mirror of
https://github.com/postgres/postgres.git
synced 2025-05-03 22:24:49 +03:00
We've long had a policy that any toasted fields in a catalog tuple should be pulled in-line before entering the tuple in a catalog cache. However, that requires access to the catalog's toast table, and we'll typically do AcceptInvalidationMessages while opening the toast table. So it's possible that the catalog tuple is outdated by the time we finish detoasting it. Since no cache entry exists yet, we can't mark the entry stale during AcceptInvalidationMessages, and instead we'll press forward and build an apparently-valid cache entry. The upshot is that we have a race condition whereby an out-of-date entry could be made in a backend's catalog cache, and persist there indefinitely causing indeterminate misbehavior. To fix, use the existing systable_recheck_tuple code to recheck whether the catalog tuple is still up-to-date after we finish detoasting it. If not, loop around and restart the process of searching the catalog and constructing cache entries from the top. The case is rare enough that this shouldn't create any meaningful performance penalty, even in the SearchCatCacheList case where we need to tear down and reconstruct the whole list. Indeed, the case is so rare that AFAICT it doesn't occur during our regression tests, and there doesn't seem to be any easy way to build a test that would exercise it reliably. To allow testing of the retry code paths, add logic (in USE_ASSERT_CHECKING builds only) that randomly pretends that the recheck failed about one time out of a thousand. This is enough to ensure that we'll pass through the retry paths during most regression test runs. By adding an extra level of looping, this commit creates a need to reindent most of SearchCatCacheMiss and SearchCatCacheList. I'll do that separately, to allow putting those changes in .git-blame-ignore-revs. Patch by me; thanks to Alexander Lakhin for having built a test case to prove the bug is real, and to Xiaoran Wang for review. Back-patch to all supported branches. Discussion: https://postgr.es/m/1393953.1698353013@sss.pgh.pa.us Discussion: https://postgr.es/m/CAGjhLkOoBEC9mLsnB42d3CO1vcMx71MLSEuigeABbQ8oRdA6gw@mail.gmail.com
2179 lines
57 KiB
C
2179 lines
57 KiB
C
/*-------------------------------------------------------------------------
|
|
*
|
|
* catcache.c
|
|
* System catalog cache for tuples matching a key.
|
|
*
|
|
* Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group
|
|
* Portions Copyright (c) 1994, Regents of the University of California
|
|
*
|
|
*
|
|
* IDENTIFICATION
|
|
* src/backend/utils/cache/catcache.c
|
|
*
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
#include "postgres.h"
|
|
|
|
#include "access/genam.h"
|
|
#include "access/heaptoast.h"
|
|
#include "access/relscan.h"
|
|
#include "access/sysattr.h"
|
|
#include "access/table.h"
|
|
#include "access/valid.h"
|
|
#include "access/xact.h"
|
|
#include "catalog/pg_collation.h"
|
|
#include "catalog/pg_operator.h"
|
|
#include "catalog/pg_type.h"
|
|
#include "common/hashfn.h"
|
|
#include "miscadmin.h"
|
|
#ifdef CATCACHE_STATS
|
|
#include "storage/ipc.h" /* for on_proc_exit */
|
|
#endif
|
|
#include "storage/lmgr.h"
|
|
#include "utils/builtins.h"
|
|
#include "utils/datum.h"
|
|
#include "utils/fmgroids.h"
|
|
#include "utils/inval.h"
|
|
#include "utils/memutils.h"
|
|
#include "utils/rel.h"
|
|
#include "utils/resowner_private.h"
|
|
#include "utils/syscache.h"
|
|
|
|
|
|
/* #define CACHEDEBUG */ /* turns DEBUG elogs on */
|
|
|
|
/*
|
|
* Given a hash value and the size of the hash table, find the bucket
|
|
* in which the hash value belongs. Since the hash table must contain
|
|
* a power-of-2 number of elements, this is a simple bitmask.
|
|
*/
|
|
#define HASH_INDEX(h, sz) ((Index) ((h) & ((sz) - 1)))
|
|
|
|
|
|
/*
|
|
* variables, macros and other stuff
|
|
*/
|
|
|
|
#ifdef CACHEDEBUG
|
|
#define CACHE_elog(...) elog(__VA_ARGS__)
|
|
#else
|
|
#define CACHE_elog(...)
|
|
#endif
|
|
|
|
/* Cache management header --- pointer is NULL until created */
|
|
static CatCacheHeader *CacheHdr = NULL;
|
|
|
|
static inline HeapTuple SearchCatCacheInternal(CatCache *cache,
|
|
int nkeys,
|
|
Datum v1, Datum v2,
|
|
Datum v3, Datum v4);
|
|
|
|
static pg_noinline HeapTuple SearchCatCacheMiss(CatCache *cache,
|
|
int nkeys,
|
|
uint32 hashValue,
|
|
Index hashIndex,
|
|
Datum v1, Datum v2,
|
|
Datum v3, Datum v4);
|
|
|
|
static uint32 CatalogCacheComputeHashValue(CatCache *cache, int nkeys,
|
|
Datum v1, Datum v2, Datum v3, Datum v4);
|
|
static uint32 CatalogCacheComputeTupleHashValue(CatCache *cache, int nkeys,
|
|
HeapTuple tuple);
|
|
static inline bool CatalogCacheCompareTuple(const CatCache *cache, int nkeys,
|
|
const Datum *cachekeys,
|
|
const Datum *searchkeys);
|
|
|
|
#ifdef CATCACHE_STATS
|
|
static void CatCachePrintStats(int code, Datum arg);
|
|
#endif
|
|
static void CatCacheRemoveCTup(CatCache *cache, CatCTup *ct);
|
|
static void CatCacheRemoveCList(CatCache *cache, CatCList *cl);
|
|
static void CatalogCacheInitializeCache(CatCache *cache);
|
|
static CatCTup *CatalogCacheCreateEntry(CatCache *cache,
|
|
HeapTuple ntp, SysScanDesc scandesc,
|
|
Datum *arguments,
|
|
uint32 hashValue, Index hashIndex);
|
|
|
|
static void CatCacheFreeKeys(TupleDesc tupdesc, int nkeys, int *attnos,
|
|
Datum *keys);
|
|
static void CatCacheCopyKeys(TupleDesc tupdesc, int nkeys, int *attnos,
|
|
Datum *srckeys, Datum *dstkeys);
|
|
|
|
|
|
/*
|
|
* internal support functions
|
|
*/
|
|
|
|
/*
|
|
* Hash and equality functions for system types that are used as cache key
|
|
* fields. In some cases, we just call the regular SQL-callable functions for
|
|
* the appropriate data type, but that tends to be a little slow, and the
|
|
* speed of these functions is performance-critical. Therefore, for data
|
|
* types that frequently occur as catcache keys, we hard-code the logic here.
|
|
* Avoiding the overhead of DirectFunctionCallN(...) is a substantial win, and
|
|
* in certain cases (like int4) we can adopt a faster hash algorithm as well.
|
|
*/
|
|
|
|
static bool
|
|
chareqfast(Datum a, Datum b)
|
|
{
|
|
return DatumGetChar(a) == DatumGetChar(b);
|
|
}
|
|
|
|
static uint32
|
|
charhashfast(Datum datum)
|
|
{
|
|
return murmurhash32((int32) DatumGetChar(datum));
|
|
}
|
|
|
|
static bool
|
|
nameeqfast(Datum a, Datum b)
|
|
{
|
|
char *ca = NameStr(*DatumGetName(a));
|
|
char *cb = NameStr(*DatumGetName(b));
|
|
|
|
return strncmp(ca, cb, NAMEDATALEN) == 0;
|
|
}
|
|
|
|
static uint32
|
|
namehashfast(Datum datum)
|
|
{
|
|
char *key = NameStr(*DatumGetName(datum));
|
|
|
|
return hash_any((unsigned char *) key, strlen(key));
|
|
}
|
|
|
|
static bool
|
|
int2eqfast(Datum a, Datum b)
|
|
{
|
|
return DatumGetInt16(a) == DatumGetInt16(b);
|
|
}
|
|
|
|
static uint32
|
|
int2hashfast(Datum datum)
|
|
{
|
|
return murmurhash32((int32) DatumGetInt16(datum));
|
|
}
|
|
|
|
static bool
|
|
int4eqfast(Datum a, Datum b)
|
|
{
|
|
return DatumGetInt32(a) == DatumGetInt32(b);
|
|
}
|
|
|
|
static uint32
|
|
int4hashfast(Datum datum)
|
|
{
|
|
return murmurhash32((int32) DatumGetInt32(datum));
|
|
}
|
|
|
|
static bool
|
|
texteqfast(Datum a, Datum b)
|
|
{
|
|
/*
|
|
* The use of DEFAULT_COLLATION_OID is fairly arbitrary here. We just
|
|
* want to take the fast "deterministic" path in texteq().
