mirror of
https://github.com/postgres/postgres.git
synced 2025-04-29 13:56:47 +03:00
352 lines
9.8 KiB
C
352 lines
9.8 KiB
C
/*-------------------------------------------------------------------------
|
|
*
|
|
* nodeCtescan.c
|
|
* routines to handle CteScan nodes.
|
|
*
|
|
* Portions Copyright (c) 1996-2022, PostgreSQL Global Development Group
|
|
* Portions Copyright (c) 1994, Regents of the University of California
|
|
*
|
|
*
|
|
* IDENTIFICATION
|
|
* src/backend/executor/nodeCtescan.c
|
|
*
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
|
|
#include "postgres.h"
|
|
|
|
#include "executor/execdebug.h"
|
|
#include "executor/nodeCtescan.h"
|
|
#include "miscadmin.h"
|
|
|
|
static TupleTableSlot *CteScanNext(CteScanState *node);
|
|
|
|
/* ----------------------------------------------------------------
|
|
* CteScanNext
|
|
*
|
|
* This is a workhorse for ExecCteScan
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
static TupleTableSlot *
|
|
CteScanNext(CteScanState *node)
|
|
{
|
|
EState *estate;
|
|
ScanDirection dir;
|
|
bool forward;
|
|
Tuplestorestate *tuplestorestate;
|
|
bool eof_tuplestore;
|
|
TupleTableSlot *slot;
|
|
|
|
/*
|
|
* get state info from node
|
|
*/
|
|
estate = node->ss.ps.state;
|
|
dir = estate->es_direction;
|
|
forward = ScanDirectionIsForward(dir);
|
|
tuplestorestate = node->leader->cte_table;
|
|
tuplestore_select_read_pointer(tuplestorestate, node->readptr);
|
|
slot = node->ss.ss_ScanTupleSlot;
|
|
|
|
/*
|
|
* If we are not at the end of the tuplestore, or are going backwards, try
|
|
* to fetch a tuple from tuplestore.
|
|
*/
|
|
eof_tuplestore = tuplestore_ateof(tuplestorestate);
|
|
|
|
if (!forward && eof_tuplestore)
|
|
{
|
|
if (!node->leader->eof_cte)
|
|
{
|
|
/*
|
|
* When reversing direction at tuplestore EOF, the first
|
|
* gettupleslot call will fetch the last-added tuple; but we want
|
|
* to return the one before that, if possible. So do an extra
|
|
* fetch.
|
|
*/
|
|
if (!tuplestore_advance(tuplestorestate, forward))
|
|
return NULL; /* the tuplestore must be empty */
|
|
}
|
|
eof_tuplestore = false;
|
|
}
|
|
|
|
/*
|
|
* If we can fetch another tuple from the tuplestore, return it.
|
|
*
|
|
* Note: we have to use copy=true in the tuplestore_gettupleslot call,
|
|
* because we are sharing the tuplestore with other nodes that might write
|
|
* into the tuplestore before we get called again.
|
|
*/
|
|
if (!eof_tuplestore)
|
|
{
|
|
if (tuplestore_gettupleslot(tuplestorestate, forward, true, slot))
|
|
return slot;
|
|
if (forward)
|
|
eof_tuplestore = true;
|
|
}
|
|
|
|
/*
|
|
* If necessary, try to fetch another row from the CTE query.
|
|
*
|
|
* Note: the eof_cte state variable exists to short-circuit further calls
|
|
* of the CTE plan. It's not optional, unfortunately, because some plan
|
|
* node types are not robust about being called again when they've already
|
|
* returned NULL.
|
|
*/
|
|
if (eof_tuplestore && !node->leader->eof_cte)
|
|
{
|
|
TupleTableSlot *cteslot;
|
|
|
|
/*
|
|
* We can only get here with forward==true, so no need to worry about
|
|
* which direction the subplan will go.
|
|
*/
|
|
cteslot = ExecProcNode(node->cteplanstate);
|
|
if (TupIsNull(cteslot))
|
|
{
|
|
node->leader->eof_cte = true;
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* There are corner cases where the subplan could change which
|
|
* tuplestore read pointer is active, so be sure to reselect ours
|
|
* before storing the tuple we got.
