mirror of
https://github.com/postgres/postgres.git
synced 2025-08-09 17:03:00 +03:00
list_copy_head() given an empty List would crash from trying to dereference the List to obtain its length. Since NIL is how we represent an empty List, we should just be returning another empty List in this case. list_copy_head() is new to v16, so let's fix it now before too many people start coding around the buggy NIL behavior. Reported-by: Miroslav Bendik Discussion: https://postgr.es/m/CAPoEpV02WhawuWnmnKet6BqU63bEu7oec0pJc=nKMtPsHMzTXQ@mail.gmail.com
1717 lines
40 KiB
C
1717 lines
40 KiB
C
/*-------------------------------------------------------------------------
|
|
*
|
|
* list.c
|
|
* implementation for PostgreSQL generic list package
|
|
*
|
|
* See comments in pg_list.h.
|
|
*
|
|
*
|
|
* Portions Copyright (c) 1996-2023, PostgreSQL Global Development Group
|
|
* Portions Copyright (c) 1994, Regents of the University of California
|
|
*
|
|
*
|
|
* IDENTIFICATION
|
|
* src/backend/nodes/list.c
|
|
*
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
#include "postgres.h"
|
|
|
|
#include "nodes/pg_list.h"
|
|
#include "port/pg_bitutils.h"
|
|
#include "utils/memdebug.h"
|
|
#include "utils/memutils.h"
|
|
|
|
|
|
/*
|
|
* The previous List implementation, since it used a separate palloc chunk
|
|
* for each cons cell, had the property that adding or deleting list cells
|
|
* did not move the storage of other existing cells in the list. Quite a
|
|
* bit of existing code depended on that, by retaining ListCell pointers
|
|
* across such operations on a list. There is no such guarantee in this
|
|
* implementation, so instead we have debugging support that is meant to
|
|
* help flush out now-broken assumptions. Defining DEBUG_LIST_MEMORY_USAGE
|
|
* while building this file causes the List operations to forcibly move
|
|
* all cells in a list whenever a cell is added or deleted. In combination
|
|
* with MEMORY_CONTEXT_CHECKING and/or Valgrind, this can usually expose
|
|
* broken code. It's a bit expensive though, as there's many more palloc
|
|
* cycles and a lot more data-copying than in a default build.
|
|
*
|
|
* By default, we enable this when building for Valgrind.
|
|
*/
|
|
#ifdef USE_VALGRIND
|
|
#define DEBUG_LIST_MEMORY_USAGE
|
|
#endif
|
|
|
|
/* Overhead for the fixed part of a List header, measured in ListCells */
|
|
#define LIST_HEADER_OVERHEAD \
|
|
((int) ((offsetof(List, initial_elements) - 1) / sizeof(ListCell) + 1))
|
|
|
|
/*
|
|
* Macros to simplify writing assertions about the type of a list; a
|
|
* NIL list is considered to be an empty list of any type.
|
|
*/
|
|
#define IsPointerList(l) ((l) == NIL || IsA((l), List))
|
|
#define IsIntegerList(l) ((l) == NIL || IsA((l), IntList))
|
|
#define IsOidList(l) ((l) == NIL || IsA((l), OidList))
|
|
#define IsXidList(l) ((l) == NIL || IsA((l), XidList))
|
|
|
|
#ifdef USE_ASSERT_CHECKING
|
|
/*
|
|
* Check that the specified List is valid (so far as we can tell).
|
|
*/
|
|
static void
|
|
check_list_invariants(const List *list)
|
|
{
|
|
if (list == NIL)
|
|
return;
|
|
|
|
Assert(list->length > 0);
|
|
Assert(list->length <= list->max_length);
|
|
Assert(list->elements != NULL);
|
|
|
|
Assert(list->type == T_List ||
|
|
list->type == T_IntList ||
|
|
list->type == T_OidList ||
|
|
list->type == T_XidList);
|
|
}
|
|
#else
|
|
#define check_list_invariants(l) ((void) 0)
|
|
#endif /* USE_ASSERT_CHECKING */
|
|
|
|
/*
|
|
* Return a freshly allocated List with room for at least min_size cells.
|
|
*
|
|
* Since empty non-NIL lists are invalid, new_list() sets the initial length
|
|
* to min_size, effectively marking that number of cells as valid; the caller
|
|
* is responsible for filling in their data.
|
|
*/
|
|
static List *
|
|
new_list(NodeTag type, int min_size)
|
|
{
|
|
List *newlist;
|
|
int max_size;
|
|
|
|
Assert(min_size > 0);
|
|
|
|
/*
|
|
* We allocate all the requested cells, and possibly some more, as part of
|
|
* the same palloc request as the List header. This is a big win for the
|
|
* typical case of short fixed-length lists. It can lose if we allocate a
|
|
* moderately long list and then it gets extended; we'll be wasting more
|
|
* initial_elements[] space than if we'd made the header small. However,
|
|
* rounding up the request as we do in the normal code path provides some
|
|
* defense against small extensions.
|
|
*/
|
|
|
|
#ifndef DEBUG_LIST_MEMORY_USAGE
|
|
|
|
/*
|
|
* Normally, we set up a list with some extra cells, to allow it to grow
|
|
* without a repalloc. Prefer cell counts chosen to make the total
|
|
* allocation a power-of-2, since palloc would round it up to that anyway.
|
|
* (That stops being true for very large allocations, but very long lists
|
|
* are infrequent, so it doesn't seem worth special logic for such cases.)
|
|
*
|
|
* The minimum allocation is 8 ListCell units, providing either 4 or 5
|
|
* available ListCells depending on the machine's word width. Counting
|
|
* palloc's overhead, this uses the same amount of space as a one-cell
|
|
* list did in the old implementation, and less space for any longer list.
|
|
*
|
|
* We needn't worry about integer overflow; no caller passes min_size
|
|
* that's more than twice the size of an existing list, so the size limits
|
|
* within palloc will ensure that we don't overflow here.
|
|
*/
|
|
max_size = pg_nextpower2_32(Max(8, min_size + LIST_HEADER_OVERHEAD));
|
|
max_size -= LIST_HEADER_OVERHEAD;
|
|
#else
|
|
|
|
/*
|
|
* For debugging, don't allow any extra space. This forces any cell
|
|
* addition to go through enlarge_list() and thus move the existing data.
|
|
*/
|
|
max_size = min_size;
|
|
#endif
|
|
|
|
newlist = (List *) palloc(offsetof(List, initial_elements) +
|
|
max_size * sizeof(ListCell));
|
|
newlist->type = type;
|
|
newlist->length = min_size;
|
|
newlist->max_length = max_size;
|
|
newlist->elements = newlist->initial_elements;
|
|
|
|
return newlist;
|
|
}
|
|
|
|
/*
|
|
* Enlarge an existing non-NIL List to have room for at least min_size cells.
|
|
*
|
|
* This does *not* update list->length, as some callers would find that
|
|
* inconvenient. (list->length had better be the correct number of existing
|
|
* valid cells, though.)