|
|
*/
|
|
return DatumGetBool(DirectFunctionCall2Coll(texteq, DEFAULT_COLLATION_OID, a, b));
|
|
}
|
|
|
|
static uint32
|
|
texthashfast(Datum datum)
|
|
{
|
|
/* analogously here as in texteqfast() */
|
|
return DatumGetInt32(DirectFunctionCall1Coll(hashtext, DEFAULT_COLLATION_OID, datum));
|
|
}
|
|
|
|
static bool
|
|
oidvectoreqfast(Datum a, Datum b)
|
|
{
|
|
return DatumGetBool(DirectFunctionCall2(oidvectoreq, a, b));
|
|
}
|
|
|
|
static uint32
|
|
oidvectorhashfast(Datum datum)
|
|
{
|
|
return DatumGetInt32(DirectFunctionCall1(hashoidvector, datum));
|
|
}
|
|
|
|
/* Lookup support functions for a type. */
|
|
static void
|
|
GetCCHashEqFuncs(Oid keytype, CCHashFN *hashfunc, RegProcedure *eqfunc, CCFastEqualFN *fasteqfunc)
|
|
{
|
|
switch (keytype)
|
|
{
|
|
case BOOLOID:
|
|
*hashfunc = charhashfast;
|
|
*fasteqfunc = chareqfast;
|
|
*eqfunc = F_BOOLEQ;
|
|
break;
|
|
case CHAROID:
|
|
*hashfunc = charhashfast;
|
|
*fasteqfunc = chareqfast;
|
|
*eqfunc = F_CHAREQ;
|
|
break;
|
|
case NAMEOID:
|
|
*hashfunc = namehashfast;
|
|
*fasteqfunc = nameeqfast;
|
|
*eqfunc = F_NAMEEQ;
|
|
break;
|
|
case INT2OID:
|
|
*hashfunc = int2hashfast;
|
|
*fasteqfunc = int2eqfast;
|
|
*eqfunc = F_INT2EQ;
|
|
break;
|
|
case INT4OID:
|
|
*hashfunc = int4hashfast;
|
|
*fasteqfunc = int4eqfast;
|
|
*eqfunc = F_INT4EQ;
|
|
break;
|
|
case TEXTOID:
|
|
*hashfunc = texthashfast;
|
|
*fasteqfunc = texteqfast;
|
|
*eqfunc = F_TEXTEQ;
|
|
break;
|
|
case OIDOID:
|
|
case REGPROCOID:
|
|
case REGPROCEDUREOID:
|
|
case REGOPEROID:
|
|
case REGOPERATOROID:
|
|
case REGCLASSOID:
|
|
case REGTYPEOID:
|
|
case REGCOLLATIONOID:
|
|
case REGCONFIGOID:
|
|
case REGDICTIONARYOID:
|
|
case REGROLEOID:
|
|
case REGNAMESPACEOID:
|
|
*hashfunc = int4hashfast;
|
|
*fasteqfunc = int4eqfast;
|
|
*eqfunc = F_OIDEQ;
|
|
break;
|
|
case OIDVECTOROID:
|
|
*hashfunc = oidvectorhashfast;
|
|
*fasteqfunc = oidvectoreqfast;
|
|
*eqfunc = F_OIDVECTOREQ;
|
|
break;
|
|
default:
|
|
elog(FATAL, "type %u not supported as catcache key", keytype);
|
|
*hashfunc = NULL; /* keep compiler quiet */
|
|
|
|
*eqfunc = InvalidOid;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* CatalogCacheComputeHashValue
|
|
*
|
|
* Compute the hash value associated with a given set of lookup keys
|
|
*/
|
|
static uint32
|
|
CatalogCacheComputeHashValue(CatCache *cache, int nkeys,
|
|
Datum v1, Datum v2, Datum v3, Datum v4)
|
|
{
|
|
uint32 hashValue = 0;
|
|
uint32 oneHash;
|
|
CCHashFN *cc_hashfunc = cache->cc_hashfunc;
|
|
|
|
CACHE_elog(DEBUG2, "CatalogCacheComputeHashValue %s %d %p",
|
|
cache->cc_relname, nkeys, cache);
|
|
|
|
switch (nkeys)
|
|
{
|
|
case 4:
|
|
oneHash = (cc_hashfunc[3]) (v4);
|
|
|
|
hashValue ^= oneHash << 24;
|
|
hashValue ^= oneHash >> 8;
|
|
/* FALLTHROUGH */
|
|
case 3:
|
|
oneHash = (cc_hashfunc[2]) (v3);
|
|
|
|
hashValue ^= oneHash << 16;
|
|
hashValue ^= oneHash >> 16;
|
|
/* FALLTHROUGH */
|
|
case 2:
|
|
oneHash = (cc_hashfunc[1]) (v2);
|
|
|
|
hashValue ^= oneHash << 8;
|
|
hashValue ^= oneHash >> 24;
|
|
/* FALLTHROUGH */
|
|
case 1:
|
|
oneHash = (cc_hashfunc[0]) (v1);
|
|
|
|
hashValue ^= oneHash;
|
|
break;
|
|
default:
|
|
elog(FATAL, "wrong number of hash keys: %d", nkeys);
|
|
break;
|
|
}
|
|
|
|
return hashValue;
|
|
}
|
|
|
|
/*
|
|
* CatalogCacheComputeTupleHashValue
|
|
*
|
|
* Compute the hash value associated with a given tuple to be cached
|
|
*/
|
|
static uint32
|
|
CatalogCacheComputeTupleHashValue(CatCache *cache, int nkeys, HeapTuple tuple)
|
|
{
|
|
Datum v1 = 0,
|
|
v2 = 0,
|
|
v3 = 0,
|
|
v4 = 0;
|
|
bool isNull = false;
|
|
int *cc_keyno = cache->cc_keyno;
|
|
TupleDesc cc_tupdesc = cache->cc_tupdesc;
|
|
|
|
/* Now extract key fields from tuple, insert into scankey */
|
|
switch (nkeys)
|
|
{
|
|
case 4:
|
|
v4 = fastgetattr(tuple,
|
|
cc_keyno[3],
|
|
cc_tupdesc,
|
|
&isNull);
|
|
Assert(!isNull);
|
|
/* FALLTHROUGH */
|
|
case 3:
|
|
v3 = fastgetattr(tuple,
|
|
cc_keyno[2],
|
|
cc_tupdesc,
|
|
&isNull);
|
|
Assert(!isNull);
|
|
/* FALLTHROUGH */
|
|
case 2:
|
|
v2 = fastgetattr(tuple,
|
|
cc_keyno[1],
|
|
cc_tupdesc,
|
|
&isNull);
|
|
Assert(!isNull);
|
|
/* FALLTHROUGH */
|
|
case 1:
|
|
v1 = fastgetattr(tuple,
|
|
cc_keyno[0],
|
|
cc_tupdesc,
|
|
&isNull);
|
|
Assert(!isNull);
|
|
break;
|
|
default:
|
|
elog(FATAL, "wrong number of hash keys: %d", nkeys);
|
|
break;
|
|
}
|
|
|
|
return CatalogCacheComputeHashValue(cache, nkeys, v1, v2, v3, v4);
|
|
}
|
|
|
|
/*
|
|
* CatalogCacheCompareTuple
|
|
*
|
|
* Compare a tuple to the passed arguments.
|
|
*/
|
|
static inline bool
|
|
CatalogCacheCompareTuple(const CatCache *cache, int nkeys,
|
|
const Datum *cachekeys,
|
|
const Datum *searchkeys)
|
|
{
|
|
const CCFastEqualFN *cc_fastequal = cache->cc_fastequal;
|
|
int i;
|
|
|
|
for (i = 0; i < nkeys; i++)
|
|
{
|
|
if (!(cc_fastequal[i]) (cachekeys[i], searchkeys[i]))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
#ifdef CATCACHE_STATS
|
|
|
|
static void
|
|
CatCachePrintStats(int code, Datum arg)
|
|
{
|
|
slist_iter iter;
|
|
long cc_searches = 0;
|
|
long cc_hits = 0;
|
|
long cc_neg_hits = 0;
|
|
long cc_newloads = 0;
|
|
long cc_invals = 0;
|
|
long cc_lsearches = 0;
|
|
long cc_lhits = 0;
|
|
|
|
slist_foreach(iter, &CacheHdr->ch_caches)
|
|
{
|
|
CatCache *cache = slist_container(CatCache, cc_next, iter.cur);
|
|
|
|
if (cache->cc_ntup == 0 && cache->cc_searches == 0)
|
|
continue; /* don't print unused caches */
|
|
elog(DEBUG2, "catcache %s/%u: %d tup, %ld srch, %ld+%ld=%ld hits, %ld+%ld=%ld loads, %ld invals, %ld lsrch, %ld lhits",
|
|
cache->cc_relname,
|
|
cache->cc_indexoid,
|
|
cache->cc_ntup,
|
|
cache->cc_searches,
|
|
cache->cc_hits,
|
|
cache->cc_neg_hits,
|
|
cache->cc_hits + cache->cc_neg_hits,
|
|
cache->cc_newloads,
|
|
cache->cc_searches - cache->cc_hits - cache->cc_neg_hits - cache->cc_newloads,
|
|
cache->cc_searches - cache->cc_hits - cache->cc_neg_hits,
|
|
cache->cc_invals,
|
|
cache->cc_lsearches,
|
|
cache->cc_lhits);
|
|
cc_searches += cache->cc_searches;
|
|
cc_hits += cache->cc_hits;
|
|
cc_neg_hits += cache->cc_neg_hits;
|
|
cc_newloads += cache->cc_newloads;
|
|
cc_invals += cache->cc_invals;
|
|
cc_lsearches += cache->cc_lsearches;
|
|
cc_lhits += cache->cc_lhits;
|
|
}
|
|
elog(DEBUG2, "catcache totals: %d tup, %ld srch, %ld+%ld=%ld hits, %ld+%ld=%ld loads, %ld invals, %ld lsrch, %ld lhits",
|
|
CacheHdr->ch_ntup,
|
|
cc_searches,
|
|
cc_hits,
|
|
cc_neg_hits,
|
|
cc_hits + cc_neg_hits,
|
|
cc_newloads,
|
|
cc_searches - cc_hits - cc_neg_hits - cc_newloads,
|
|
cc_searches - cc_hits - cc_neg_hits,
|
|
cc_invals,
|
|
cc_lsearches,
|
|
cc_lhits);
|
|
}
|
|
#endif /* CATCACHE_STATS */
|
|
|
|
|
|
/*
|
|
* CatCacheRemoveCTup
|
|
*
|
|
* Unlink and delete the given cache entry
|
|
*
|
|
* NB: if it is a member of a CatCList, the CatCList is deleted too.
|
|
* Both the cache entry and the list had better have zero refcount.
|
|
*/
|
|
static void
|
|
CatCacheRemoveCTup(CatCache *cache, CatCTup *ct)
|
|
{
|
|
Assert(ct->refcount == 0);
|
|
Assert(ct->my_cache == cache);
|
|
|
|
if (ct->c_list)
|
|
{
|
|
/*
|
|
* The cleanest way to handle this is to call CatCacheRemoveCList,
|
|
* which will recurse back to me, and the recursive call will do the
|
|
* work. Set the "dead" flag to make sure it does recurse.
|
|
*/
|
|
ct->dead = true;
|
|
CatCacheRemoveCList(cache, ct->c_list);
|
|
return; /* nothing left to do */
|
|
}
|
|
|
|
/* delink from linked list */
|
|
dlist_delete(&ct->cache_elem);
|
|
|
|
/*
|
|
* Free keys when we're dealing with a negative entry, normal entries just
|
|
* point into tuple, allocated together with the CatCTup.
|
|
*/
|
|
if (ct->negative)
|
|
CatCacheFreeKeys(cache->cc_tupdesc, cache->cc_nkeys,
|
|
cache->cc_keyno, ct->keys);
|
|
|
|
pfree(ct);
|
|
|
|
--cache->cc_ntup;
|
|
--CacheHdr->ch_ntup;
|
|
}
|
|
|
|
/*
|
|
* CatCacheRemoveCList
|
|
*
|
|
* Unlink and delete the given cache list entry
|
|
*
|
|
* NB: any dead member entries that become unreferenced are deleted too.
