |
| static unsigned
 | |
| int_sha512_block_len(PX_MD * h)
 | |
| {
 | |
| 	return SHA512_BLOCK_LENGTH;
 | |
| }
 | |
| 
 | |
| static void
 | |
| int_sha512_update(PX_MD * h, const uint8 *data, unsigned dlen)
 | |
| {
 | |
| 	SHA512_CTX *ctx = (SHA512_CTX *) h->p.ptr;
 | |
| 
 | |
| 	SHA512_Update(ctx, data, dlen);
 | |
| }
 | |
| 
 | |
| static void
 | |
| int_sha512_reset(PX_MD * h)
 | |
| {
 | |
| 	SHA512_CTX *ctx = (SHA512_CTX *) h->p.ptr;
 | |
| 
 | |
| 	SHA512_Init(ctx);
 | |
| }
 | |
| 
 | |
| static void
 | |
| int_sha512_finish(PX_MD * h, uint8 *dst)
 | |
| {
 | |
| 	SHA512_CTX *ctx = (SHA512_CTX *) h->p.ptr;
 | |
| 
 | |
| 	SHA512_Final(dst, ctx);
 | |
| }
 | |
| 
 | |
| static void
 | |
| int_sha512_free(PX_MD * h)
 | |
| {
 | |
| 	SHA512_CTX *ctx = (SHA512_CTX *) h->p.ptr;
 | |
| 
 | |
| 	memset(ctx, 0, sizeof(*ctx));
 | |
| 	px_free(ctx);
 | |
| 	px_free(h);
 | |
| }
 | |
| 
 | |
| /* init functions */
 | |
| 
 | |
| static void
 | |
| init_md5(PX_MD * md)
 | |
| {
 | |
| 	MD5_CTX    *ctx;
 | |
| 
 | |
| 	ctx = px_alloc(sizeof(*ctx));
 | |
| 	memset(ctx, 0, sizeof(*ctx));
 | |
| 
 | |
| 	md->p.ptr = ctx;
 | |
| 
 | |
| 	md->result_size = int_md5_len;
 | |
| 	md->block_size = int_md5_block_len;
 | |
| 	md->reset = int_md5_reset;
 | |
| 	md->update = int_md5_update;
 | |
| 	md->finish = int_md5_finish;
 | |
| 	md->free = int_md5_free;
 | |
| 
 | |
| 	md->reset(md);
 | |
| }
 | |
| 
 | |
| static void
 | |
| init_sha1(PX_MD * md)
 | |
| {
 | |
| 	SHA1_CTX   *ctx;
 | |
| 
 | |
| 	ctx = px_alloc(sizeof(*ctx));
 | |
| 	memset(ctx, 0, sizeof(*ctx));
 | |
| 
 | |
| 	md->p.ptr = ctx;
 | |
| 
 | |
| 	md->result_size = int_sha1_len;
 | |
| 	md->block_size = int_sha1_block_len;
 | |
| 	md->reset = int_sha1_reset;
 | |
| 	md->update = int_sha1_update;
 | |
| 	md->finish = int_sha1_finish;
 | |
| 	md->free = int_sha1_free;
 | |
| 
 | |
| 	md->reset(md);
 | |
| }
 | |
| 
 | |
| static void
 | |
| init_sha256(PX_MD * md)
 | |
| {
 | |
| 	SHA256_CTX *ctx;
 | |
| 
 | |
| 	ctx = px_alloc(sizeof(*ctx));
 | |
| 	memset(ctx, 0, sizeof(*ctx));
 | |
| 
 | |
| 	md->p.ptr = ctx;
 | |
| 
 | |
| 	md->result_size = int_sha256_len;
 | |
| 	md->block_size = int_sha256_block_len;
 | |
| 	md->reset = int_sha256_reset;
 | |
| 	md->update = int_sha256_update;
 | |
| 	md->finish = int_sha256_finish;
 | |
| 	md->free = int_sha256_free;
 | |
| 
 | |
| 	md->reset(md);
 | |
| }
 | |
| 
 | |
| static void
 | |
| init_sha384(PX_MD * md)
 | |
| {
 | |
| 	SHA384_CTX *ctx;
 | |
| 
 | |
| 	ctx = px_alloc(sizeof(*ctx));
 | |
| 	memset(ctx, 0, sizeof(*ctx));
 | |
| 
 | |
| 	md->p.ptr = ctx;
 | |
| 
 | |
| 	md->result_size = int_sha384_len;
 | |
| 	md->block_size = int_sha384_block_len;
 | |
| 	md->reset = int_sha384_reset;
 | |