|
|
*/
|
|
static void
|
|
enlarge_list(List *list, int min_size)
|
|
{
|
|
int new_max_len;
|
|
|
|
Assert(min_size > list->max_length); /* else we shouldn't be here */
|
|
|
|
#ifndef DEBUG_LIST_MEMORY_USAGE
|
|
|
|
/*
|
|
* As above, we prefer power-of-two total allocations; but here we need
|
|
* not account for list header overhead.
|
|
*/
|
|
|
|
/* clamp the minimum value to 16, a semi-arbitrary small power of 2 */
|
|
new_max_len = pg_nextpower2_32(Max(16, min_size));
|
|
|
|
#else
|
|
/* As above, don't allocate anything extra */
|
|
new_max_len = min_size;
|
|
#endif
|
|
|
|
if (list->elements == list->initial_elements)
|
|
{
|
|
/*
|
|
* Replace original in-line allocation with a separate palloc block.
|
|
* Ensure it is in the same memory context as the List header. (The
|
|
* previous List implementation did not offer any guarantees about
|
|
* keeping all list cells in the same context, but it seems reasonable
|
|
* to create such a guarantee now.)
|
|
*/
|
|
list->elements = (ListCell *)
|
|
MemoryContextAlloc(GetMemoryChunkContext(list),
|
|
new_max_len * sizeof(ListCell));
|
|
memcpy(list->elements, list->initial_elements,
|
|
list->length * sizeof(ListCell));
|
|
|
|
/*
|
|
* We must not move the list header, so it's unsafe to try to reclaim
|
|
* the initial_elements[] space via repalloc. In debugging builds,
|
|
* however, we can clear that space and/or mark it inaccessible.
|
|
* (wipe_mem includes VALGRIND_MAKE_MEM_NOACCESS.)
|
|
*/
|
|
#ifdef CLOBBER_FREED_MEMORY
|
|
wipe_mem(list->initial_elements,
|
|
list->max_length * sizeof(ListCell));
|
|
#else
|
|
VALGRIND_MAKE_MEM_NOACCESS(list->initial_elements,
|
|
list->max_length * sizeof(ListCell));
|
|
#endif
|
|
}
|
|
else
|
|
{
|
|
#ifndef DEBUG_LIST_MEMORY_USAGE
|
|
/* Normally, let repalloc deal with enlargement */
|
|
list->elements = (ListCell *) repalloc(list->elements,
|
|
new_max_len * sizeof(ListCell));
|
|
#else
|
|
/*
|
|
* repalloc() might enlarge the space in-place, which we don't want
|
|
* for debugging purposes, so forcibly move the data somewhere else.
|
|
*/
|
|
ListCell *newelements;
|
|
|
|
newelements = (ListCell *)
|
|
MemoryContextAlloc(GetMemoryChunkContext(list),
|
|
new_max_len * sizeof(ListCell));
|
|
memcpy(newelements, list->elements,
|
|
list->length * sizeof(ListCell));
|
|
pfree(list->elements);
|
|
list->elements = newelements;
|
|
#endif
|
|
}
|
|
|
|
list->max_length = new_max_len;
|
|
}
|
|
|
|
/*
|
|
* Convenience functions to construct short Lists from given values.
|
|
* (These are normally invoked via the list_makeN macros.)
|
|
*/
|
|
List *
|
|
list_make1_impl(NodeTag t, ListCell datum1)
|
|
{
|
|
List *list = new_list(t, 1);
|
|
|
|
list->elements[0] = datum1;
|
|
check_list_invariants(list);
|
|
return list;
|
|
}
|
|
|
|
List *
|
|
list_make2_impl(NodeTag t, ListCell datum1, ListCell datum2)
|
|
{
|
|
List *list = new_list(t, 2);
|
|
|
|
list->elements[0] = datum1;
|
|
list->elements[1] = datum2;
|
|
check_list_invariants(list);
|
|
return list;
|
|
}
|
|
|
|
List *
|
|
list_make3_impl(NodeTag t, ListCell datum1, ListCell datum2,
|
|
ListCell datum3)
|
|
{
|
|
List *list = new_list(t, 3);
|
|
|
|
list->elements[0] = datum1;
|
|
list->elements[1] = datum2;
|
|
list->elements[2] = datum3;
|
|
check_list_invariants(list);
|
|
return list;
|
|
}
|
|
|
|
List *
|
|
list_make4_impl(NodeTag t, ListCell datum1, ListCell datum2,
|
|
ListCell datum3, ListCell datum4)
|
|
{
|
|
List *list = new_list(t, 4);
|
|
|
|
list->elements[0] = datum1;
|
|
list->elements[1] = datum2;
|
|
list->elements[2] = datum3;
|
|
list->elements[3] = datum4;
|
|
check_list_invariants(list);
|
|
return list;
|
|
}
|
|
|
|
List *
|
|
list_make5_impl(NodeTag t, ListCell datum1, ListCell datum2,
|
|
ListCell datum3, ListCell datum4, ListCell datum5)
|
|
{
|
|
List *list = new_list(t, 5);
|
|
|
|
list->elements[0] = datum1;
|
|
list->elements[1] = datum2;
|
|
list->elements[2] = datum3;
|
|
list->elements[3] = datum4;
|
|
list->elements[4] = datum5;
|
|
check_list_invariants(list);
|
|
return list;
|
|
}
|
|
|
|
/*
|
|
* Make room for a new head cell in the given (non-NIL) list.
|
|
*
|
|
* The data in the new head cell is undefined; the caller should be
|
|
* sure to fill it in
|
|
*/
|
|
static void
|
|
new_head_cell(List *list)
|
|
{
|
|
/* Enlarge array if necessary */
|
|
if (list->length >= list->max_length)
|
|
enlarge_list(list, list->length + 1);
|
|
/* Now shove the existing data over */
|
|
memmove(&list->elements[1], &list->elements[0],
|
|
list->length * sizeof(ListCell));
|
|
list->length++;
|
|
}
|
|
|
|
/*
|
|
* Make room for a new tail cell in the given (non-NIL) list.
|
|
*
|
|
* The data in the new tail cell is undefined; the caller should be
|
|
* sure to fill it in
|
|
*/
|
|
static void
|
|
new_tail_cell(List *list)
|
|
{
|
|
/* Enlarge array if necessary */
|
|
if (list->length >= list->max_length)
|
|
enlarge_list(list, list->length + 1);
|
|
list->length++;
|
|
}
|
|
|
|
/*
|
|
* Append a pointer to the list. A pointer to the modified list is
|
|
* returned. Note that this function may or may not destructively
|
|
* modify the list; callers should always use this function's return
|
|
* value, rather than continuing to use the pointer passed as the
|
|
* first argument.