|
|
*/
|
|
static void
|
|
CatCacheRemoveCList(CatCache *cache, CatCList *cl)
|
|
{
|
|
int i;
|
|
|
|
Assert(cl->refcount == 0);
|
|
Assert(cl->my_cache == cache);
|
|
|
|
/* delink from member tuples */
|
|
for (i = cl->n_members; --i >= 0;)
|
|
{
|
|
CatCTup *ct = cl->members[i];
|
|
|
|
Assert(ct->c_list == cl);
|
|
ct->c_list = NULL;
|
|
/* if the member is dead and now has no references, remove it */
|
|
if (
|
|
#ifndef CATCACHE_FORCE_RELEASE
|
|
ct->dead &&
|
|
#endif
|
|
ct->refcount == 0)
|
|
CatCacheRemoveCTup(cache, ct);
|
|
}
|
|
|
|
/* delink from linked list */
|
|
dlist_delete(&cl->cache_elem);
|
|
|
|
/* free associated column data */
|
|
CatCacheFreeKeys(cache->cc_tupdesc, cl->nkeys,
|
|
cache->cc_keyno, cl->keys);
|
|
|
|
pfree(cl);
|
|
}
|
|
|
|
|
|
/*
|
|
* CatCacheInvalidate
|
|
*
|
|
* Invalidate entries in the specified cache, given a hash value.
|
|
*
|
|
* We delete cache entries that match the hash value, whether positive
|
|
* or negative. We don't care whether the invalidation is the result
|
|
* of a tuple insertion or a deletion.
|
|
*
|
|
* We used to try to match positive cache entries by TID, but that is
|
|
* unsafe after a VACUUM FULL on a system catalog: an inval event could
|
|
* be queued before VACUUM FULL, and then processed afterwards, when the
|
|
* target tuple that has to be invalidated has a different TID than it
|
|
* did when the event was created. So now we just compare hash values and
|
|
* accept the small risk of unnecessary invalidations due to false matches.
|
|
*
|
|
* This routine is only quasi-public: it should only be used by inval.c.
|
|
*/
|
|
void
|
|
CatCacheInvalidate(CatCache *cache, uint32 hashValue)
|
|
{
|
|
Index hashIndex;
|
|
dlist_mutable_iter iter;
|
|
|
|
CACHE_elog(DEBUG2, "CatCacheInvalidate: called");
|
|
|
|
/*
|
|
* We don't bother to check whether the cache has finished initialization
|
|
* yet; if not, there will be no entries in it so no problem.
|
|
*/
|
|
|
|
/*
|
|
* Invalidate *all* CatCLists in this cache; it's too hard to tell which
|
|
* searches might still be correct, so just zap 'em all.
|
|
*/
|
|
dlist_foreach_modify(iter, &cache->cc_lists)
|
|
{
|
|
CatCList *cl = dlist_container(CatCList, cache_elem, iter.cur);
|
|
|
|
if (cl->refcount > 0)
|
|
cl->dead = true;
|
|
else
|
|
CatCacheRemoveCList(cache, cl);
|
|
}
|
|
|
|
/*
|
|
* inspect the proper hash bucket for tuple matches
|
|
*/
|
|
hashIndex = HASH_INDEX(hashValue, cache->cc_nbuckets);
|
|
dlist_foreach_modify(iter, &cache->cc_bucket[hashIndex])
|
|
{
|
|
CatCTup *ct = dlist_container(CatCTup, cache_elem, iter.cur);
|
|
|
|
if (hashValue == ct->hash_value)
|
|
{
|
|
if (ct->refcount > 0 ||
|
|
(ct->c_list && ct->c_list->refcount > 0))
|
|
{
|
|
ct->dead = true;
|
|
/* list, if any, was marked dead above */
|
|
Assert(ct->c_list == NULL || ct->c_list->dead);
|
|
}
|
|
else
|
|
CatCacheRemoveCTup(cache, ct);
|
|
CACHE_elog(DEBUG2, "CatCacheInvalidate: invalidated");
|
|
#ifdef CATCACHE_STATS
|
|
cache->cc_invals++;
|
|
#endif
|
|
/* could be multiple matches, so keep looking! */
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* public functions
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
|
|
|
|
/*
|
|
* Standard routine for creating cache context if it doesn't exist yet
|
|
*
|
|
* There are a lot of places (probably far more than necessary) that check
|
|
* whether CacheMemoryContext exists yet and want to create it if not.
|
|
* We centralize knowledge of exactly how to create it here.
|
|
*/
|
|
void
|
|
CreateCacheMemoryContext(void)
|
|
{
|
|
/*
|
|
* Purely for paranoia, check that context doesn't exist; caller probably
|
|
* did so already.
|
|
*/
|
|
if (!CacheMemoryContext)
|
|
CacheMemoryContext = AllocSetContextCreate(TopMemoryContext,
|
|
"CacheMemoryContext",
|
|
ALLOCSET_DEFAULT_SIZES);
|
|
}
|
|
|
|
|
|
/*
|
|
* ResetCatalogCache
|
|
*
|
|
* Reset one catalog cache to empty.
|
|
*
|
|
* This is not very efficient if the target cache is nearly empty.
|
|
* However, it shouldn't need to be efficient; we don't invoke it often.
|
|
*/
|
|
static void
|
|
ResetCatalogCache(CatCache *cache)
|
|
{
|
|
dlist_mutable_iter iter;
|
|
int i;
|
|
|
|
/* Remove each list in this cache, or at least mark it dead */
|
|
dlist_foreach_modify(iter, &cache->cc_lists)
|
|
{
|
|
CatCList *cl = dlist_container(CatCList, cache_elem, iter.cur);
|
|
|
|
if (cl->refcount > 0)
|
|
cl->dead = true;
|
|
else
|
|
CatCacheRemoveCList(cache, cl);
|
|
}
|
|
|
|
/* Remove each tuple in this cache, or at least mark it dead */
|
|
for (i = 0; i < cache->cc_nbuckets; i++)
|
|
{
|
|
dlist_head *bucket = &cache->cc_bucket[i];
|
|
|
|
dlist_foreach_modify(iter, bucket)
|
|
{
|
|
CatCTup *ct = dlist_container(CatCTup, cache_elem, iter.cur);
|
|
|
|
if (ct->refcount > 0 ||
|
|
(ct->c_list && ct->c_list->refcount > 0))
|
|
{
|
|
ct->dead = true;
|
|
/* list, if any, was marked dead above */
|
|
Assert(ct->c_list == NULL || ct->c_list->dead);
|
|
}
|
|
else
|
|
CatCacheRemoveCTup(cache, ct);
|
|
#ifdef CATCACHE_STATS
|
|
cache->cc_invals++;
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* ResetCatalogCaches
|
|
*
|
|
* Reset all caches when a shared cache inval event forces it
|
|
*/
|
|
void
|
|
ResetCatalogCaches(void)
|
|
{
|
|
slist_iter iter;
|
|
|
|
CACHE_elog(DEBUG2, "ResetCatalogCaches called");
|
|
|
|
slist_foreach(iter, &CacheHdr->ch_caches)
|
|
{
|
|
CatCache *cache = slist_container(CatCache, cc_next, iter.cur);
|
|
|
|
ResetCatalogCache(cache);
|
|
}
|
|
|
|
CACHE_elog(DEBUG2, "end of ResetCatalogCaches call");
|
|
}
|
|
|
|
/*
|
|
* CatalogCacheFlushCatalog
|
|
*
|
|
* Flush all catcache entries that came from the specified system catalog.
|
|
* This is needed after VACUUM FULL/CLUSTER on the catalog, since the
|
|
* tuples very likely now have different TIDs than before. (At one point
|
|
* we also tried to force re-execution of CatalogCacheInitializeCache for
|
|
* the cache(s) on that catalog. This is a bad idea since it leads to all
|
|
* kinds of trouble if a cache flush occurs while loading cache entries.
|
|
* We now avoid the need to do it by copying cc_tupdesc out of the relcache,
|
|
* rather than relying on the relcache to keep a tupdesc for us. Of course
|
|
* this assumes the tupdesc of a cachable system table will not change...)
|
|
*/
|
|
void
|
|
CatalogCacheFlushCatalog(Oid catId)
|
|
{
|
|
slist_iter iter;
|
|
|
|
CACHE_elog(DEBUG2, "CatalogCacheFlushCatalog called for %u", catId);
|
|
|
|
slist_foreach(iter, &CacheHdr->ch_caches)
|
|
{
|
|
CatCache *cache = slist_container(CatCache, cc_next, iter.cur);
|
|
|
|
/* Does this cache store tuples of the target catalog? */
|
|
if (cache->cc_reloid == catId)
|
|
{
|
|
/* Yes, so flush all its contents */
|
|
ResetCatalogCache(cache);
|
|
|
|
/* Tell inval.c to call syscache callbacks for this cache */
|
|
CallSyscacheCallbacks(cache->id, 0);
|
|
}
|
|
}
|
|
|
|
CACHE_elog(DEBUG2, "end of CatalogCacheFlushCatalog call");
|
|
}
|
|
|
|
/*
|
|
* InitCatCache
|
|
*
|
|
* This allocates and initializes a cache for a system catalog relation.
|
|
* Actually, the cache is only partially initialized to avoid opening the
|
|
* relation. The relation will be opened and the rest of the cache
|
|
* structure initialized on the first access.
|
|
*/
|
|
#ifdef CACHEDEBUG
|
|
#define InitCatCache_DEBUG2 \
|
|
do { \
|
|
elog(DEBUG2, "InitCatCache: rel=%u ind=%u id=%d nkeys=%d size=%d", \
|
|
cp->cc_reloid, cp->cc_indexoid, cp->id, \
|
|
cp->cc_nkeys, cp->cc_nbuckets); \
|
|
} while(0)
|
|
#else
|
|
#define InitCatCache_DEBUG2
|
|
#endif
|
|
|
|
CatCache *
|
|
InitCatCache(int id,
|
|
Oid reloid,
|
|
Oid indexoid,
|
|
int nkeys,
|
|
const int *key,
|
|
int nbuckets)
|
|
{
|
|
CatCache *cp;
|
|
MemoryContext oldcxt;
|
|
size_t sz;
|
|
int i;
|
|
|
|
/*
|
|
* nbuckets is the initial number of hash buckets to use in this catcache.
|
|
* It will be enlarged later if it becomes too full.
|
|
*
|
|
* nbuckets must be a power of two. We check this via Assert rather than
|
|
* a full runtime check because the values will be coming from constant
|
|
* tables.
|
|
*
|
|
* If you're confused by the power-of-two check, see comments in
|
|
* bitmapset.c for an explanation.