| 	md->update = int_sha384_update;
 | |
| 	md->finish = int_sha384_finish;
 | |
| 	md->free = int_sha384_free;
 | |
| 
 | |
| 	md->reset(md);
 | |
| }
 | |
| 
 | |
| static void
 | |
| init_sha512(PX_MD * md)
 | |
| {
 | |
| 	SHA512_CTX *ctx;
 | |
| 
 | |
| 	ctx = px_alloc(sizeof(*ctx));
 | |
| 	memset(ctx, 0, sizeof(*ctx));
 | |
| 
 | |
| 	md->p.ptr = ctx;
 | |
| 
 | |
| 	md->result_size = int_sha512_len;
 | |
| 	md->block_size = int_sha512_block_len;
 | |
| 	md->reset = int_sha512_reset;
 | |
| 	md->update = int_sha512_update;
 | |
| 	md->finish = int_sha512_finish;
 | |
| 	md->free = int_sha512_free;
 | |
| 
 | |
| 	md->reset(md);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * ciphers generally
 | |
|  */
 | |
| 
 | |
| #define INT_MAX_KEY		(512/8)
 | |
| #define INT_MAX_IV		(128/8)
 | |
| 
 | |
| struct int_ctx
 | |
| {
 | |
| 	uint8		keybuf[INT_MAX_KEY];
 | |
| 	uint8		iv[INT_MAX_IV];
 | |
| 	union
 | |
| 	{
 | |
| 		blf_ctx		bf;
 | |
| 		rijndael_ctx rj;
 | |
| 	}			ctx;
 | |
| 	unsigned	keylen;
 | |
| 	int			is_init;
 | |
| 	int			mode;
 | |
| };
 | |
| 
 | |
| static void
 | |
| intctx_free(PX_Cipher * c)
 | |
| {
 | |
| 	struct int_ctx *cx = (struct int_ctx *) c->ptr;
 | |
| 
 | |
| 	if (cx)
 | |
| 	{
 | |
| 		memset(cx, 0, sizeof *cx);
 | |
| 		px_free(cx);
 | |
| 	}
 | |
| 	px_free(c);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * AES/rijndael
 | |
|  */
 | |
| 
 | |
| #define MODE_ECB 0
 | |
| #define MODE_CBC 1
 | |
| 
 | |
| static unsigned
 | |
| rj_block_size(PX_Cipher * c)
 | |
| {
 | |
| 	return 128 / 8;
 | |
| }
 | |
| 
 | |
| static unsigned
 | |
| rj_key_size(PX_Cipher * c)
 | |
| {
 | |
| 	return 256 / 8;
 | |
| }
 | |
| 
 | |
| static unsigned
 | |
| rj_iv_size(PX_Cipher * c)
 | |
| {
 | |
| 	return 128 / 8;
 | |
| }
 | |
| 
 | |
| static int
 | |
| rj_init(PX_Cipher * c, const uint8 *key, unsigned klen, const uint8 *iv)
 | |
| {
 | |
| 	struct int_ctx *cx = (struct int_ctx *) c->ptr;
 | |
| 
 | |
| 	if (klen <= 128 / 8)
 | |
| 		cx->keylen = 128 / 8;
 | |
| 	else if (klen <= 192 / 8)
 | |
| 		cx->keylen = 192 / 8;
 | |
| 	else if (klen <= 256 / 8)
 | |
| 		cx->keylen = 256 / 8;
 | |
| 	else
 | |
| 		return PXE_KEY_TOO_BIG;
 | |
| 
 | |
| 	memcpy(&cx->keybuf, key, klen);
 | |
| 
 | |
| 	if (iv)
 | |
| 		memcpy(cx->iv, iv, 128 / 8);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| rj_real_init(struct int_ctx * cx, int dir)
 | |
| {
 | |
| 	aes_set_key(&cx->ctx.rj, cx->keybuf, cx->keylen * 8, dir);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| rj_encrypt(PX_Cipher * c, const uint8 *data, unsigned dlen, uint8 *res)
 | |
| {
 | |
| 	struct int_ctx *cx = (struct int_ctx *) c->ptr;
 | |
| 
 | |
| 	if (!cx->is_init)
 | |
| 	{
 | |
| 		if (rj_real_init(cx, 1))
 | |