|
|
*/
|
|
List *
|
|
lappend(List *list, void *datum)
|
|
{
|
|
Assert(IsPointerList(list));
|
|
|
|
if (list == NIL)
|
|
list = new_list(T_List, 1);
|
|
else
|
|
new_tail_cell(list);
|
|
|
|
llast(list) = datum;
|
|
check_list_invariants(list);
|
|
return list;
|
|
}
|
|
|
|
/*
|
|
* Append an integer to the specified list. See lappend()
|
|
*/
|
|
List *
|
|
lappend_int(List *list, int datum)
|
|
{
|
|
Assert(IsIntegerList(list));
|
|
|
|
if (list == NIL)
|
|
list = new_list(T_IntList, 1);
|
|
else
|
|
new_tail_cell(list);
|
|
|
|
llast_int(list) = datum;
|
|
check_list_invariants(list);
|
|
return list;
|
|
}
|
|
|
|
/*
|
|
* Append an OID to the specified list. See lappend()
|
|
*/
|
|
List *
|
|
lappend_oid(List *list, Oid datum)
|
|
{
|
|
Assert(IsOidList(list));
|
|
|
|
if (list == NIL)
|
|
list = new_list(T_OidList, 1);
|
|
else
|
|
new_tail_cell(list);
|
|
|
|
llast_oid(list) = datum;
|
|
check_list_invariants(list);
|
|
return list;
|
|
}
|
|
|
|
/*
|
|
* Append a TransactionId to the specified list. See lappend()
|
|
*/
|
|
List *
|
|
lappend_xid(List *list, TransactionId datum)
|
|
{
|
|
Assert(IsXidList(list));
|
|
|
|
if (list == NIL)
|
|
list = new_list(T_XidList, 1);
|
|
else
|
|
new_tail_cell(list);
|
|
|
|
llast_xid(list) = datum;
|
|
check_list_invariants(list);
|
|
return list;
|
|
}
|
|
|
|
/*
|
|
* Make room for a new cell at position 'pos' (measured from 0).
|
|
* The data in the cell is left undefined, and must be filled in by the
|
|
* caller. 'list' is assumed to be non-NIL, and 'pos' must be a valid
|
|
* list position, ie, 0 <= pos <= list's length.
|
|
* Returns address of the new cell.
|
|
*/
|
|
static ListCell *
|
|
insert_new_cell(List *list, int pos)
|
|
{
|
|
Assert(pos >= 0 && pos <= list->length);
|
|
|
|
/* Enlarge array if necessary */
|
|
if (list->length >= list->max_length)
|
|
enlarge_list(list, list->length + 1);
|
|
/* Now shove the existing data over */
|
|
if (pos < list->length)
|
|
memmove(&list->elements[pos + 1], &list->elements[pos],
|
|
(list->length - pos) * sizeof(ListCell));
|
|
list->length++;
|
|
|
|
return &list->elements[pos];
|
|
}
|
|
|
|
/*
|
|
* Insert the given datum at position 'pos' (measured from 0) in the list.
|
|
* 'pos' must be valid, ie, 0 <= pos <= list's length.
|
|
*
|
|
* Note that this takes time proportional to the distance to the end of the
|
|
* list, since the following entries must be moved.
|
|
*/
|
|
List *
|
|
list_insert_nth(List *list, int pos, void *datum)
|
|
{
|
|
if (list == NIL)
|
|
{
|
|
Assert(pos == 0);
|
|
return list_make1(datum);
|
|
}
|
|
Assert(IsPointerList(list));
|
|
lfirst(insert_new_cell(list, pos)) = datum;
|
|
check_list_invariants(list);
|
|
return list;
|
|
}
|
|
|
|
List *
|
|
list_insert_nth_int(List *list, int pos, int datum)
|
|
{
|
|
if (list == NIL)
|
|
{
|
|
Assert(pos == 0);
|
|
return list_make1_int(datum);
|
|
}
|
|
Assert(IsIntegerList(list));
|
|
lfirst_int(insert_new_cell(list, pos)) = datum;
|
|
check_list_invariants(list);
|
|
return list;
|
|
}
|
|
|
|
List *
|
|
list_insert_nth_oid(List *list, int pos, Oid datum)
|
|
{
|
|
if (list == NIL)
|
|
{
|
|
Assert(pos == 0);
|
|
return list_make1_oid(datum);
|
|
}
|
|
Assert(IsOidList(list));
|
|
lfirst_oid(insert_new_cell(list, pos)) = datum;
|
|
check_list_invariants(list);
|
|
return list;
|
|
}
|
|
|
|
/*
|
|
* Prepend a new element to the list. A pointer to the modified list
|
|
* is returned. Note that this function may or may not destructively
|
|
* modify the list; callers should always use this function's return
|
|
* value, rather than continuing to use the pointer passed as the
|
|
* second argument.
|
|
*
|
|
* Note that this takes time proportional to the length of the list,
|
|
* since the existing entries must be moved.
|
|
*
|
|
* Caution: before Postgres 8.0, the original List was unmodified and
|
|
* could be considered to retain its separate identity. This is no longer
|
|
* the case.
|
|
*/
|
|
List *
|
|
lcons(void *datum, List *list)
|
|
{
|
|
Assert(IsPointerList(list));
|
|
|
|
if (list == NIL)
|
|
list = new_list(T_List, 1);
|
|
else
|
|
new_head_cell(list);
|
|
|
|
linitial(list) = datum;
|
|
check_list_invariants(list);
|
|
return list;
|
|
}
|
|
|
|
/*
|
|
* Prepend an integer to the list. See lcons()
|
|
*/
|
|
List *
|
|
lcons_int(int datum, List *list)
|
|
{
|
|
Assert(IsIntegerList(list));
|
|
|
|
if (list == NIL)
|
|
list = new_list(T_IntList, 1);
|
|
else
|
|
new_head_cell(list);
|
|
|
|
linitial_int(list) = datum;
|
|
check_list_invariants(list);
|
|
return list;
|
|
}
|
|
|
|
/*
|
|
* Prepend an OID to the list. See lcons()
|
|
*/
|
|
List *
|
|
lcons_oid(Oid datum, List *list)
|
|
{
|
|
Assert(IsOidList(list));
|
|
|
|
if (list == NIL)
|
|
list = new_list(T_OidList, 1);
|
|
else
|
|
new_head_cell(list);
|
|
|
|
linitial_oid(list) = datum;
|
|
check_list_invariants(list);
|
|
return list;
|
|
}
|
|
|
|
/*
|
|
* Concatenate list2 to the end of list1, and return list1.
|
|
*
|
|
* This is equivalent to lappend'ing each element of list2, in order, to list1.
|
|
* list1 is destructively changed, list2 is not. (However, in the case of
|
|
* pointer lists, list1 and list2 will point to the same structures.)
|
|
*
|
|
* Callers should be sure to use the return value as the new pointer to the
|
|
* concatenated list: the 'list1' input pointer may or may not be the same
|
|
* as the returned pointer.
|
|
*
|
|
* Note that this takes at least time proportional to the length of list2.
|
|
* It'd typically be the case that we have to enlarge list1's storage,
|
|
* probably adding time proportional to the length of list1.
|
|
*/
|
|
List *
|
|
list_concat(List *list1, const List *list2)
|
|
{
|
|
int new_len;
|
|
|
|
if (list1 == NIL)
|
|
return list_copy(list2);
|
|
if (list2 == NIL)
|
|
return list1;
|
|
|
|
Assert(list1->type == list2->type);
|
|
|
|
new_len = list1->length + list2->length;
|
|
/* Enlarge array if necessary */
|
|
if (new_len > list1->max_length)
|
|
enlarge_list(list1, new_len);
|
|
|
|
/* Even if list1 == list2, using memcpy should be safe here */
|
|
memcpy(&list1->elements[list1->length], &list2->elements[0],
|
|
list2->length * sizeof(ListCell));
|
|
list1->length = new_len;
|
|
|
|
check_list_invariants(list1);
|
|
return list1;
|
|
}
|
|
|
|
/*
|
|
* Form a new list by concatenating the elements of list1 and list2.