|
|
*/
|
|
Assert(nbuckets > 0 && (nbuckets & -nbuckets) == nbuckets);
|
|
|
|
/*
|
|
* first switch to the cache context so our allocations do not vanish at
|
|
* the end of a transaction
|
|
*/
|
|
if (!CacheMemoryContext)
|
|
CreateCacheMemoryContext();
|
|
|
|
oldcxt = MemoryContextSwitchTo(CacheMemoryContext);
|
|
|
|
/*
|
|
* if first time through, initialize the cache group header
|
|
*/
|
|
if (CacheHdr == NULL)
|
|
{
|
|
CacheHdr = (CatCacheHeader *) palloc(sizeof(CatCacheHeader));
|
|
slist_init(&CacheHdr->ch_caches);
|
|
CacheHdr->ch_ntup = 0;
|
|
#ifdef CATCACHE_STATS
|
|
/* set up to dump stats at backend exit */
|
|
on_proc_exit(CatCachePrintStats, 0);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Allocate a new cache structure, aligning to a cacheline boundary
|
|
*
|
|
* Note: we rely on zeroing to initialize all the dlist headers correctly
|
|
*/
|
|
sz = sizeof(CatCache) + PG_CACHE_LINE_SIZE;
|
|
cp = (CatCache *) CACHELINEALIGN(palloc0(sz));
|
|
cp->cc_bucket = palloc0(nbuckets * sizeof(dlist_head));
|
|
|
|
/*
|
|
* initialize the cache's relation information for the relation
|
|
* corresponding to this cache, and initialize some of the new cache's
|
|
* other internal fields. But don't open the relation yet.
|
|
*/
|
|
cp->id = id;
|
|
cp->cc_relname = "(not known yet)";
|
|
cp->cc_reloid = reloid;
|
|
cp->cc_indexoid = indexoid;
|
|
cp->cc_relisshared = false; /* temporary */
|
|
cp->cc_tupdesc = (TupleDesc) NULL;
|
|
cp->cc_ntup = 0;
|
|
cp->cc_nbuckets = nbuckets;
|
|
cp->cc_nkeys = nkeys;
|
|
for (i = 0; i < nkeys; ++i)
|
|
cp->cc_keyno[i] = key[i];
|
|
|
|
/*
|
|
* new cache is initialized as far as we can go for now. print some
|
|
* debugging information, if appropriate.
|
|
*/
|
|
InitCatCache_DEBUG2;
|
|
|
|
/*
|
|
* add completed cache to top of group header's list
|
|
*/
|
|
slist_push_head(&CacheHdr->ch_caches, &cp->cc_next);
|
|
|
|
/*
|
|
* back to the old context before we return...
|
|
*/
|
|
MemoryContextSwitchTo(oldcxt);
|
|
|
|
return cp;
|
|
}
|
|
|
|
/*
|
|
* Enlarge a catcache, doubling the number of buckets.
|
|
*/
|
|
static void
|
|
RehashCatCache(CatCache *cp)
|
|
{
|
|
dlist_head *newbucket;
|
|
int newnbuckets;
|
|
int i;
|
|
|
|
elog(DEBUG1, "rehashing catalog cache id %d for %s; %d tups, %d buckets",
|
|
cp->id, cp->cc_relname, cp->cc_ntup, cp->cc_nbuckets);
|
|
|
|
/* Allocate a new, larger, hash table. */
|
|
newnbuckets = cp->cc_nbuckets * 2;
|
|
newbucket = (dlist_head *) MemoryContextAllocZero(CacheMemoryContext, newnbuckets * sizeof(dlist_head));
|
|
|
|
/* Move all entries from old hash table to new. */
|
|
for (i = 0; i < cp->cc_nbuckets; i++)
|
|
{
|
|
dlist_mutable_iter iter;
|
|
|
|
dlist_foreach_modify(iter, &cp->cc_bucket[i])
|
|
{
|
|
CatCTup *ct = dlist_container(CatCTup, cache_elem, iter.cur);
|
|
int hashIndex = HASH_INDEX(ct->hash_value, newnbuckets);
|
|
|
|
dlist_delete(iter.cur);
|
|
dlist_push_head(&newbucket[hashIndex], &ct->cache_elem);
|
|
}
|
|
}
|
|
|
|
/* Switch to the new array. */
|
|
pfree(cp->cc_bucket);
|
|
cp->cc_nbuckets = newnbuckets;
|
|
cp->cc_bucket = newbucket;
|
|
}
|
|
|
|
/*
|
|
* CatalogCacheInitializeCache
|
|
*
|
|
* This function does final initialization of a catcache: obtain the tuple
|
|
* descriptor and set up the hash and equality function links. We assume
|
|
* that the relcache entry can be opened at this point!
|
|
*/
|
|
#ifdef CACHEDEBUG
|
|
#define CatalogCacheInitializeCache_DEBUG1 \
|
|
elog(DEBUG2, "CatalogCacheInitializeCache: cache @%p rel=%u", cache, \
|
|
cache->cc_reloid)
|
|
|
|
#define CatalogCacheInitializeCache_DEBUG2 \
|
|
do { \
|
|
if (cache->cc_keyno[i] > 0) { \
|
|
elog(DEBUG2, "CatalogCacheInitializeCache: load %d/%d w/%d, %u", \
|
|
i+1, cache->cc_nkeys, cache->cc_keyno[i], \
|
|
TupleDescAttr(tupdesc, cache->cc_keyno[i] - 1)->atttypid); \
|
|
} else { \
|
|
elog(DEBUG2, "CatalogCacheInitializeCache: load %d/%d w/%d", \
|
|
i+1, cache->cc_nkeys, cache->cc_keyno[i]); \
|
|
} \
|
|
} while(0)
|
|
#else
|
|
#define CatalogCacheInitializeCache_DEBUG1
|
|
#define CatalogCacheInitializeCache_DEBUG2
|
|
#endif
|
|
|
|
static void
|
|
CatalogCacheInitializeCache(CatCache *cache)
|
|
{
|
|
Relation relation;
|
|
MemoryContext oldcxt;
|
|
TupleDesc tupdesc;
|
|
int i;
|
|
|
|
CatalogCacheInitializeCache_DEBUG1;
|
|
|
|
relation = table_open(cache->cc_reloid, AccessShareLock);
|
|
|
|
/*
|
|
* switch to the cache context so our allocations do not vanish at the end
|
|
* of a transaction
|
|
*/
|
|
Assert(CacheMemoryContext != NULL);
|
|
|
|
oldcxt = MemoryContextSwitchTo(CacheMemoryContext);
|
|
|
|
/*
|
|
* copy the relcache's tuple descriptor to permanent cache storage
|
|
*/
|
|
tupdesc = CreateTupleDescCopyConstr(RelationGetDescr(relation));
|
|
|
|
/*
|
|
* save the relation's name and relisshared flag, too (cc_relname is used
|
|
* only for debugging purposes)
|
|
*/
|
|
cache->cc_relname = pstrdup(RelationGetRelationName(relation));
|
|
cache->cc_relisshared = RelationGetForm(relation)->relisshared;
|
|
|
|
/*
|
|
* return to the caller's memory context and close the rel
|
|
*/
|
|
MemoryContextSwitchTo(oldcxt);
|
|
|
|
table_close(relation, AccessShareLock);
|
|
|
|
CACHE_elog(DEBUG2, "CatalogCacheInitializeCache: %s, %d keys",
|
|
cache->cc_relname, cache->cc_nkeys);
|
|
|
|
/*
|
|
* initialize cache's key information
|
|
*/
|
|
for (i = 0; i < cache->cc_nkeys; ++i)
|
|
{
|
|
Oid keytype;
|
|
RegProcedure eqfunc;
|
|
|
|
CatalogCacheInitializeCache_DEBUG2;
|
|
|
|
if (cache->cc_keyno[i] > 0)
|
|
{
|
|
Form_pg_attribute attr = TupleDescAttr(tupdesc,
|
|
cache->cc_keyno[i] - 1);
|
|
|
|
keytype = attr->atttypid;
|
|
/* cache key columns should always be NOT NULL */
|
|
Assert(attr->attnotnull);
|
|
}
|
|
else
|
|
{
|
|
if (cache->cc_keyno[i] < 0)
|
|
elog(FATAL, "sys attributes are not supported in caches");
|
|
keytype = OIDOID;
|
|
}
|
|
|
|
GetCCHashEqFuncs(keytype,
|
|
&cache->cc_hashfunc[i],
|
|
&eqfunc,
|
|
&cache->cc_fastequal[i]);
|
|
|
|
/*
|
|
* Do equality-function lookup (we assume this won't need a catalog
|
|
* lookup for any supported type)
|
|
*/
|
|
fmgr_info_cxt(eqfunc,
|
|
&cache->cc_skey[i].sk_func,
|
|
CacheMemoryContext);
|
|
|
|
/* Initialize sk_attno suitably for HeapKeyTest() and heap scans */
|
|
cache->cc_skey[i].sk_attno = cache->cc_keyno[i];
|
|
|
|
/* Fill in sk_strategy as well --- always standard equality */
|
|
cache->cc_skey[i].sk_strategy = BTEqualStrategyNumber;
|
|
cache->cc_skey[i].sk_subtype = InvalidOid;
|
|
/* If a catcache key requires a collation, it must be C collation */
|
|
cache->cc_skey[i].sk_collation = C_COLLATION_OID;
|
|
|
|
CACHE_elog(DEBUG2, "CatalogCacheInitializeCache %s %d %p",
|
|
cache->cc_relname, i, cache);
|
|
}
|
|
|
|
/*
|
|
* mark this cache fully initialized
|
|
*/
|
|
cache->cc_tupdesc = tupdesc;
|
|
}
|
|
|
|
/*
|
|
* InitCatCachePhase2 -- external interface for CatalogCacheInitializeCache
|
|
*
|
|
* One reason to call this routine is to ensure that the relcache has
|
|
* created entries for all the catalogs and indexes referenced by catcaches.
|
|
* Therefore, provide an option to open the index as well as fixing the
|
|
* cache itself. An exception is the indexes on pg_am, which we don't use
|
|
* (cf. IndexScanOK).
|
|
*/
|
|
void
|
|
InitCatCachePhase2(CatCache *cache, bool touch_index)
|
|
{
|
|
if (cache->cc_tupdesc == NULL)
|
|
CatalogCacheInitializeCache(cache);
|
|
|
|
if (touch_index &&
|
|
cache->id != AMOID &&
|
|
cache->id != AMNAME)
|
|
{
|
|
Relation idesc;
|
|
|
|
/*
|
|
* We must lock the underlying catalog before opening the index to
|
|
* avoid deadlock, since index_open could possibly result in reading
|
|
* this same catalog, and if anyone else is exclusive-locking this
|
|
* catalog and index they'll be doing it in that order.
|
|
*/
|
|
LockRelationOid(cache->cc_reloid, AccessShareLock);
|
|
idesc = index_open(cache->cc_indexoid, AccessShareLock);
|
|
|
|
/*
|
|
* While we've got the index open, let's check that it's unique (and
|
|
* not just deferrable-unique, thank you very much). This is just to
|
|
* catch thinkos in definitions of new catcaches, so we don't worry
|
|
* about the pg_am indexes not getting tested.