| 			return PXE_CIPHER_INIT;
 | |
| 	}
 | |
| 
 | |
| 	if (dlen == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (dlen & 15)
 | |
| 		return PXE_NOTBLOCKSIZE;
 | |
| 
 | |
| 	memcpy(res, data, dlen);
 | |
| 
 | |
| 	if (cx->mode == MODE_CBC)
 | |
| 	{
 | |
| 		aes_cbc_encrypt(&cx->ctx.rj, cx->iv, res, dlen);
 | |
| 		memcpy(cx->iv, res + dlen - 16, 16);
 | |
| 	}
 | |
| 	else
 | |
| 		aes_ecb_encrypt(&cx->ctx.rj, res, dlen);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| rj_decrypt(PX_Cipher * c, const uint8 *data, unsigned dlen, uint8 *res)
 | |
| {
 | |
| 	struct int_ctx *cx = (struct int_ctx *) c->ptr;
 | |
| 
 | |
| 	if (!cx->is_init)
 | |
| 		if (rj_real_init(cx, 0))
 | |
| 			return PXE_CIPHER_INIT;
 | |
| 
 | |
| 	if (dlen == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (dlen & 15)
 | |
| 		return PXE_NOTBLOCKSIZE;
 | |
| 
 | |
| 	memcpy(res, data, dlen);
 | |
| 
 | |
| 	if (cx->mode == MODE_CBC)
 | |
| 	{
 | |
| 		aes_cbc_decrypt(&cx->ctx.rj, cx->iv, res, dlen);
 | |
| 		memcpy(cx->iv, data + dlen - 16, 16);
 | |
| 	}
 | |
| 	else
 | |
| 		aes_ecb_decrypt(&cx->ctx.rj, res, dlen);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * initializers
 | |
|  */
 | |
| 
 | |
| static PX_Cipher *
 | |
| rj_load(int mode)
 | |
| {
 | |
| 	PX_Cipher  *c;
 | |
| 	struct int_ctx *cx;
 | |
| 
 | |
| 	c = px_alloc(sizeof *c);
 | |
| 	memset(c, 0, sizeof *c);
 | |
| 
 | |
| 	c->block_size = rj_block_size;
 | |
| 	c->key_size = rj_key_size;
 | |
| 	c->iv_size = rj_iv_size;
 | |
| 	c->init = rj_init;
 | |
| 	c->encrypt = rj_encrypt;
 | |
| 	c->decrypt = rj_decrypt;
 | |
| 	c->free = intctx_free;
 | |
| 
 | |
| 	cx = px_alloc(sizeof *cx);
 | |
| 	memset(cx, 0, sizeof *cx);
 | |
| 	cx->mode = mode;
 | |
| 
 | |
| 	c->ptr = cx;
 | |
| 	return c;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * blowfish
 | |
|  */
 | |
| 
 | |
| static unsigned
 | |
| bf_block_size(PX_Cipher * c)
 | |
| {
 | |
| 	return 8;
 | |
| }
 | |
| 
 | |
| static unsigned
 | |
| bf_key_size(PX_Cipher * c)
 | |
| {
 | |
| 	return BLF_MAXKEYLEN;
 | |
| }
 | |
| 
 | |
| static unsigned
 | |
| bf_iv_size(PX_Cipher * c)
 | |
| {
 | |
| 	return 8;
 | |
| }
 | |
| 
 | |
| static int
 | |
| bf_init(PX_Cipher * c, const uint8 *key, unsigned klen, const uint8 *iv)
 | |
| {
 | |
| 	struct int_ctx *cx = (struct int_ctx *) c->ptr;
 | |
| 
 | |
| 	blf_key(&cx->ctx.bf, key, klen);
 | |
| 	if (iv)
 | |
| 		memcpy(cx->iv, iv, 8);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| bf_encrypt(PX_Cipher * c, const uint8 *data, unsigned dlen, uint8 *res)
 | |
| {
 | |
| 	struct int_ctx *cx = (struct int_ctx *) c->ptr;
 | |
| 
 | |
| 	if (dlen == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (dlen & 7)
 | |
| 		return PXE_NOTBLOCKSIZE;