|
|
*
|
|
* Neither input list is modified. (However, if they are pointer lists,
|
|
* the output list will point to the same structures.)
|
|
*
|
|
* This is equivalent to, but more efficient than,
|
|
* list_concat(list_copy(list1), list2).
|
|
* Note that some pre-v13 code might list_copy list2 as well, but that's
|
|
* pointless now.
|
|
*/
|
|
List *
|
|
list_concat_copy(const List *list1, const List *list2)
|
|
{
|
|
List *result;
|
|
int new_len;
|
|
|
|
if (list1 == NIL)
|
|
return list_copy(list2);
|
|
if (list2 == NIL)
|
|
return list_copy(list1);
|
|
|
|
Assert(list1->type == list2->type);
|
|
|
|
new_len = list1->length + list2->length;
|
|
result = new_list(list1->type, new_len);
|
|
memcpy(result->elements, list1->elements,
|
|
list1->length * sizeof(ListCell));
|
|
memcpy(result->elements + list1->length, list2->elements,
|
|
list2->length * sizeof(ListCell));
|
|
|
|
check_list_invariants(result);
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Truncate 'list' to contain no more than 'new_size' elements. This
|
|
* modifies the list in-place! Despite this, callers should use the
|
|
* pointer returned by this function to refer to the newly truncated
|
|
* list -- it may or may not be the same as the pointer that was
|
|
* passed.
|
|
*
|
|
* Note that any cells removed by list_truncate() are NOT pfree'd.
|
|
*/
|
|
List *
|
|
list_truncate(List *list, int new_size)
|
|
{
|
|
if (new_size <= 0)
|
|
return NIL; /* truncate to zero length */
|
|
|
|
/* If asked to effectively extend the list, do nothing */
|
|
if (new_size < list_length(list))
|
|
list->length = new_size;
|
|
|
|
/*
|
|
* Note: unlike the individual-list-cell deletion functions, we don't move
|
|
* the list cells to new storage, even in DEBUG_LIST_MEMORY_USAGE mode.
|
|
* This is because none of them can move in this operation, so just like
|
|
* in the old cons-cell-based implementation, this function doesn't
|
|
* invalidate any pointers to cells of the list. This is also the reason
|
|
* for not wiping the memory of the deleted cells: the old code didn't
|
|
* free them either. Perhaps later we'll tighten this up.
|
|
*/
|
|
|
|
return list;
|
|
}
|
|
|
|
/*
|
|
* Return true iff 'datum' is a member of the list. Equality is
|
|
* determined via equal(), so callers should ensure that they pass a
|
|
* Node as 'datum'.
|
|
*
|
|
* This does a simple linear search --- avoid using it on long lists.
|
|
*/
|
|
bool
|
|
list_member(const List *list, const void *datum)
|
|
{
|
|
const ListCell *cell;
|
|
|
|
Assert(IsPointerList(list));
|
|
check_list_invariants(list);
|
|
|
|
foreach(cell, list)
|
|
{
|
|
if (equal(lfirst(cell), datum))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Return true iff 'datum' is a member of the list. Equality is
|
|
* determined by using simple pointer comparison.
|
|
*/
|
|
bool
|
|
list_member_ptr(const List *list, const void *datum)
|
|
{
|
|
const ListCell *cell;
|
|
|
|
Assert(IsPointerList(list));
|
|
check_list_invariants(list);
|
|
|
|
foreach(cell, list)
|
|
{
|
|
if (lfirst(cell) == datum)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Return true iff the integer 'datum' is a member of the list.
|
|
*/
|
|
bool
|
|
list_member_int(const List *list, int datum)
|
|
{
|
|
const ListCell *cell;
|
|
|
|
Assert(IsIntegerList(list));
|
|
check_list_invariants(list);
|
|
|
|
foreach(cell, list)
|
|
{
|
|
if (lfirst_int(cell) == datum)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Return true iff the OID 'datum' is a member of the list.
|
|
*/
|
|
bool
|
|
list_member_oid(const List *list, Oid datum)
|
|
{
|
|
const ListCell *cell;
|
|
|
|
Assert(IsOidList(list));
|
|
check_list_invariants(list);
|
|
|
|
foreach(cell, list)
|
|
{
|
|
if (lfirst_oid(cell) == datum)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Return true iff the TransactionId 'datum' is a member of the list.
|
|
*/
|
|
bool
|
|
list_member_xid(const List *list, TransactionId datum)
|
|
{
|
|
const ListCell *cell;
|
|
|
|
Assert(IsXidList(list));
|
|
check_list_invariants(list);
|
|
|
|
foreach(cell, list)
|
|
{
|
|
if (lfirst_xid(cell) == datum)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Delete the n'th cell (counting from 0) in list.
|
|
*
|
|
* The List is pfree'd if this was the last member.
|
|
*
|
|
* Note that this takes time proportional to the distance to the end of the
|
|
* list, since the following entries must be moved.
|
|
*/
|
|
List *
|
|
list_delete_nth_cell(List *list, int n)
|
|
{
|
|
check_list_invariants(list);
|
|
|
|
Assert(n >= 0 && n < list->length);
|
|
|
|
/*
|
|
* If we're about to delete the last node from the list, free the whole
|
|
* list instead and return NIL, which is the only valid representation of
|
|
* a zero-length list.
|
|
*/
|
|
if (list->length == 1)
|
|
{
|
|
list_free(list);
|
|
return NIL;
|
|
}
|
|
|
|
/*
|
|
* Otherwise, we normally just collapse out the removed element. But for
|
|
* debugging purposes, move the whole list contents someplace else.
|
|
*
|
|
* (Note that we *must* keep the contents in the same memory context.)
|
|
*/
|
|
#ifndef DEBUG_LIST_MEMORY_USAGE
|
|
memmove(&list->elements[n], &list->elements[n + 1],
|
|
(list->length - 1 - n) * sizeof(ListCell));
|
|
list->length--;
|
|
#else
|
|
{
|
|
ListCell *newelems;
|
|
int newmaxlen = list->length - 1;
|
|
|
|
newelems = (ListCell *)
|
|
MemoryContextAlloc(GetMemoryChunkContext(list),
|
|
newmaxlen * sizeof(ListCell));
|
|
memcpy(newelems, list->elements, n * sizeof(ListCell));
|
|
memcpy(&newelems[n], &list->elements[n + 1],
|
|
(list->length - 1 - n) * sizeof(ListCell));
|
|
if (list->elements != list->initial_elements)
|
|
pfree(list->elements);
|
|
else
|
|
{
|
|
/*
|
|
* As in enlarge_list(), clear the initial_elements[] space and/or
|
|
* mark it inaccessible.