|
|
*/
|
|
Assert(idesc->rd_index->indisunique &&
|
|
idesc->rd_index->indimmediate);
|
|
|
|
index_close(idesc, AccessShareLock);
|
|
UnlockRelationOid(cache->cc_reloid, AccessShareLock);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* IndexScanOK
|
|
*
|
|
* This function checks for tuples that will be fetched by
|
|
* IndexSupportInitialize() during relcache initialization for
|
|
* certain system indexes that support critical syscaches.
|
|
* We can't use an indexscan to fetch these, else we'll get into
|
|
* infinite recursion. A plain heap scan will work, however.
|
|
* Once we have completed relcache initialization (signaled by
|
|
* criticalRelcachesBuilt), we don't have to worry anymore.
|
|
*
|
|
* Similarly, during backend startup we have to be able to use the
|
|
* pg_authid, pg_auth_members and pg_database syscaches for
|
|
* authentication even if we don't yet have relcache entries for those
|
|
* catalogs' indexes.
|
|
*/
|
|
static bool
|
|
IndexScanOK(CatCache *cache, ScanKey cur_skey)
|
|
{
|
|
switch (cache->id)
|
|
{
|
|
case INDEXRELID:
|
|
|
|
/*
|
|
* Rather than tracking exactly which indexes have to be loaded
|
|
* before we can use indexscans (which changes from time to time),
|
|
* just force all pg_index searches to be heap scans until we've
|
|
* built the critical relcaches.
|
|
*/
|
|
if (!criticalRelcachesBuilt)
|
|
return false;
|
|
break;
|
|
|
|
case AMOID:
|
|
case AMNAME:
|
|
|
|
/*
|
|
* Always do heap scans in pg_am, because it's so small there's
|
|
* not much point in an indexscan anyway. We *must* do this when
|
|
* initially building critical relcache entries, but we might as
|
|
* well just always do it.
|
|
*/
|
|
return false;
|
|
|
|
case AUTHNAME:
|
|
case AUTHOID:
|
|
case AUTHMEMMEMROLE:
|
|
case DATABASEOID:
|
|
|
|
/*
|
|
* Protect authentication lookups occurring before relcache has
|
|
* collected entries for shared indexes.
|
|
*/
|
|
if (!criticalSharedRelcachesBuilt)
|
|
return false;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* Normal case, allow index scan */
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* SearchCatCache
|
|
*
|
|
* This call searches a system cache for a tuple, opening the relation
|
|
* if necessary (on the first access to a particular cache).
|
|
*
|
|
* The result is NULL if not found, or a pointer to a HeapTuple in
|
|
* the cache. The caller must not modify the tuple, and must call
|
|
* ReleaseCatCache() when done with it.
|
|
*
|
|
* The search key values should be expressed as Datums of the key columns'
|
|
* datatype(s). (Pass zeroes for any unused parameters.) As a special
|
|
* exception, the passed-in key for a NAME column can be just a C string;
|
|
* the caller need not go to the trouble of converting it to a fully
|
|
* null-padded NAME.
|
|
*/
|
|
HeapTuple
|
|
SearchCatCache(CatCache *cache,
|
|
Datum v1,
|
|
Datum v2,
|
|
Datum v3,
|
|
Datum v4)
|
|
{
|
|
return SearchCatCacheInternal(cache, cache->cc_nkeys, v1, v2, v3, v4);
|
|
}
|
|
|
|
|
|
/*
|
|
* SearchCatCacheN() are SearchCatCache() versions for a specific number of
|
|
* arguments. The compiler can inline the body and unroll loops, making them a
|
|
* bit faster than SearchCatCache().
|
|
*/
|
|
|
|
HeapTuple
|
|
SearchCatCache1(CatCache *cache,
|
|
Datum v1)
|
|
{
|
|
return SearchCatCacheInternal(cache, 1, v1, 0, 0, 0);
|
|
}
|
|
|
|
|
|
HeapTuple
|
|
SearchCatCache2(CatCache *cache,
|
|
Datum v1, Datum v2)
|
|
{
|
|
return SearchCatCacheInternal(cache, 2, v1, v2, 0, 0);
|
|
}
|
|
|
|
|
|
HeapTuple
|
|
SearchCatCache3(CatCache *cache,
|
|
Datum v1, Datum v2, Datum v3)
|
|
{
|
|
return SearchCatCacheInternal(cache, 3, v1, v2, v3, 0);
|
|
}
|
|
|
|
|
|
HeapTuple
|
|
SearchCatCache4(CatCache *cache,
|
|
Datum v1, Datum v2, Datum v3, Datum v4)
|
|
{
|
|
return SearchCatCacheInternal(cache, 4, v1, v2, v3, v4);
|
|
}
|
|
|
|
/*
|
|
* Work-horse for SearchCatCache/SearchCatCacheN.
|
|
*/
|
|
static inline HeapTuple
|
|
SearchCatCacheInternal(CatCache *cache,
|
|
int nkeys,
|
|
Datum v1,
|
|
Datum v2,
|
|
Datum v3,
|
|
Datum v4)
|
|
{
|
|
Datum arguments[CATCACHE_MAXKEYS];
|
|
uint32 hashValue;
|
|
Index hashIndex;
|
|
dlist_iter iter;
|
|
dlist_head *bucket;
|
|
CatCTup *ct;
|
|
|
|
/* Make sure we're in an xact, even if this ends up being a cache hit */
|
|
Assert(IsTransactionState());
|
|
|
|
Assert(cache->cc_nkeys == nkeys);
|
|
|
|
/*
|
|
* one-time startup overhead for each cache
|
|
*/
|
|
if (unlikely(cache->cc_tupdesc == NULL))
|
|
CatalogCacheInitializeCache(cache);
|
|
|
|
#ifdef CATCACHE_STATS
|
|
cache->cc_searches++;
|
|
#endif
|
|
|
|
/* Initialize local parameter array */
|
|
arguments[0] = v1;
|
|
arguments[1] = v2;
|
|
arguments[2] = v3;
|
|
arguments[3] = v4;
|
|
|
|
/*
|
|
* find the hash bucket in which to look for the tuple
|
|
*/
|
|
hashValue = CatalogCacheComputeHashValue(cache, nkeys, v1, v2, v3, v4);
|
|
hashIndex = HASH_INDEX(hashValue, cache->cc_nbuckets);
|
|
|
|
/*
|
|
* scan the hash bucket until we find a match or exhaust our tuples
|
|
*
|
|
* Note: it's okay to use dlist_foreach here, even though we modify the
|
|
* dlist within the loop, because we don't continue the loop afterwards.
|
|
*/
|
|
bucket = &cache->cc_bucket[hashIndex];
|
|
dlist_foreach(iter, bucket)
|
|
{
|
|
ct = dlist_container(CatCTup, cache_elem, iter.cur);
|
|
|
|
if (ct->dead)
|
|
continue; /* ignore dead entries */
|
|
|
|
if (ct->hash_value != hashValue)
|
|
continue; /* quickly skip entry if wrong hash val */
|
|
|
|
if (!CatalogCacheCompareTuple(cache, nkeys, ct->keys, arguments))
|
|
continue;
|
|
|
|
/*
|
|
* We found a match in the cache. Move it to the front of the list
|
|
* for its hashbucket, in order to speed subsequent searches. (The
|
|
* most frequently accessed elements in any hashbucket will tend to be
|
|
* near the front of the hashbucket's list.)
|
|
*/
|
|
dlist_move_head(bucket, &ct->cache_elem);
|
|
|
|
/*
|
|
* If it's a positive entry, bump its refcount and return it. If it's
|
|
* negative, we can report failure to the caller.
|
|
*/
|
|
if (!ct->negative)
|
|
{
|
|
ResourceOwnerEnlargeCatCacheRefs(CurrentResourceOwner);
|
|
ct->refcount++;
|
|
ResourceOwnerRememberCatCacheRef(CurrentResourceOwner, &ct->tuple);
|
|
|
|
CACHE_elog(DEBUG2, "SearchCatCache(%s): found in bucket %d",
|
|
cache->cc_relname, hashIndex);
|
|
|
|
#ifdef CATCACHE_STATS
|
|
cache->cc_hits++;
|
|
#endif
|
|
|
|
return &ct->tuple;
|
|
}
|
|
else
|
|
{
|
|
CACHE_elog(DEBUG2, "SearchCatCache(%s): found neg entry in bucket %d",
|
|
cache->cc_relname, hashIndex);
|
|
|
|
#ifdef CATCACHE_STATS
|
|
cache->cc_neg_hits++;
|
|
#endif
|
|
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
return SearchCatCacheMiss(cache, nkeys, hashValue, hashIndex, v1, v2, v3, v4);
|
|
}
|
|
|
|
/*
|
|
* Search the actual catalogs, rather than the cache.
|
|
*
|
|
* This is kept separate from SearchCatCacheInternal() to keep the fast-path
|
|
* as small as possible. To avoid that effort being undone by a helpful
|
|
* compiler, try to explicitly forbid inlining.
|
|
*/
|
|
static pg_noinline HeapTuple
|
|
SearchCatCacheMiss(CatCache *cache,
|
|
int nkeys,
|
|
uint32 hashValue,
|
|
Index hashIndex,
|
|
Datum v1,
|
|
Datum v2,
|
|
Datum v3,
|
|
Datum v4)
|
|
{
|
|
ScanKeyData cur_skey[CATCACHE_MAXKEYS];
|
|
Relation relation;
|
|
SysScanDesc scandesc;
|
|
HeapTuple ntp;
|
|
CatCTup *ct;
|
|
bool stale;
|
|
Datum arguments[CATCACHE_MAXKEYS];
|
|
|
|
/* Initialize local parameter array */
|
|
arguments[0] = v1;
|
|
arguments[1] = v2;
|
|
arguments[2] = v3;
|
|
arguments[3] = v4;
|
|
|
|
/*
|
|
* Tuple was not found in cache, so we have to try to retrieve it directly
|
|
* from the relation. If found, we will add it to the cache; if not
|
|
* found, we will add a negative cache entry instead.
|
|
*
|
|
* NOTE: it is possible for recursive cache lookups to occur while reading
|
|
* the relation --- for example, due to shared-cache-inval messages being
|
|
* processed during table_open(). This is OK. It's even possible for one
|
|
* of those lookups to find and enter the very same tuple we are trying to
|
|
* fetch here. If that happens, we will enter a second copy of the tuple
|
|
* into the cache. The first copy will never be referenced again, and
|
|
* will eventually age out of the cache, so there's no functional problem.
|
|
* This case is rare enough that it's not worth expending extra cycles to
|
|
* detect.
|
|
*
|
|
* Another case, which we *must* handle, is that the tuple could become
|
|
* outdated during CatalogCacheCreateEntry's attempt to detoast it (since
|
|
* AcceptInvalidationMessages can run during TOAST table access). We do
|
|
* not want to return already-stale catcache entries, so we loop around
|
|
* and do the table scan again if that happens.