|
|
*/
|
|
tuplestore_select_read_pointer(tuplestorestate, node->readptr);
|
|
|
|
/*
|
|
* Append a copy of the returned tuple to tuplestore. NOTE: because
|
|
* our read pointer is certainly in EOF state, its read position will
|
|
* move forward over the added tuple. This is what we want. Also,
|
|
* any other readers will *not* move past the new tuple, which is what
|
|
* they want.
|
|
*/
|
|
tuplestore_puttupleslot(tuplestorestate, cteslot);
|
|
|
|
/*
|
|
* We MUST copy the CTE query's output tuple into our own slot. This
|
|
* is because other CteScan nodes might advance the CTE query before
|
|
* we are called again, and our output tuple must stay stable over
|
|
* that.
|
|
*/
|
|
return ExecCopySlot(slot, cteslot);
|
|
}
|
|
|
|
/*
|
|
* Nothing left ...
|
|
*/
|
|
return ExecClearTuple(slot);
|
|
}
|
|
|
|
/*
|
|
* CteScanRecheck -- access method routine to recheck a tuple in EvalPlanQual
|
|
*/
|
|
static bool
|
|
CteScanRecheck(CteScanState *node, TupleTableSlot *slot)
|
|
{
|
|
/* nothing to check */
|
|
return true;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecCteScan(node)
|
|
*
|
|
* Scans the CTE sequentially and returns the next qualifying tuple.
|
|
* We call the ExecScan() routine and pass it the appropriate
|
|
* access method functions.
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
static TupleTableSlot *
|
|
ExecCteScan(PlanState *pstate)
|
|
{
|
|
CteScanState *node = castNode(CteScanState, pstate);
|
|
|
|
return ExecScan(&node->ss,
|
|
(ExecScanAccessMtd) CteScanNext,
|
|
(ExecScanRecheckMtd) CteScanRecheck);
|
|
}
|
|
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecInitCteScan
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
CteScanState *
|
|
ExecInitCteScan(CteScan *node, EState *estate, int eflags)
|
|
{
|
|
CteScanState *scanstate;
|
|
ParamExecData *prmdata;
|
|
|
|
/* check for unsupported flags */
|
|
Assert(!(eflags & EXEC_FLAG_MARK));
|
|
|
|
/*
|
|
* For the moment we have to force the tuplestore to allow REWIND, because
|
|
* we might be asked to rescan the CTE even though upper levels didn't
|
|
* tell us to be prepared to do it efficiently. Annoying, since this
|
|
* prevents truncation of the tuplestore. XXX FIXME
|
|
*
|
|
* Note: if we are in an EPQ recheck plan tree, it's likely that no access
|
|
* to the tuplestore is needed at all, making this even more annoying.
|
|
* It's not worth improving that as long as all the read pointers would
|
|
* have REWIND anyway, but if we ever improve this logic then that aspect
|
|
* should be considered too.
|
|
*/
|
|
eflags |= EXEC_FLAG_REWIND;
|
|
|
|
/*
|
|
* CteScan should not have any children.
|
|
*/
|
|
Assert(outerPlan(node) == NULL);
|
|
Assert(innerPlan(node) == NULL);
|
|
|
|
/*
|
|
* create new CteScanState for node
|
|
*/
|
|
scanstate = makeNode(CteScanState);
|
|
scanstate->ss.ps.plan = (Plan *) node;
|
|
scanstate->ss.ps.state = estate;
|
|
scanstate->ss.ps.ExecProcNode = ExecCteScan;
|
|
scanstate->eflags = eflags;
|
|
scanstate->cte_table = NULL;
|
|
scanstate->eof_cte = false;
|
|
|
|
/*
|
|
* Find the already-initialized plan for the CTE query.
|
|
*/
|
|
scanstate->cteplanstate = (PlanState *) list_nth(estate->es_subplanstates,
|
|
node->ctePlanId - 1);
|
|
|
|
/*
|
|
* The Param slot associated with the CTE query is used to hold a pointer
|
|
* to the CteState of the first CteScan node that initializes for this
|
|
* CTE. This node will be the one that holds the shared state for all the
|
|
* CTEs, particularly the shared tuplestore.