|
|
*/
|
|
#ifdef CLOBBER_FREED_MEMORY
|
|
wipe_mem(list->initial_elements,
|
|
list->max_length * sizeof(ListCell));
|
|
#else
|
|
VALGRIND_MAKE_MEM_NOACCESS(list->initial_elements,
|
|
list->max_length * sizeof(ListCell));
|
|
#endif
|
|
}
|
|
list->elements = newelems;
|
|
list->max_length = newmaxlen;
|
|
list->length--;
|
|
check_list_invariants(list);
|
|
}
|
|
#endif
|
|
|
|
return list;
|
|
}
|
|
|
|
/*
|
|
* Delete 'cell' from 'list'.
|
|
*
|
|
* The List is pfree'd if this was the last member. However, we do not
|
|
* touch any data the cell might've been pointing to.
|
|
*
|
|
* Note that this takes time proportional to the distance to the end of the
|
|
* list, since the following entries must be moved.
|
|
*/
|
|
List *
|
|
list_delete_cell(List *list, ListCell *cell)
|
|
{
|
|
return list_delete_nth_cell(list, cell - list->elements);
|
|
}
|
|
|
|
/*
|
|
* Delete the first cell in list that matches datum, if any.
|
|
* Equality is determined via equal().
|
|
*
|
|
* This does a simple linear search --- avoid using it on long lists.
|
|
*/
|
|
List *
|
|
list_delete(List *list, void *datum)
|
|
{
|
|
ListCell *cell;
|
|
|
|
Assert(IsPointerList(list));
|
|
check_list_invariants(list);
|
|
|
|
foreach(cell, list)
|
|
{
|
|
if (equal(lfirst(cell), datum))
|
|
return list_delete_cell(list, cell);
|
|
}
|
|
|
|
/* Didn't find a match: return the list unmodified */
|
|
return list;
|
|
}
|
|
|
|
/* As above, but use simple pointer equality */
|
|
List *
|
|
list_delete_ptr(List *list, void *datum)
|
|
{
|
|
ListCell *cell;
|
|
|
|
Assert(IsPointerList(list));
|
|
check_list_invariants(list);
|
|
|
|
foreach(cell, list)
|
|
{
|
|
if (lfirst(cell) == datum)
|
|
return list_delete_cell(list, cell);
|
|
}
|
|
|
|
/* Didn't find a match: return the list unmodified */
|
|
return list;
|
|
}
|
|
|
|
/* As above, but for integers */
|
|
List *
|
|
list_delete_int(List *list, int datum)
|
|
{
|
|
ListCell *cell;
|
|
|
|
Assert(IsIntegerList(list));
|
|
check_list_invariants(list);
|
|
|
|
foreach(cell, list)
|
|
{
|
|
if (lfirst_int(cell) == datum)
|
|
return list_delete_cell(list, cell);
|
|
}
|
|
|
|
/* Didn't find a match: return the list unmodified */
|
|
return list;
|
|
}
|
|
|
|
/* As above, but for OIDs */
|
|
List *
|
|
list_delete_oid(List *list, Oid datum)
|
|
{
|
|
ListCell *cell;
|
|
|
|
Assert(IsOidList(list));
|
|
check_list_invariants(list);
|
|
|
|
foreach(cell, list)
|
|
{
|
|
if (lfirst_oid(cell) == datum)
|
|
return list_delete_cell(list, cell);
|
|
}
|
|
|
|
/* Didn't find a match: return the list unmodified */
|
|
return list;
|
|
}
|
|
|
|
/*
|
|
* Delete the first element of the list.
|
|
*
|
|
* This is useful to replace the Lisp-y code "list = lnext(list);" in cases
|
|
* where the intent is to alter the list rather than just traverse it.
|
|
* Beware that the list is modified, whereas the Lisp-y coding leaves
|
|
* the original list head intact in case there's another pointer to it.
|
|
*
|
|
* Note that this takes time proportional to the length of the list,
|
|
* since the remaining entries must be moved. Consider reversing the
|
|
* list order so that you can use list_delete_last() instead. However,
|
|
* if that causes you to replace lappend() with lcons(), you haven't
|
|
* improved matters. (In short, you can make an efficient stack from
|
|
* a List, but not an efficient FIFO queue.)
|
|
*/
|
|
List *
|
|
list_delete_first(List *list)
|
|
{
|
|
check_list_invariants(list);
|
|
|
|
if (list == NIL)
|
|
return NIL; /* would an error be better? */
|
|
|
|
return list_delete_nth_cell(list, 0);
|
|
}
|
|
|
|
/*
|
|
* Delete the last element of the list.
|
|
*/
|
|
List *
|
|
list_delete_last(List *list)
|
|
{
|
|
check_list_invariants(list);
|
|
|
|
if (list == NIL)
|
|
return NIL; /* would an error be better? */
|
|
|
|
/* list_truncate won't free list if it goes to empty, but this should */
|
|
if (list_length(list) <= 1)
|
|
{
|
|
list_free(list);
|
|
return NIL;
|
|
}
|
|
|
|
return list_truncate(list, list_length(list) - 1);
|
|
}
|
|
|
|
/*
|
|
* Delete the first N cells of the list.
|
|
*
|
|
* The List is pfree'd if the request causes all cells to be deleted.
|
|
*
|
|
* Note that this takes time proportional to the distance to the end of the
|
|
* list, since the following entries must be moved.
|
|
*/
|
|
List *
|
|
list_delete_first_n(List *list, int n)
|
|
{
|
|
check_list_invariants(list);
|
|
|
|
/* No-op request? */
|
|
if (n <= 0)
|
|
return list;
|
|
|
|
/* Delete whole list? */
|
|
if (n >= list_length(list))
|
|
{
|
|
list_free(list);
|
|
return NIL;
|
|
}
|
|
|
|
/*
|
|
* Otherwise, we normally just collapse out the removed elements. But for
|
|
* debugging purposes, move the whole list contents someplace else.
|
|
*
|
|
* (Note that we *must* keep the contents in the same memory context.)
|
|
*/
|
|
#ifndef DEBUG_LIST_MEMORY_USAGE
|
|
memmove(&list->elements[0], &list->elements[n],
|
|
(list->length - n) * sizeof(ListCell));
|
|
list->length -= n;
|
|
#else
|
|
{
|
|
ListCell *newelems;
|
|
int newmaxlen = list->length - n;
|
|
|
|
newelems = (ListCell *)
|
|
MemoryContextAlloc(GetMemoryChunkContext(list),
|
|
newmaxlen * sizeof(ListCell));
|
|
memcpy(newelems, &list->elements[n], newmaxlen * sizeof(ListCell));
|
|
if (list->elements != list->initial_elements)
|
|
pfree(list->elements);
|
|
else
|
|
{
|
|
/*
|
|
* As in enlarge_list(), clear the initial_elements[] space and/or
|
|
* mark it inaccessible.