|
|
*/
|
|
relation = table_open(cache->cc_reloid, AccessShareLock);
|
|
|
|
do
|
|
{
|
|
/*
|
|
* Ok, need to make a lookup in the relation, copy the scankey and
|
|
* fill out any per-call fields. (We must re-do this when retrying,
|
|
* because systable_beginscan scribbles on the scankey.)
|
|
*/
|
|
memcpy(cur_skey, cache->cc_skey, sizeof(ScanKeyData) * nkeys);
|
|
cur_skey[0].sk_argument = v1;
|
|
cur_skey[1].sk_argument = v2;
|
|
cur_skey[2].sk_argument = v3;
|
|
cur_skey[3].sk_argument = v4;
|
|
|
|
scandesc = systable_beginscan(relation,
|
|
cache->cc_indexoid,
|
|
IndexScanOK(cache, cur_skey),
|
|
NULL,
|
|
nkeys,
|
|
cur_skey);
|
|
|
|
ct = NULL;
|
|
stale = false;
|
|
|
|
while (HeapTupleIsValid(ntp = systable_getnext(scandesc)))
|
|
{
|
|
ct = CatalogCacheCreateEntry(cache, ntp, scandesc, NULL,
|
|
hashValue, hashIndex);
|
|
/* upon failure, we must start the scan over */
|
|
if (ct == NULL)
|
|
{
|
|
stale = true;
|
|
break;
|
|
}
|
|
/* immediately set the refcount to 1 */
|
|
ResourceOwnerEnlargeCatCacheRefs(CurrentResourceOwner);
|
|
ct->refcount++;
|
|
ResourceOwnerRememberCatCacheRef(CurrentResourceOwner, &ct->tuple);
|
|
break; /* assume only one match */
|
|
}
|
|
|
|
systable_endscan(scandesc);
|
|
} while (stale);
|
|
|
|
table_close(relation, AccessShareLock);
|
|
|
|
/*
|
|
* If tuple was not found, we need to build a negative cache entry
|
|
* containing a fake tuple. The fake tuple has the correct key columns,
|
|
* but nulls everywhere else.
|
|
*
|
|
* In bootstrap mode, we don't build negative entries, because the cache
|
|
* invalidation mechanism isn't alive and can't clear them if the tuple
|
|
* gets created later. (Bootstrap doesn't do UPDATEs, so it doesn't need
|
|
* cache inval for that.)
|
|
*/
|
|
if (ct == NULL)
|
|
{
|
|
if (IsBootstrapProcessingMode())
|
|
return NULL;
|
|
|
|
ct = CatalogCacheCreateEntry(cache, NULL, NULL, arguments,
|
|
hashValue, hashIndex);
|
|
|
|
/* Creating a negative cache entry shouldn't fail */
|
|
Assert(ct != NULL);
|
|
|
|
CACHE_elog(DEBUG2, "SearchCatCache(%s): Contains %d/%d tuples",
|
|
cache->cc_relname, cache->cc_ntup, CacheHdr->ch_ntup);
|
|
CACHE_elog(DEBUG2, "SearchCatCache(%s): put neg entry in bucket %d",
|
|
cache->cc_relname, hashIndex);
|
|
|
|
/*
|
|
* We are not returning the negative entry to the caller, so leave its
|
|
* refcount zero.
|
|
*/
|
|
|
|
return NULL;
|
|
}
|
|
|
|
CACHE_elog(DEBUG2, "SearchCatCache(%s): Contains %d/%d tuples",
|
|
cache->cc_relname, cache->cc_ntup, CacheHdr->ch_ntup);
|
|
CACHE_elog(DEBUG2, "SearchCatCache(%s): put in bucket %d",
|
|
cache->cc_relname, hashIndex);
|
|
|
|
#ifdef CATCACHE_STATS
|
|
cache->cc_newloads++;
|
|
#endif
|
|
|
|
return &ct->tuple;
|
|
}
|
|
|
|
/*
|
|
* ReleaseCatCache
|
|
*
|
|
* Decrement the reference count of a catcache entry (releasing the
|
|
* hold grabbed by a successful SearchCatCache).
|
|
*
|
|
* NOTE: if compiled with -DCATCACHE_FORCE_RELEASE then catcache entries
|
|
* will be freed as soon as their refcount goes to zero. In combination
|
|
* with aset.c's CLOBBER_FREED_MEMORY option, this provides a good test
|
|
* to catch references to already-released catcache entries.
|
|
*/
|
|
void
|
|
ReleaseCatCache(HeapTuple tuple)
|
|
{
|
|
CatCTup *ct = (CatCTup *) (((char *) tuple) -
|
|
offsetof(CatCTup, tuple));
|
|
|
|
/* Safety checks to ensure we were handed a cache entry */
|
|
Assert(ct->ct_magic == CT_MAGIC);
|
|
Assert(ct->refcount > 0);
|
|
|
|
ct->refcount--;
|
|
ResourceOwnerForgetCatCacheRef(CurrentResourceOwner, &ct->tuple);
|
|
|
|
if (
|
|
#ifndef CATCACHE_FORCE_RELEASE
|
|
ct->dead &&
|
|
#endif
|
|
ct->refcount == 0 &&
|
|
(ct->c_list == NULL || ct->c_list->refcount == 0))
|
|
CatCacheRemoveCTup(ct->my_cache, ct);
|
|
}
|
|
|
|
|
|
/*
|
|
* GetCatCacheHashValue
|
|
*
|
|
* Compute the hash value for a given set of search keys.
|
|
*
|
|
* The reason for exposing this as part of the API is that the hash value is
|
|
* exposed in cache invalidation operations, so there are places outside the
|
|
* catcache code that need to be able to compute the hash values.
|
|
*/
|
|
uint32
|
|
GetCatCacheHashValue(CatCache *cache,
|
|
Datum v1,
|
|
Datum v2,
|
|
Datum v3,
|
|
Datum v4)
|
|
{
|
|
/*
|
|
* one-time startup overhead for each cache
|
|
*/
|
|
if (cache->cc_tupdesc == NULL)
|
|
CatalogCacheInitializeCache(cache);
|
|
|
|
/*
|
|
* calculate the hash value
|
|
*/
|
|
return CatalogCacheComputeHashValue(cache, cache->cc_nkeys, v1, v2, v3, v4);
|
|
}
|
|
|
|
|
|
/*
|
|
* SearchCatCacheList
|
|
*
|
|
* Generate a list of all tuples matching a partial key (that is,
|
|
* a key specifying just the first K of the cache's N key columns).
|
|
*
|
|
* It doesn't make any sense to specify all of the cache's key columns
|
|
* here: since the key is unique, there could be at most one match, so
|
|
* you ought to use SearchCatCache() instead. Hence this function takes
|
|
* one fewer Datum argument than SearchCatCache() does.
|
|
*
|
|
* The caller must not modify the list object or the pointed-to tuples,
|
|
* and must call ReleaseCatCacheList() when done with the list.
|
|
*/
|
|
CatCList *
|
|
SearchCatCacheList(CatCache *cache,
|
|
int nkeys,
|
|
Datum v1,
|
|
Datum v2,
|
|
Datum v3)
|
|
{
|
|
Datum v4 = 0; /* dummy last-column value */
|
|
Datum arguments[CATCACHE_MAXKEYS];
|
|
uint32 lHashValue;
|
|
dlist_iter iter;
|
|
CatCList *cl;
|
|
CatCTup *ct;
|
|
List *volatile ctlist;
|
|
ListCell *ctlist_item;
|
|
int nmembers;
|
|
bool ordered;
|
|
HeapTuple ntp;
|
|
MemoryContext oldcxt;
|
|
int i;
|
|
|
|
/*
|
|
* one-time startup overhead for each cache
|
|
*/
|
|
if (cache->cc_tupdesc == NULL)
|
|
CatalogCacheInitializeCache(cache);
|
|
|
|
Assert(nkeys > 0 && nkeys < cache->cc_nkeys);
|
|
|
|
#ifdef CATCACHE_STATS
|
|
cache->cc_lsearches++;
|
|
#endif
|
|
|
|
/* Initialize local parameter array */
|
|
arguments[0] = v1;
|
|
arguments[1] = v2;
|
|
arguments[2] = v3;
|
|
arguments[3] = v4;
|
|
|
|
/*
|
|
* compute a hash value of the given keys for faster search. We don't
|
|
* presently divide the CatCList items into buckets, but this still lets
|
|
* us skip non-matching items quickly most of the time.
|
|
*/
|
|
lHashValue = CatalogCacheComputeHashValue(cache, nkeys, v1, v2, v3, v4);
|
|
|
|
/*
|
|
* scan the items until we find a match or exhaust our list
|
|
*
|
|
* Note: it's okay to use dlist_foreach here, even though we modify the
|
|
* dlist within the loop, because we don't continue the loop afterwards.
|
|
*/
|
|
dlist_foreach(iter, &cache->cc_lists)
|
|
{
|
|
cl = dlist_container(CatCList, cache_elem, iter.cur);
|
|
|
|
if (cl->dead)
|
|
continue; /* ignore dead entries */
|
|
|
|
if (cl->hash_value != lHashValue)
|
|
continue; /* quickly skip entry if wrong hash val */
|
|
|
|
/*
|
|
* see if the cached list matches our key.
|
|
*/
|
|
if (cl->nkeys != nkeys)
|
|
continue;
|
|
|
|
if (!CatalogCacheCompareTuple(cache, nkeys, cl->keys, arguments))
|
|
continue;
|
|
|
|
/*
|
|
* We found a matching list. Move the list to the front of the
|
|
* cache's list-of-lists, to speed subsequent searches. (We do not
|
|
* move the members to the fronts of their hashbucket lists, however,
|
|
* since there's no point in that unless they are searched for
|
|
* individually.)
|
|
*/
|
|
dlist_move_head(&cache->cc_lists, &cl->cache_elem);
|
|
|
|
/* Bump the list's refcount and return it */
|
|
ResourceOwnerEnlargeCatCacheListRefs(CurrentResourceOwner);
|
|
cl->refcount++;
|
|
ResourceOwnerRememberCatCacheListRef(CurrentResourceOwner, cl);
|
|
|
|
CACHE_elog(DEBUG2, "SearchCatCacheList(%s): found list",
|
|
cache->cc_relname);
|
|
|
|
#ifdef CATCACHE_STATS
|
|
cache->cc_lhits++;
|
|
#endif
|
|
|
|
return cl;
|
|
}
|
|
|
|
/*
|
|
* List was not found in cache, so we have to build it by reading the
|
|
* relation. For each matching tuple found in the relation, use an
|
|
* existing cache entry if possible, else build a new one.