|
|
*/
|
|
prmdata = &(estate->es_param_exec_vals[node->cteParam]);
|
|
Assert(prmdata->execPlan == NULL);
|
|
Assert(!prmdata->isnull);
|
|
scanstate->leader = castNode(CteScanState, DatumGetPointer(prmdata->value));
|
|
if (scanstate->leader == NULL)
|
|
{
|
|
/* I am the leader */
|
|
prmdata->value = PointerGetDatum(scanstate);
|
|
scanstate->leader = scanstate;
|
|
scanstate->cte_table = tuplestore_begin_heap(true, false, work_mem);
|
|
tuplestore_set_eflags(scanstate->cte_table, scanstate->eflags);
|
|
scanstate->readptr = 0;
|
|
}
|
|
else
|
|
{
|
|
/* Not the leader */
|
|
/* Create my own read pointer, and ensure it is at start */
|
|
scanstate->readptr =
|
|
tuplestore_alloc_read_pointer(scanstate->leader->cte_table,
|
|
scanstate->eflags);
|
|
tuplestore_select_read_pointer(scanstate->leader->cte_table,
|
|
scanstate->readptr);
|
|
tuplestore_rescan(scanstate->leader->cte_table);
|
|
}
|
|
|
|
/*
|
|
* Miscellaneous initialization
|
|
*
|
|
* create expression context for node
|
|
*/
|
|
ExecAssignExprContext(estate, &scanstate->ss.ps);
|
|
|
|
/*
|
|
* The scan tuple type (ie, the rowtype we expect to find in the work
|
|
* table) is the same as the result rowtype of the CTE query.
|
|
*/
|
|
ExecInitScanTupleSlot(estate, &scanstate->ss,
|
|
ExecGetResultType(scanstate->cteplanstate),
|
|
&TTSOpsMinimalTuple);
|
|
|
|
/*
|
|
* Initialize result type and projection.
|
|
*/
|
|
ExecInitResultTypeTL(&scanstate->ss.ps);
|
|
ExecAssignScanProjectionInfo(&scanstate->ss);
|
|
|
|
/*
|
|
* initialize child expressions
|
|
*/
|
|
scanstate->ss.ps.qual =
|
|
ExecInitQual(node->scan.plan.qual, (PlanState *) scanstate);
|
|
|
|
return scanstate;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecEndCteScan
|
|
*
|
|
* frees any storage allocated through C routines.
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
void
|
|
ExecEndCteScan(CteScanState *node)
|
|
{
|
|
/*
|
|
* Free exprcontext
|
|
*/
|
|
ExecFreeExprContext(&node->ss.ps);
|
|
|
|
/*
|
|
* clean out the tuple table
|
|
*/
|
|
if (node->ss.ps.ps_ResultTupleSlot)
|
|
ExecClearTuple(node->ss.ps.ps_ResultTupleSlot);
|
|
ExecClearTuple(node->ss.ss_ScanTupleSlot);
|
|
|
|
/*
|
|
* If I am the leader, free the tuplestore.
|
|
*/
|
|
if (node->leader == node)
|
|
{
|
|
tuplestore_end(node->cte_table);
|
|
node->cte_table = NULL;
|
|
}
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecReScanCteScan
|
|
*
|
|
* Rescans the relation.
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
void
|
|
ExecReScanCteScan(CteScanState *node)
|
|
{
|
|
Tuplestorestate *tuplestorestate = node->leader->cte_table;
|
|
|
|
if (node->ss.ps.ps_ResultTupleSlot)
|
|
ExecClearTuple(node->ss.ps.ps_ResultTupleSlot);
|
|
|
|
ExecScanReScan(&node->ss);
|
|
|
|
/*
|
|
* Clear the tuplestore if a new scan of the underlying CTE is required.
|
|
* This implicitly resets all the tuplestore's read pointers. Note that
|
|
* multiple CTE nodes might redundantly clear the tuplestore; that's OK,
|
|
* and not unduly expensive. We'll stop taking this path as soon as
|
|
* somebody has attempted to read something from the underlying CTE
|
|
* (thereby causing its chgParam to be cleared).
|
|
*/
|
|
if (node->leader->cteplanstate->chgParam != NULL)
|
|
{
|
|
tuplestore_clear(tuplestorestate);
|
|
node->leader->eof_cte = false;
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* Else, just rewind my own pointer. Either the underlying CTE
|
|
* doesn't need a rescan (and we can re-read what's in the tuplestore
|
|
* now), or somebody else already took care of it.
|
|
*/
|
|
tuplestore_select_read_pointer(tuplestorestate, node->readptr);
|
|
tuplestore_rescan(tuplestorestate);
|
|
}
|
|
}
|