|
|
*/
|
|
#ifdef CLOBBER_FREED_MEMORY
|
|
wipe_mem(list->initial_elements,
|
|
list->max_length * sizeof(ListCell));
|
|
#else
|
|
VALGRIND_MAKE_MEM_NOACCESS(list->initial_elements,
|
|
list->max_length * sizeof(ListCell));
|
|
#endif
|
|
}
|
|
list->elements = newelems;
|
|
list->max_length = newmaxlen;
|
|
list->length = newmaxlen;
|
|
check_list_invariants(list);
|
|
}
|
|
#endif
|
|
|
|
return list;
|
|
}
|
|
|
|
/*
|
|
* Generate the union of two lists. This is calculated by copying
|
|
* list1 via list_copy(), then adding to it all the members of list2
|
|
* that aren't already in list1.
|
|
*
|
|
* Whether an element is already a member of the list is determined
|
|
* via equal().
|
|
*
|
|
* The returned list is newly-allocated, although the content of the
|
|
* cells is the same (i.e. any pointed-to objects are not copied).
|
|
*
|
|
* NB: this function will NOT remove any duplicates that are present
|
|
* in list1 (so it only performs a "union" if list1 is known unique to
|
|
* start with). Also, if you are about to write "x = list_union(x, y)"
|
|
* you probably want to use list_concat_unique() instead to avoid wasting
|
|
* the storage of the old x list.
|
|
*
|
|
* Note that this takes time proportional to the product of the list
|
|
* lengths, so beware of using it on long lists. (We could probably
|
|
* improve that, but really you should be using some other data structure
|
|
* if this'd be a performance bottleneck.)
|
|
*/
|
|
List *
|
|
list_union(const List *list1, const List *list2)
|
|
{
|
|
List *result;
|
|
const ListCell *cell;
|
|
|
|
Assert(IsPointerList(list1));
|
|
Assert(IsPointerList(list2));
|
|
|
|
result = list_copy(list1);
|
|
foreach(cell, list2)
|
|
{
|
|
if (!list_member(result, lfirst(cell)))
|
|
result = lappend(result, lfirst(cell));
|
|
}
|
|
|
|
check_list_invariants(result);
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* This variant of list_union() determines duplicates via simple
|
|
* pointer comparison.
|
|
*/
|
|
List *
|
|
list_union_ptr(const List *list1, const List *list2)
|
|
{
|
|
List *result;
|
|
const ListCell *cell;
|
|
|
|
Assert(IsPointerList(list1));
|
|
Assert(IsPointerList(list2));
|
|
|
|
result = list_copy(list1);
|
|
foreach(cell, list2)
|
|
{
|
|
if (!list_member_ptr(result, lfirst(cell)))
|
|
result = lappend(result, lfirst(cell));
|
|
}
|
|
|
|
check_list_invariants(result);
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* This variant of list_union() operates upon lists of integers.
|
|
*/
|
|
List *
|
|
list_union_int(const List *list1, const List *list2)
|
|
{
|
|
List *result;
|
|
const ListCell *cell;
|
|
|
|
Assert(IsIntegerList(list1));
|
|
Assert(IsIntegerList(list2));
|
|
|
|
result = list_copy(list1);
|
|
foreach(cell, list2)
|
|
{
|
|
if (!list_member_int(result, lfirst_int(cell)))
|
|
result = lappend_int(result, lfirst_int(cell));
|
|
}
|
|
|
|
check_list_invariants(result);
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* This variant of list_union() operates upon lists of OIDs.
|
|
*/
|
|
List *
|
|
list_union_oid(const List *list1, const List *list2)
|
|
{
|
|
List *result;
|
|
const ListCell *cell;
|
|
|
|
Assert(IsOidList(list1));
|
|
Assert(IsOidList(list2));
|
|
|
|
result = list_copy(list1);
|
|
foreach(cell, list2)
|
|
{
|
|
if (!list_member_oid(result, lfirst_oid(cell)))
|
|
result = lappend_oid(result, lfirst_oid(cell));
|
|
}
|
|
|
|
check_list_invariants(result);
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Return a list that contains all the cells that are in both list1 and
|
|
* list2. The returned list is freshly allocated via palloc(), but the
|
|
* cells themselves point to the same objects as the cells of the
|
|
* input lists.
|
|
*
|
|
* Duplicate entries in list1 will not be suppressed, so it's only a true
|
|
* "intersection" if list1 is known unique beforehand.
|
|
*
|
|
* This variant works on lists of pointers, and determines list
|
|
* membership via equal(). Note that the list1 member will be pointed
|
|
* to in the result.
|
|
*
|
|
* Note that this takes time proportional to the product of the list
|
|
* lengths, so beware of using it on long lists. (We could probably
|
|
* improve that, but really you should be using some other data structure
|
|
* if this'd be a performance bottleneck.)
|
|
*/
|
|
List *
|
|
list_intersection(const List *list1, const List *list2)
|
|
{
|
|
List *result;
|
|
const ListCell *cell;
|
|
|
|
if (list1 == NIL || list2 == NIL)
|
|
return NIL;
|
|
|
|
Assert(IsPointerList(list1));
|
|
Assert(IsPointerList(list2));
|
|
|
|
result = NIL;
|
|
foreach(cell, list1)
|
|
{
|
|
if (list_member(list2, lfirst(cell)))
|
|
result = lappend(result, lfirst(cell));
|
|
}
|
|
|
|
check_list_invariants(result);
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* As list_intersection but operates on lists of integers.
|
|
*/
|
|
List *
|
|
list_intersection_int(const List *list1, const List *list2)
|
|
{
|
|
List *result;
|
|
const ListCell *cell;
|
|
|
|
if (list1 == NIL || list2 == NIL)
|
|
return NIL;
|
|
|
|
Assert(IsIntegerList(list1));
|
|
Assert(IsIntegerList(list2));
|
|
|
|
result = NIL;
|
|
foreach(cell, list1)
|
|
{
|
|
if (list_member_int(list2, lfirst_int(cell)))
|
|
result = lappend_int(result, lfirst_int(cell));
|
|
}
|
|
|
|
check_list_invariants(result);
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Return a list that contains all the cells in list1 that are not in
|
|
* list2. The returned list is freshly allocated via palloc(), but the
|
|
* cells themselves point to the same objects as the cells of the
|
|
* input lists.
|
|
*
|
|
* This variant works on lists of pointers, and determines list
|
|
* membership via equal()
|
|
*
|
|
* Note that this takes time proportional to the product of the list
|
|
* lengths, so beware of using it on long lists. (We could probably
|
|
* improve that, but really you should be using some other data structure
|
|
* if this'd be a performance bottleneck.)
|
|
*/
|
|
List *
|
|
list_difference(const List *list1, const List *list2)
|
|
{
|
|
const ListCell *cell;
|
|
List *result = NIL;
|
|
|
|
Assert(IsPointerList(list1));
|
|
Assert(IsPointerList(list2));
|
|
|
|
if (list2 == NIL)
|
|
return list_copy(list1);
|
|
|
|
foreach(cell, list1)
|
|
{
|
|
if (!list_member(list2, lfirst(cell)))
|
|
result = lappend(result, lfirst(cell));
|
|
}
|
|
|
|
check_list_invariants(result);
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* This variant of list_difference() determines list membership via
|
|
* simple pointer equality.