|
|
*
|
|
* We have to bump the member refcounts temporarily to ensure they won't
|
|
* get dropped from the cache while loading other members. We use a PG_TRY
|
|
* block to ensure we can undo those refcounts if we get an error before
|
|
* we finish constructing the CatCList. ctlist must be valid throughout
|
|
* the PG_TRY block.
|
|
*/
|
|
ResourceOwnerEnlargeCatCacheListRefs(CurrentResourceOwner);
|
|
|
|
ctlist = NIL;
|
|
|
|
PG_TRY();
|
|
{
|
|
ScanKeyData cur_skey[CATCACHE_MAXKEYS];
|
|
Relation relation;
|
|
SysScanDesc scandesc;
|
|
bool stale;
|
|
|
|
relation = table_open(cache->cc_reloid, AccessShareLock);
|
|
|
|
do
|
|
{
|
|
/*
|
|
* Ok, need to make a lookup in the relation, copy the scankey and
|
|
* fill out any per-call fields. (We must re-do this when
|
|
* retrying, because systable_beginscan scribbles on the scankey.)
|
|
*/
|
|
memcpy(cur_skey, cache->cc_skey, sizeof(ScanKeyData) * cache->cc_nkeys);
|
|
cur_skey[0].sk_argument = v1;
|
|
cur_skey[1].sk_argument = v2;
|
|
cur_skey[2].sk_argument = v3;
|
|
cur_skey[3].sk_argument = v4;
|
|
|
|
scandesc = systable_beginscan(relation,
|
|
cache->cc_indexoid,
|
|
IndexScanOK(cache, cur_skey),
|
|
NULL,
|
|
nkeys,
|
|
cur_skey);
|
|
|
|
/* The list will be ordered iff we are doing an index scan */
|
|
ordered = (scandesc->irel != NULL);
|
|
|
|
stale = false;
|
|
|
|
while (HeapTupleIsValid(ntp = systable_getnext(scandesc)))
|
|
{
|
|
uint32 hashValue;
|
|
Index hashIndex;
|
|
bool found = false;
|
|
dlist_head *bucket;
|
|
|
|
/*
|
|
* See if there's an entry for this tuple already.
|
|
*/
|
|
ct = NULL;
|
|
hashValue = CatalogCacheComputeTupleHashValue(cache, cache->cc_nkeys, ntp);
|
|
hashIndex = HASH_INDEX(hashValue, cache->cc_nbuckets);
|
|
|
|
bucket = &cache->cc_bucket[hashIndex];
|
|
dlist_foreach(iter, bucket)
|
|
{
|
|
ct = dlist_container(CatCTup, cache_elem, iter.cur);
|
|
|
|
if (ct->dead || ct->negative)
|
|
continue; /* ignore dead and negative entries */
|
|
|
|
if (ct->hash_value != hashValue)
|
|
continue; /* quickly skip entry if wrong hash val */
|
|
|
|
if (!ItemPointerEquals(&(ct->tuple.t_self), &(ntp->t_self)))
|
|
continue; /* not same tuple */
|
|
|
|
/*
|
|
* Found a match, but can't use it if it belongs to another
|
|
* list already
|
|
*/
|
|
if (ct->c_list)
|
|
continue;
|
|
|
|
found = true;
|
|
break; /* A-OK */
|
|
}
|
|
|
|
if (!found)
|
|
{
|
|
/* We didn't find a usable entry, so make a new one */
|
|
ct = CatalogCacheCreateEntry(cache, ntp, scandesc, NULL,
|
|
hashValue, hashIndex);
|
|
/* upon failure, we must start the scan over */
|
|
if (ct == NULL)
|
|
{
|
|
/*
|
|
* Release refcounts on any items we already had. We dare
|
|
* not try to free them if they're now unreferenced, since
|
|
* an error while doing that would result in the PG_CATCH
|
|
* below doing extra refcount decrements. Besides, we'll
|
|
* likely re-adopt those items in the next iteration, so
|
|
* it's not worth complicating matters to try to get rid
|
|
* of them.
|
|
*/
|
|
foreach(ctlist_item, ctlist)
|
|
{
|
|
ct = (CatCTup *) lfirst(ctlist_item);
|
|
Assert(ct->c_list == NULL);
|
|
Assert(ct->refcount > 0);
|
|
ct->refcount--;
|
|
}
|
|
/* Reset ctlist in preparation for new try */
|
|
ctlist = NIL;
|
|
stale = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Careful here: add entry to ctlist, then bump its refcount */
|
|
/* This way leaves state correct if lappend runs out of memory */
|
|
ctlist = lappend(ctlist, ct);
|
|
ct->refcount++;
|
|
}
|
|
|
|
systable_endscan(scandesc);
|
|
} while (stale);
|
|
|
|
table_close(relation, AccessShareLock);
|
|
|
|
/* Now we can build the CatCList entry. */
|
|
oldcxt = MemoryContextSwitchTo(CacheMemoryContext);
|
|
nmembers = list_length(ctlist);
|
|
cl = (CatCList *)
|
|
palloc(offsetof(CatCList, members) + nmembers * sizeof(CatCTup *));
|
|
|
|
/* Extract key values */
|
|
CatCacheCopyKeys(cache->cc_tupdesc, nkeys, cache->cc_keyno,
|
|
arguments, cl->keys);
|
|
MemoryContextSwitchTo(oldcxt);
|
|
|
|
/*
|
|
* We are now past the last thing that could trigger an elog before we
|
|
* have finished building the CatCList and remembering it in the
|
|
* resource owner. So it's OK to fall out of the PG_TRY, and indeed
|
|
* we'd better do so before we start marking the members as belonging
|
|
* to the list.
|
|
*/
|
|
|
|
}
|
|
PG_CATCH();
|
|
{
|
|
foreach(ctlist_item, ctlist)
|
|
{
|
|
ct = (CatCTup *) lfirst(ctlist_item);
|
|
Assert(ct->c_list == NULL);
|
|
Assert(ct->refcount > 0);
|
|
ct->refcount--;
|
|
if (
|
|
#ifndef CATCACHE_FORCE_RELEASE
|
|
ct->dead &&
|
|
#endif
|
|
ct->refcount == 0 &&
|
|
(ct->c_list == NULL || ct->c_list->refcount == 0))
|
|
CatCacheRemoveCTup(cache, ct);
|
|
}
|
|
|
|
PG_RE_THROW();
|
|
}
|
|
PG_END_TRY();
|
|
|
|
cl->cl_magic = CL_MAGIC;
|
|
cl->my_cache = cache;
|
|
cl->refcount = 0; /* for the moment */
|
|
cl->dead = false;
|
|
cl->ordered = ordered;
|
|
cl->nkeys = nkeys;
|
|
cl->hash_value = lHashValue;
|
|
cl->n_members = nmembers;
|
|
|
|
i = 0;
|
|
foreach(ctlist_item, ctlist)
|
|
{
|
|
cl->members[i++] = ct = (CatCTup *) lfirst(ctlist_item);
|
|
Assert(ct->c_list == NULL);
|
|
ct->c_list = cl;
|
|
/* release the temporary refcount on the member */
|
|
Assert(ct->refcount > 0);
|
|
ct->refcount--;
|
|
/* mark list dead if any members already dead */
|
|
if (ct->dead)
|
|
cl->dead = true;
|
|
}
|
|
Assert(i == nmembers);
|
|
|
|
dlist_push_head(&cache->cc_lists, &cl->cache_elem);
|
|
|
|
/* Finally, bump the list's refcount and return it */
|
|
cl->refcount++;
|
|
ResourceOwnerRememberCatCacheListRef(CurrentResourceOwner, cl);
|
|
|
|
CACHE_elog(DEBUG2, "SearchCatCacheList(%s): made list of %d members",
|
|
cache->cc_relname, nmembers);
|
|
|
|
return cl;
|
|
}
|
|
|
|
/*
|
|
* ReleaseCatCacheList
|
|
*
|
|
* Decrement the reference count of a catcache list.
|
|
*/
|
|
void
|
|
ReleaseCatCacheList(CatCList *list)
|
|
{
|
|
/* Safety checks to ensure we were handed a cache entry */
|
|
Assert(list->cl_magic == CL_MAGIC);
|
|
Assert(list->refcount > 0);
|
|
list->refcount--;
|
|
ResourceOwnerForgetCatCacheListRef(CurrentResourceOwner, list);
|
|
|
|
if (
|
|
#ifndef CATCACHE_FORCE_RELEASE
|
|
list->dead &&
|
|
#endif
|
|
list->refcount == 0)
|
|
CatCacheRemoveCList(list->my_cache, list);
|
|
}
|
|
|
|
|
|
/*
|
|
* CatalogCacheCreateEntry
|
|
* Create a new CatCTup entry, copying the given HeapTuple and other
|
|
* supplied data into it. The new entry initially has refcount 0.
|
|
*
|
|
* To create a normal cache entry, ntp must be the HeapTuple just fetched
|
|
* from scandesc, and "arguments" is not used. To create a negative cache
|
|
* entry, pass NULL for ntp and scandesc; then "arguments" is the cache
|
|
* keys to use. In either case, hashValue/hashIndex are the hash values
|
|
* computed from the cache keys.
|
|
*
|
|
* Returns NULL if we attempt to detoast the tuple and observe that it
|
|
* became stale. (This cannot happen for a negative entry.) Caller must
|
|
* retry the tuple lookup in that case.
|
|
*/
|
|
static CatCTup *
|
|
CatalogCacheCreateEntry(CatCache *cache, HeapTuple ntp, SysScanDesc scandesc,
|
|
Datum *arguments,
|
|
uint32 hashValue, Index hashIndex)
|
|
{
|
|
CatCTup *ct;
|
|
HeapTuple dtp;
|
|
MemoryContext oldcxt;
|
|
|
|
if (ntp)
|
|
{
|
|
int i;
|
|
|
|
/*
|
|
* The visibility recheck below essentially never fails during our
|
|
* regression tests, and there's no easy way to force it to fail for
|
|
* testing purposes. To ensure we have test coverage for the retry
|
|
* paths in our callers, make debug builds randomly fail about 0.1% of
|
|
* the times through this code path, even when there's no toasted
|
|
* fields.
|
|
*/
|
|
#ifdef USE_ASSERT_CHECKING
|
|
if (random() <= (MAX_RANDOM_VALUE / 1000))
|
|
return NULL;
|
|
#endif
|
|
|
|
/*
|
|
* If there are any out-of-line toasted fields in the tuple, expand
|
|
* them in-line. This saves cycles during later use of the catcache
|
|
* entry, and also protects us against the possibility of the toast
|
|
* tuples being freed before we attempt to fetch them, in case of
|
|
* something using a slightly stale catcache entry.