 | |
| 
 | |
| 	memcpy(res, data, dlen);
 | |
| 	switch (cx->mode)
 | |
| 	{
 | |
| 		case MODE_ECB:
 | |
| 			blf_ecb_encrypt(&cx->ctx.bf, res, dlen);
 | |
| 			break;
 | |
| 		case MODE_CBC:
 | |
| 			blf_cbc_encrypt(&cx->ctx.bf, cx->iv, res, dlen);
 | |
| 			memcpy(cx->iv, res + dlen - 8, 8);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| bf_decrypt(PX_Cipher * c, const uint8 *data, unsigned dlen, uint8 *res)
 | |
| {
 | |
| 	struct int_ctx *cx = (struct int_ctx *) c->ptr;
 | |
| 
 | |
| 	if (dlen == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (dlen & 7)
 | |
| 		return PXE_NOTBLOCKSIZE;
 | |
| 
 | |
| 	memcpy(res, data, dlen);
 | |
| 	switch (cx->mode)
 | |
| 	{
 | |
| 		case MODE_ECB:
 | |
| 			blf_ecb_decrypt(&cx->ctx.bf, res, dlen);
 | |
| 			break;
 | |
| 		case MODE_CBC:
 | |
| 			blf_cbc_decrypt(&cx->ctx.bf, cx->iv, res, dlen);
 | |
| 			memcpy(cx->iv, data + dlen - 8, 8);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static PX_Cipher *
 | |
| bf_load(int mode)
 | |
| {
 | |
| 	PX_Cipher  *c;
 | |
| 	struct int_ctx *cx;
 | |
| 
 | |
| 	c = px_alloc(sizeof *c);
 | |
| 	memset(c, 0, sizeof *c);
 | |
| 
 | |
| 	c->block_size = bf_block_size;
 | |
| 	c->key_size = bf_key_size;
 | |
| 	c->iv_size = bf_iv_size;
 | |
| 	c->init = bf_init;
 | |
| 	c->encrypt = bf_encrypt;
 | |
| 	c->decrypt = bf_decrypt;
 | |
| 	c->free = intctx_free;
 | |
| 
 | |
| 	cx = px_alloc(sizeof *cx);
 | |
| 	memset(cx, 0, sizeof *cx);
 | |
| 	cx->mode = mode;
 | |
| 	c->ptr = cx;
 | |
| 	return c;
 | |
| }
 | |
| 
 | |
| /* ciphers */
 | |
| 
 | |
| static PX_Cipher *
 | |
| rj_128_ecb(void)
 | |
| {
 | |
| 	return rj_load(MODE_ECB);
 | |
| }
 | |
| 
 | |
| static PX_Cipher *
 | |
| rj_128_cbc(void)
 | |
| {
 | |
| 	return rj_load(MODE_CBC);
 | |
| }
 | |
| 
 | |
| static PX_Cipher *
 | |
| bf_ecb_load(void)
 | |
| {
 | |
| 	return bf_load(MODE_ECB);
 | |
| }
 | |
| 
 | |
| static PX_Cipher *
 | |
| bf_cbc_load(void)
 | |
| {
 | |
| 	return bf_load(MODE_CBC);
 | |
| }
 | |
| 
 | |
| struct int_cipher
 | |
| {
 | |
| 	char	   *name;
 | |
| 	PX_Cipher  *(*load) (void);
 | |
| };
 | |
| 
 | |
| static const struct int_cipher
 | |
| 			int_ciphers[] = {
 | |
| 	{"bf-cbc", bf_cbc_load},
 | |
| 	{"bf-ecb", bf_ecb_load},
 | |
| 	{"aes-128-cbc", rj_128_cbc},
 | |
| 	{"aes-128-ecb", rj_128_ecb},
 | |
| 	{NULL, NULL}
 | |
| };
 | |
| 
 | |
| static const PX_Alias int_aliases[] = {
 | |
| 	{"bf", "bf-cbc"},
 | |
| 	{"blowfish", "bf-cbc"},
 | |
| 	{"aes", "aes-128-cbc"},
 | |
| 	{"aes-ecb", "aes-128-ecb"},
 | |
| 	{"aes-cbc", "aes-128-cbc"},
 | |
| 	{"aes-128", "aes-128-cbc"},
 | |
| 	{"rijndael", "aes-128-cbc"},
 | |
| 	{"rijndael-128", "aes-128-cbc"},
 | |
| 	{NULL, NULL}
 | |
| };
 | |
| 
 | |