|
|
*/
|
|
List *
|
|
list_difference_ptr(const List *list1, const List *list2)
|
|
{
|
|
const ListCell *cell;
|
|
List *result = NIL;
|
|
|
|
Assert(IsPointerList(list1));
|
|
Assert(IsPointerList(list2));
|
|
|
|
if (list2 == NIL)
|
|
return list_copy(list1);
|
|
|
|
foreach(cell, list1)
|
|
{
|
|
if (!list_member_ptr(list2, lfirst(cell)))
|
|
result = lappend(result, lfirst(cell));
|
|
}
|
|
|
|
check_list_invariants(result);
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* This variant of list_difference() operates upon lists of integers.
|
|
*/
|
|
List *
|
|
list_difference_int(const List *list1, const List *list2)
|
|
{
|
|
const ListCell *cell;
|
|
List *result = NIL;
|
|
|
|
Assert(IsIntegerList(list1));
|
|
Assert(IsIntegerList(list2));
|
|
|
|
if (list2 == NIL)
|
|
return list_copy(list1);
|
|
|
|
foreach(cell, list1)
|
|
{
|
|
if (!list_member_int(list2, lfirst_int(cell)))
|
|
result = lappend_int(result, lfirst_int(cell));
|
|
}
|
|
|
|
check_list_invariants(result);
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* This variant of list_difference() operates upon lists of OIDs.
|
|
*/
|
|
List *
|
|
list_difference_oid(const List *list1, const List *list2)
|
|
{
|
|
const ListCell *cell;
|
|
List *result = NIL;
|
|
|
|
Assert(IsOidList(list1));
|
|
Assert(IsOidList(list2));
|
|
|
|
if (list2 == NIL)
|
|
return list_copy(list1);
|
|
|
|
foreach(cell, list1)
|
|
{
|
|
if (!list_member_oid(list2, lfirst_oid(cell)))
|
|
result = lappend_oid(result, lfirst_oid(cell));
|
|
}
|
|
|
|
check_list_invariants(result);
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Append datum to list, but only if it isn't already in the list.
|
|
*
|
|
* Whether an element is already a member of the list is determined
|
|
* via equal().
|
|
*
|
|
* This does a simple linear search --- avoid using it on long lists.
|
|
*/
|
|
List *
|
|
list_append_unique(List *list, void *datum)
|
|
{
|
|
if (list_member(list, datum))
|
|
return list;
|
|
else
|
|
return lappend(list, datum);
|
|
}
|
|
|
|
/*
|
|
* This variant of list_append_unique() determines list membership via
|
|
* simple pointer equality.
|
|
*/
|
|
List *
|
|
list_append_unique_ptr(List *list, void *datum)
|
|
{
|
|
if (list_member_ptr(list, datum))
|
|
return list;
|
|
else
|
|
return lappend(list, datum);
|
|
}
|
|
|
|
/*
|
|
* This variant of list_append_unique() operates upon lists of integers.
|
|
*/
|
|
List *
|
|
list_append_unique_int(List *list, int datum)
|
|
{
|
|
if (list_member_int(list, datum))
|
|
return list;
|
|
else
|
|
return lappend_int(list, datum);
|
|
}
|
|
|
|
/*
|
|
* This variant of list_append_unique() operates upon lists of OIDs.
|
|
*/
|
|
List *
|
|
list_append_unique_oid(List *list, Oid datum)
|
|
{
|
|
if (list_member_oid(list, datum))
|
|
return list;
|
|
else
|
|
return lappend_oid(list, datum);
|
|
}
|
|
|
|
/*
|
|
* Append to list1 each member of list2 that isn't already in list1.
|
|
*
|
|
* Whether an element is already a member of the list is determined
|
|
* via equal().
|
|
*
|
|
* This is almost the same functionality as list_union(), but list1 is
|
|
* modified in-place rather than being copied. However, callers of this
|
|
* function may have strict ordering expectations -- i.e. that the relative
|
|
* order of those list2 elements that are not duplicates is preserved.
|
|
*
|
|
* Note that this takes time proportional to the product of the list
|
|
* lengths, so beware of using it on long lists. (We could probably
|
|
* improve that, but really you should be using some other data structure
|
|
* if this'd be a performance bottleneck.)
|
|
*/
|
|
List *
|
|
list_concat_unique(List *list1, const List *list2)
|
|
{
|
|
ListCell *cell;
|
|
|
|
Assert(IsPointerList(list1));
|
|
Assert(IsPointerList(list2));
|
|
|
|
foreach(cell, list2)
|
|
{
|
|
if (!list_member(list1, lfirst(cell)))
|
|
list1 = lappend(list1, lfirst(cell));
|
|
}
|
|
|
|
check_list_invariants(list1);
|
|
return list1;
|
|
}
|
|
|
|
/*
|
|
* This variant of list_concat_unique() determines list membership via
|
|
* simple pointer equality.
|
|
*/
|
|
List *
|
|
list_concat_unique_ptr(List *list1, const List *list2)
|
|
{
|
|
ListCell *cell;
|
|
|
|
Assert(IsPointerList(list1));
|
|
Assert(IsPointerList(list2));
|
|
|
|
foreach(cell, list2)
|
|
{
|
|
if (!list_member_ptr(list1, lfirst(cell)))
|
|
list1 = lappend(list1, lfirst(cell));
|
|
}
|
|
|
|
check_list_invariants(list1);
|
|
return list1;
|
|
}
|
|
|
|
/*
|
|
* This variant of list_concat_unique() operates upon lists of integers.
|
|
*/
|
|
List *
|
|
list_concat_unique_int(List *list1, const List *list2)
|
|
{
|
|
ListCell *cell;
|
|
|
|
Assert(IsIntegerList(list1));
|
|
Assert(IsIntegerList(list2));
|
|
|
|
foreach(cell, list2)
|
|
{
|
|
if (!list_member_int(list1, lfirst_int(cell)))
|
|
list1 = lappend_int(list1, lfirst_int(cell));
|
|
}
|
|
|
|
check_list_invariants(list1);
|
|
return list1;
|
|
}
|
|
|
|
/*
|
|
* This variant of list_concat_unique() operates upon lists of OIDs.
|
|
*/
|
|
List *
|
|
list_concat_unique_oid(List *list1, const List *list2)
|
|
{
|
|
ListCell *cell;
|
|
|
|
Assert(IsOidList(list1));
|
|
Assert(IsOidList(list2));
|
|
|
|
foreach(cell, list2)
|
|
{
|
|
if (!list_member_oid(list1, lfirst_oid(cell)))
|
|
list1 = lappend_oid(list1, lfirst_oid(cell));
|
|
}
|
|
|
|
check_list_invariants(list1);
|
|
return list1;
|
|
}
|
|
|
|
/*
|
|
* Remove adjacent duplicates in a list of OIDs.
|
|
*
|
|
* It is caller's responsibility to have sorted the list to bring duplicates
|
|
* together, perhaps via list_sort(list, list_oid_cmp).
|
|
*
|
|
* Note that this takes time proportional to the length of the list.