|
|
*/
|
|
if (HeapTupleHasExternal(ntp))
|
|
{
|
|
dtp = toast_flatten_tuple(ntp, cache->cc_tupdesc);
|
|
|
|
/*
|
|
* The tuple could become stale while we are doing toast table
|
|
* access (since AcceptInvalidationMessages can run then), so we
|
|
* must recheck its visibility afterwards.
|
|
*/
|
|
if (!systable_recheck_tuple(scandesc, ntp))
|
|
{
|
|
heap_freetuple(dtp);
|
|
return NULL;
|
|
}
|
|
}
|
|
else
|
|
dtp = ntp;
|
|
|
|
/* Allocate memory for CatCTup and the cached tuple in one go */
|
|
oldcxt = MemoryContextSwitchTo(CacheMemoryContext);
|
|
|
|
ct = (CatCTup *) palloc(sizeof(CatCTup) +
|
|
MAXIMUM_ALIGNOF + dtp->t_len);
|
|
ct->tuple.t_len = dtp->t_len;
|
|
ct->tuple.t_self = dtp->t_self;
|
|
ct->tuple.t_tableOid = dtp->t_tableOid;
|
|
ct->tuple.t_data = (HeapTupleHeader)
|
|
MAXALIGN(((char *) ct) + sizeof(CatCTup));
|
|
/* copy tuple contents */
|
|
memcpy((char *) ct->tuple.t_data,
|
|
(const char *) dtp->t_data,
|
|
dtp->t_len);
|
|
MemoryContextSwitchTo(oldcxt);
|
|
|
|
if (dtp != ntp)
|
|
heap_freetuple(dtp);
|
|
|
|
/* extract keys - they'll point into the tuple if not by-value */
|
|
for (i = 0; i < cache->cc_nkeys; i++)
|
|
{
|
|
Datum atp;
|
|
bool isnull;
|
|
|
|
atp = heap_getattr(&ct->tuple,
|
|
cache->cc_keyno[i],
|
|
cache->cc_tupdesc,
|
|
&isnull);
|
|
Assert(!isnull);
|
|
ct->keys[i] = atp;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Set up keys for a negative cache entry */
|
|
oldcxt = MemoryContextSwitchTo(CacheMemoryContext);
|
|
ct = (CatCTup *) palloc(sizeof(CatCTup));
|
|
|
|
/*
|
|
* Store keys - they'll point into separately allocated memory if not
|
|
* by-value.
|
|
*/
|
|
CatCacheCopyKeys(cache->cc_tupdesc, cache->cc_nkeys, cache->cc_keyno,
|
|
arguments, ct->keys);
|
|
MemoryContextSwitchTo(oldcxt);
|
|
}
|
|
|
|
/*
|
|
* Finish initializing the CatCTup header, and add it to the cache's
|
|
* linked list and counts.
|
|
*/
|
|
ct->ct_magic = CT_MAGIC;
|
|
ct->my_cache = cache;
|
|
ct->c_list = NULL;
|
|
ct->refcount = 0; /* for the moment */
|
|
ct->dead = false;
|
|
ct->negative = (ntp == NULL);
|
|
ct->hash_value = hashValue;
|
|
|
|
dlist_push_head(&cache->cc_bucket[hashIndex], &ct->cache_elem);
|
|
|
|
cache->cc_ntup++;
|
|
CacheHdr->ch_ntup++;
|
|
|
|
/*
|
|
* If the hash table has become too full, enlarge the buckets array. Quite
|
|
* arbitrarily, we enlarge when fill factor > 2.
|
|
*/
|
|
if (cache->cc_ntup > cache->cc_nbuckets * 2)
|
|
RehashCatCache(cache);
|
|
|
|
return ct;
|
|
}
|
|
|
|
/*
|
|
* Helper routine that frees keys stored in the keys array.
|
|
*/
|
|
static void
|
|
CatCacheFreeKeys(TupleDesc tupdesc, int nkeys, int *attnos, Datum *keys)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < nkeys; i++)
|
|
{
|
|
int attnum = attnos[i];
|
|
Form_pg_attribute att;
|
|
|
|
/* system attribute are not supported in caches */
|
|
Assert(attnum > 0);
|
|
|
|
att = TupleDescAttr(tupdesc, attnum - 1);
|
|
|
|
if (!att->attbyval)
|
|
pfree(DatumGetPointer(keys[i]));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Helper routine that copies the keys in the srckeys array into the dstkeys
|
|
* one, guaranteeing that the datums are fully allocated in the current memory
|
|
* context.
|
|
*/
|
|
static void
|
|
CatCacheCopyKeys(TupleDesc tupdesc, int nkeys, int *attnos,
|
|
Datum *srckeys, Datum *dstkeys)
|
|
{
|
|
int i;
|
|
|
|
/*
|
|
* XXX: memory and lookup performance could possibly be improved by
|
|
* storing all keys in one allocation.
|
|
*/
|
|
|
|
for (i = 0; i < nkeys; i++)
|
|
{
|
|
int attnum = attnos[i];
|
|
Form_pg_attribute att = TupleDescAttr(tupdesc, attnum - 1);
|
|
Datum src = srckeys[i];
|
|
NameData srcname;
|
|
|
|
/*
|
|
* Must be careful in case the caller passed a C string where a NAME
|
|
* is wanted: convert the given argument to a correctly padded NAME.
|
|
* Otherwise the memcpy() done by datumCopy() could fall off the end
|
|
* of memory.
|
|
*/
|
|
if (att->atttypid == NAMEOID)
|
|
{
|
|
namestrcpy(&srcname, DatumGetCString(src));
|
|
src = NameGetDatum(&srcname);
|
|
}
|
|
|
|
dstkeys[i] = datumCopy(src,
|
|
att->attbyval,
|
|
att->attlen);
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
|
* PrepareToInvalidateCacheTuple()
|
|
*
|
|
* This is part of a rather subtle chain of events, so pay attention:
|
|
*
|
|
* When a tuple is inserted or deleted, it cannot be flushed from the
|
|
* catcaches immediately, for reasons explained at the top of cache/inval.c.
|
|
* Instead we have to add entry(s) for the tuple to a list of pending tuple
|
|
* invalidations that will be done at the end of the command or transaction.
|
|
*
|
|
* The lists of tuples that need to be flushed are kept by inval.c. This
|
|
* routine is a helper routine for inval.c. Given a tuple belonging to
|
|
* the specified relation, find all catcaches it could be in, compute the
|
|
* correct hash value for each such catcache, and call the specified
|
|
* function to record the cache id and hash value in inval.c's lists.
|
|
* SysCacheInvalidate will be called later, if appropriate,
|
|
* using the recorded information.
|
|
*
|
|
* For an insert or delete, tuple is the target tuple and newtuple is NULL.
|
|
* For an update, we are called just once, with tuple being the old tuple
|
|
* version and newtuple the new version. We should make two list entries
|
|
* if the tuple's hash value changed, but only one if it didn't.
|
|
*
|
|
* Note that it is irrelevant whether the given tuple is actually loaded
|
|
* into the catcache at the moment. Even if it's not there now, it might
|
|
* be by the end of the command, or there might be a matching negative entry
|
|
* to flush --- or other backends' caches might have such entries --- so
|
|
* we have to make list entries to flush it later.
|
|
*
|
|
* Also note that it's not an error if there are no catcaches for the
|
|
* specified relation. inval.c doesn't know exactly which rels have
|
|
* catcaches --- it will call this routine for any tuple that's in a
|
|
* system relation.
|
|
*/
|
|
void
|
|
PrepareToInvalidateCacheTuple(Relation relation,
|
|
HeapTuple tuple,
|
|
HeapTuple newtuple,
|
|
void (*function) (int, uint32, Oid))
|
|
{
|
|
slist_iter iter;
|
|
Oid reloid;
|
|
|
|
CACHE_elog(DEBUG2, "PrepareToInvalidateCacheTuple: called");
|
|
|
|
/*
|
|
* sanity checks
|
|
*/
|
|
Assert(RelationIsValid(relation));
|
|
Assert(HeapTupleIsValid(tuple));
|
|
Assert(PointerIsValid(function));
|
|
Assert(CacheHdr != NULL);
|
|
|
|
reloid = RelationGetRelid(relation);
|
|
|
|
/* ----------------
|
|
* for each cache
|
|
* if the cache contains tuples from the specified relation
|
|
* compute the tuple's hash value(s) in this cache,
|
|
* and call the passed function to register the information.
|
|
* ----------------
|
|
*/
|
|
|
|
slist_foreach(iter, &CacheHdr->ch_caches)
|
|
{
|
|
CatCache *ccp = slist_container(CatCache, cc_next, iter.cur);
|
|
uint32 hashvalue;
|
|
Oid dbid;
|
|
|
|
if (ccp->cc_reloid != reloid)
|
|
continue;
|
|
|
|
/* Just in case cache hasn't finished initialization yet... */
|
|
if (ccp->cc_tupdesc == NULL)
|
|
CatalogCacheInitializeCache(ccp);
|
|
|
|
hashvalue = CatalogCacheComputeTupleHashValue(ccp, ccp->cc_nkeys, tuple);
|
|
dbid = ccp->cc_relisshared ? (Oid) 0 : MyDatabaseId;
|
|
|
|
(*function) (ccp->id, hashvalue, dbid);
|
|
|
|
if (newtuple)
|
|
{
|
|
uint32 newhashvalue;
|
|
|
|
newhashvalue = CatalogCacheComputeTupleHashValue(ccp, ccp->cc_nkeys, newtuple);
|
|
|
|
if (newhashvalue != hashvalue)
|
|
(*function) (ccp->id, newhashvalue, dbid);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Subroutines for warning about reference leaks. These are exported so
|
|
* that resowner.c can call them.
|
|
*/
|
|
void
|
|
PrintCatCacheLeakWarning(HeapTuple tuple)
|
|
{
|
|
CatCTup *ct = (CatCTup *) (((char *) tuple) -
|
|
offsetof(CatCTup, tuple));
|
|
|
|
/* Safety check to ensure we were handed a cache entry */
|
|
Assert(ct->ct_magic == CT_MAGIC);
|
|
|
|
elog(WARNING, "cache reference leak: cache %s (%d), tuple %u/%u has count %d",
|
|
ct->my_cache->cc_relname, ct->my_cache->id,
|
|
ItemPointerGetBlockNumber(&(tuple->t_self)),
|
|
ItemPointerGetOffsetNumber(&(tuple->t_self)),
|
|
ct->refcount);
|
|
}
|
|
|
|
void
|
|
PrintCatCacheListLeakWarning(CatCList *list)
|
|
{
|
|
elog(WARNING, "cache reference leak: cache %s (%d), list %p has count %d",
|
|
list->my_cache->cc_relname, list->my_cache->id,
|
|
list, list->refcount);
|
|
}
|