| /* PUBLIC FUNCTIONS */
 | |
| 
 | |
| int
 | |
| px_find_digest(const char *name, PX_MD ** res)
 | |
| {
 | |
| 	const struct int_digest *p;
 | |
| 	PX_MD	   *h;
 | |
| 
 | |
| 	for (p = int_digest_list; p->name; p++)
 | |
| 		if (pg_strcasecmp(p->name, name) == 0)
 | |
| 		{
 | |
| 			h = px_alloc(sizeof(*h));
 | |
| 			p->init(h);
 | |
| 
 | |
| 			*res = h;
 | |
| 
 | |
| 			return 0;
 | |
| 		}
 | |
| 	return PXE_NO_HASH;
 | |
| }
 | |
| 
 | |
| int
 | |
| px_find_cipher(const char *name, PX_Cipher ** res)
 | |
| {
 | |
| 	int			i;
 | |
| 	PX_Cipher  *c = NULL;
 | |
| 
 | |
| 	name = px_resolve_alias(int_aliases, name);
 | |
| 
 | |
| 	for (i = 0; int_ciphers[i].name; i++)
 | |
| 		if (!strcmp(int_ciphers[i].name, name))
 | |
| 		{
 | |
| 			c = int_ciphers[i].load();
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 	if (c == NULL)
 | |
| 		return PXE_NO_CIPHER;
 | |
| 
 | |
| 	*res = c;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Randomness provider
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Use libc for all 'public' bytes.
 | |
|  *
 | |
|  * That way we don't expose bytes from Fortuna
 | |
|  * to the public, in case it has some bugs.
 | |
|  */
 | |
| int
 | |
| px_get_pseudo_random_bytes(uint8 *dst, unsigned count)
 | |
| {
 | |
| 	int			i;
 | |
| 
 | |
| 	for (i = 0; i < count; i++)
 | |
| 		*dst++ = random();
 | |
| 	return i;
 | |
| }
 | |
| 
 | |
| static time_t seed_time = 0;
 | |
| static time_t check_time = 0;
 | |
| 
 | |
| static void
 | |
| system_reseed(void)
 | |
| {
 | |
| 	uint8		buf[1024];
 | |
| 	int			n;
 | |
| 	time_t		t;
 | |
| 	int			skip = 1;
 | |
| 
 | |
| 	t = time(NULL);
 | |
| 
 | |
| 	if (seed_time == 0)
 | |
| 		skip = 0;
 | |
| 	else if ((t - seed_time) < SYSTEM_RESEED_MIN)
 | |
| 		skip = 1;
 | |
| 	else if ((t - seed_time) > SYSTEM_RESEED_MAX)
 | |
| 		skip = 0;
 | |
| 	else if (!check_time || (t - check_time) > SYSTEM_RESEED_CHECK_TIME)
 | |
| 	{
 | |
| 		check_time = t;
 | |
| 
 | |
| 		/* roll dice */
 | |
| 		px_get_random_bytes(buf, 1);
 | |
| 		skip = buf[0] >= SYSTEM_RESEED_CHANCE;
 | |
| 	}
 | |
| 	/* clear 1 byte */
 | |
| 	memset(buf, 0, sizeof(buf));
 | |
| 
 | |
| 	if (skip)
 | |
| 		return;
 | |
| 
 | |
| 	n = px_acquire_system_randomness(buf);
 | |
| 	if (n > 0)
 | |
| 		fortuna_add_entropy(buf, n);
 | |
| 
 | |
| 	seed_time = t;
 | |
| 	memset(buf, 0, sizeof(buf));
 | |
| }
 | |
| 
 | |
| int
 | |
| px_get_random_bytes(uint8 *dst, unsigned count)
 | |
| {
 | |
| 	system_reseed();
 | |
| 	fortuna_get_bytes(count, dst);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int
 | |
| px_add_entropy(const uint8 *data, unsigned count)
 | |
| {
 | |
| 	system_reseed();
 | |
| 	fortuna_add_entropy(data, count);
 | |
| 	return 0;
 | |
| }
 |