|
|
*/
|
|
void
|
|
list_deduplicate_oid(List *list)
|
|
{
|
|
int len;
|
|
|
|
Assert(IsOidList(list));
|
|
len = list_length(list);
|
|
if (len > 1)
|
|
{
|
|
ListCell *elements = list->elements;
|
|
int i = 0;
|
|
|
|
for (int j = 1; j < len; j++)
|
|
{
|
|
if (elements[i].oid_value != elements[j].oid_value)
|
|
elements[++i].oid_value = elements[j].oid_value;
|
|
}
|
|
list->length = i + 1;
|
|
}
|
|
check_list_invariants(list);
|
|
}
|
|
|
|
/*
|
|
* Free all storage in a list, and optionally the pointed-to elements
|
|
*/
|
|
static void
|
|
list_free_private(List *list, bool deep)
|
|
{
|
|
if (list == NIL)
|
|
return; /* nothing to do */
|
|
|
|
check_list_invariants(list);
|
|
|
|
if (deep)
|
|
{
|
|
for (int i = 0; i < list->length; i++)
|
|
pfree(lfirst(&list->elements[i]));
|
|
}
|
|
if (list->elements != list->initial_elements)
|
|
pfree(list->elements);
|
|
pfree(list);
|
|
}
|
|
|
|
/*
|
|
* Free all the cells of the list, as well as the list itself. Any
|
|
* objects that are pointed-to by the cells of the list are NOT
|
|
* free'd.
|
|
*
|
|
* On return, the argument to this function has been freed, so the
|
|
* caller would be wise to set it to NIL for safety's sake.
|
|
*/
|
|
void
|
|
list_free(List *list)
|
|
{
|
|
list_free_private(list, false);
|
|
}
|
|
|
|
/*
|
|
* Free all the cells of the list, the list itself, and all the
|
|
* objects pointed-to by the cells of the list (each element in the
|
|
* list must contain a pointer to a palloc()'d region of memory!)
|
|
*
|
|
* On return, the argument to this function has been freed, so the
|
|
* caller would be wise to set it to NIL for safety's sake.
|
|
*/
|
|
void
|
|
list_free_deep(List *list)
|
|
{
|
|
/*
|
|
* A "deep" free operation only makes sense on a list of pointers.
|
|
*/
|
|
Assert(IsPointerList(list));
|
|
list_free_private(list, true);
|
|
}
|
|
|
|
/*
|
|
* Return a shallow copy of the specified list.
|
|
*/
|
|
List *
|
|
list_copy(const List *oldlist)
|
|
{
|
|
List *newlist;
|
|
|
|
if (oldlist == NIL)
|
|
return NIL;
|
|
|
|
newlist = new_list(oldlist->type, oldlist->length);
|
|
memcpy(newlist->elements, oldlist->elements,
|
|
newlist->length * sizeof(ListCell));
|
|
|
|
check_list_invariants(newlist);
|
|
return newlist;
|
|
}
|
|
|
|
/*
|
|
* Return a shallow copy of the specified list containing only the first 'len'
|
|
* elements. If oldlist is shorter than 'len' then we copy the entire list.
|
|
*/
|
|
List *
|
|
list_copy_head(const List *oldlist, int len)
|
|
{
|
|
List *newlist;
|
|
|
|
if (oldlist == NIL || len <= 0)
|
|
return NIL;
|
|
|
|
len = Min(oldlist->length, len);
|
|
|
|
newlist = new_list(oldlist->type, len);
|
|
memcpy(newlist->elements, oldlist->elements, len * sizeof(ListCell));
|
|
|
|
check_list_invariants(newlist);
|
|
return newlist;
|
|
}
|
|
|
|
/*
|
|
* Return a shallow copy of the specified list, without the first N elements.
|
|
*/
|
|
List *
|
|
list_copy_tail(const List *oldlist, int nskip)
|
|
{
|
|
List *newlist;
|
|
|
|
if (nskip < 0)
|
|
nskip = 0; /* would it be better to elog? */
|
|
|
|
if (oldlist == NIL || nskip >= oldlist->length)
|
|
return NIL;
|
|
|
|
newlist = new_list(oldlist->type, oldlist->length - nskip);
|
|
memcpy(newlist->elements, &oldlist->elements[nskip],
|
|
newlist->length * sizeof(ListCell));
|
|
|
|
check_list_invariants(newlist);
|
|
return newlist;
|
|
}
|
|
|
|
/*
|
|
* Return a deep copy of the specified list.
|
|
*
|
|
* The list elements are copied via copyObject(), so that this function's
|
|
* idea of a "deep" copy is considerably deeper than what list_free_deep()
|
|
* means by the same word.
|
|
*/
|
|
List *
|
|
list_copy_deep(const List *oldlist)
|
|
{
|
|
List *newlist;
|
|
|
|
if (oldlist == NIL)
|
|
return NIL;
|
|
|
|
/* This is only sensible for pointer Lists */
|
|
Assert(IsA(oldlist, List));
|
|
|
|
newlist = new_list(oldlist->type, oldlist->length);
|
|
for (int i = 0; i < newlist->length; i++)
|
|
lfirst(&newlist->elements[i]) =
|
|
copyObjectImpl(lfirst(&oldlist->elements[i]));
|
|
|
|
check_list_invariants(newlist);
|
|
return newlist;
|
|
}
|
|
|
|
/*
|
|
* Sort a list according to the specified comparator function.
|
|
*
|
|
* The list is sorted in-place.
|
|
*
|
|
* The comparator function is declared to receive arguments of type
|
|
* const ListCell *; this allows it to use lfirst() and variants
|
|
* without casting its arguments. Otherwise it behaves the same as
|
|
* the comparator function for standard qsort().
|
|
*
|
|
* Like qsort(), this provides no guarantees about sort stability
|
|
* for equal keys.
|
|
*
|
|
* This is based on qsort(), so it likewise has O(N log N) runtime.
|
|
*/
|
|
void
|
|
list_sort(List *list, list_sort_comparator cmp)
|
|
{
|
|
typedef int (*qsort_comparator) (const void *a, const void *b);
|
|
int len;
|
|
|
|
check_list_invariants(list);
|
|
|
|
/* Nothing to do if there's less than two elements */
|
|
len = list_length(list);
|
|
if (len > 1)
|
|
qsort(list->elements, len, sizeof(ListCell), (qsort_comparator) cmp);
|
|
}
|
|
|
|
/*
|
|
* list_sort comparator for sorting a list into ascending int order.
|
|
*/
|
|
int
|
|
list_int_cmp(const ListCell *p1, const ListCell *p2)
|
|
{
|
|
int v1 = lfirst_int(p1);
|
|
int v2 = lfirst_int(p2);
|
|
|
|
if (v1 < v2)
|
|
return -1;
|
|
if (v1 > v2)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* list_sort comparator for sorting a list into ascending OID order.
|
|
*/
|
|
int
|
|
list_oid_cmp(const ListCell *p1, const ListCell *p2)
|
|
{
|
|
Oid v1 = lfirst_oid(p1);
|
|
Oid v2 = lfirst_oid(p2);
|
|
|
|
if (v1 < v2)
|
|
return -1;
|
|
if (v1 > v2)
|
|
return 1;
|
|
return 0;
|
|
}
|